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Abstract: In this work, the existence and nonexistence of stationary radial solutions to the elliptic
partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested
in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-self
adjoint, it does not have exact solutions, and it admits multiple solutions. Here, λ ∈ R measures the
intensity of the flux and G is stationary flux. The solution depends on the size of the parameter λ.
We use a monotone iterative technique and integral equations along with upper and lower solutions
to prove that solutions exist. We establish the qualitative properties of the solutions and provide
bounds for the values of the parameter λ, which help us to separate existence from nonexistence.
These results complement some existing results in the literature. To verify the analytical results, we
also propose a new computational iterative technique and use it to verify the bounds on λ and the
dependence of solutions for these computed bounds on λ.

Keywords: radial solutions; SBVPs; non-self-adjoint operator; Green’s function; lower solution;
upper solution; iterative numerical approximations

1. Introduction

Epitaxy means the growth of a single thin film on top of a crystalline substrate. It is
crucial for semiconductor thin film technology, hard and soft coatings, protective coatings,
optical coatings, etc. The epitaxial growth technique is used to produce the growth of
semiconductor films and multilayer structures under high vacuum conditions [1]. The
major advantages of epitaxial growth are reducing the growth time, better structural and
superior electrical properties, eliminating waste caused during growth, wafering cost,
cutting, polishing, etc. Several types of epitaxial growth techniques, such as hybrid vapor
phase epitaxy [2], chemical beam epitaxy [3], and molecular beam epitaxy (MBE), have
been used for the growth of compound semiconductors and other materials. In this work,
we strictly focus on MBE, and we restrict our attention to the differential equation model,
which was proposed by Escudero et al. [4–7]. The mathematical description of epitaxial
growth is carried out by means of a function σ defined as

σ : Ω ⊂ R2 ×R+ → R,

which describes the height of the growing interface in the spatial point x ∈ Ω ⊂ R2 at
time t ∈ R+. The authors in [4–7] show that the function σ obeys the fourth-order partial
differential equation
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∂tσ + ∆2σ = det(D2σ) + λη(x, t), x ∈ Ω ⊂ R2, (1)

where η(x, t) models the incoming mass entering the system through epitaxial deposition,
λ measures the intensity of this flux, and the determinant of Hessian matrix is

det(D2σ) =
∂2σ

∂x2
1
· ∂2σ

∂x2
2
−
(

∂2σ

∂x1∂x2

)2

. (2)

The stationary counterpart of the partial differential Equation (1) subject to the homo-
geneous Dirichlet boundary condition (4) and homogeneous Navier boundary condition
(5) is defined as (see [6])

∆2σ = det(D2σ) + λG(x), x ∈ Ω ⊂ R2, (3)

σ = 0,
∂σ

∂n
= 0 on ∂Ω, (4)

σ = 0, ∆σ = 0 on ∂Ω, (5)

where η(x, t) ≡ G(x) is a stationary flux, and n is the unit out drawn normal to ∂Ω.
Using the transformation r = |x| and σ(x) = φ(|x|), as a result of symmetry, the above

set of equations are transformed into the following set of equations:

1
r

{
r
[

1
r
(rφ′)

′
]′}′

=
1
r

φ
′
φ
′′
+ λG(r), (6)

φ′(0) = 0, φ(1) = 0, φ′(1) = 0, lim
r→0

rφ′′′(r) = 0, (7)

φ′(0) = 0, φ(1) = 0, φ′(1) + φ′′(1) = 0, lim
r→0

rφ′′′(r) = 0, (8)

where ′ =
d
dr

.
In this paper, we also impose the following boundary conditions which complements

the work in [6]:

φ′(0) = 0, φ(1) = 0, φ′′(1) = 0, lim
r→0

rφ′′′(r) = 0. (9)

For simplicity, we take G(r) = 1, which physically means that the new material is
being deposited uniformly on the unit disc.

Now, using lim
r→0

rφ′′′(r) = 0, w = rφ′ and integrating parts from Equation (6), we have

r2w′′ − rw′ =
1
2

w2 +
1
2

λr4. (10)

Using the transformation t =
r2

2
and u(t) = w(r), it is possible to reduce Equation (10)

into the following equation:

u′′ =
u2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
. (11)

Corresponding to (11), we define the following three boundary value problems:
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Problem 1:


u′′ =

u2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
lim

t→0+

√
tu′(t) = 0, u

(
1
2

)
= 0,

(12)

Problem 2:


u′′ =

u2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
lim

t→0+

√
tu′(t) = 0, u′

(
1
2

)
= 0,

(13)

Problem 3:


u′′ =

u2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
lim

t→0+

√
tu′(t) = 0, u

(
1
2

)
= u′

(
1
2

)
.

(14)

The BVPs (12), (13) and (14) can be equivalently described as the following integral
equations (IE):

• IE corresponding to Problem 1:

u(t) = −
[(

1
2
− t
) ∫ t

0

u(s)2

4s
ds + t

∫ 1
2

t

u(s)2

4s2

(
1
2
− s
)

ds +
λ

4
t
(

1
2
− t
)]

, (15)

• IE corresponding to Problem 2:

u(t) = −
[∫ t

0

u(s)2

8s
ds + t

∫ 1
2

t

u(s)2

8s2 ds +
λ

4
t(1− t)

]
, (16)

• IE corresponding to Problem 3:

u(t) = −
[(

t +
1
2

) ∫ t

0

u(s)2

4s
ds + t

∫ 1
2

t

u(s)2

4s2

(
s +

1
2

)
ds +

λ

4
t
(

3
2
− t
)]

. (17)

We assume that u ∈ C2
loc

((
0, 1

2

]
;R
)

, where C2
loc

((
0, 1

2

]
;R
)

is defined as{
u :
(

0,
1
2

]
→ R|u ∈ C2([a, b],R) for everycompact set [a, b] ⊂

(
0,

1
2

]}
.

In [6], Escudero et al. proved the existence and nonexistence of solutions of Problems
1 and 3 using upper and lower solution techniques. Corresponding to Problems 1 and
3, they have also provided the rigorous bounds of the values of the parameter λ, which
helps us to separate existence from nonexistence. In [8], Verma et al. provide numerical
illustrations via VIM to verify the results of Escudero et al. [6]. To verify their numerical
results, they provided other iterative schemes based on homotopy [9] and the Adomian
decomposition method [10].

Equation (13) has not been investigated theoretically in the existing literature to the
best of our knowledge. Moreover, many investigations are still pending relating to BVPs
(12), (13), and (14). Here, we focus on both theoretical and numerical work. We derive
the sign of the solution and prove its existence in continuous space. We also compute the
bounds of the parameter λ. The results of this paper complements existing theoretical
results. We also provide an iterative scheme based on Green’s function to compute the
bounds and solutions to demonstrate the existence and nonexistence, which is dependent
on λ.

To prove the existence of the solutions, we use the monotone iterative
technique [11–17]. Recently, many researchers applied this technique on the initial value
problem (IVP) for the nonlinear noninstantaneous impulsive differential equation
(NIDE) [18], p-Laplacian boundary value problems with the right-handed Riemann–
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Liouville fractional derivative [19], etc. to prove the existence of the solution. Here,
we also present numerical results to verify the theoretical results. To develop the itera-
tive scheme based on Green’s function, we consider Equations (12)–(14). Recently, many
authors have used numerical approximate methods like the VIM [8], the Adomian de-
composition method (ADM), the homotopy perturbation method (HPM) etc. to find
approximate solutions for different models involving differential equations [20,21], integral
equations [22–24], fractional differential equations [25,26], the Stefan problem [27–30], sys-
tem of integral equations [31], etc. Thereafter, Waleed Al Hayani [32] and Singh et al. [33]
applied ADM with Green’s function to compute the approximate solution. Recently,
Noeiaghdam et al. [34] proposed a technique based on ADM for solving Volterra integral
equation with discontinuous kernels using the CESTAC method. To find out more about
this method, please see [35,36]. They focused on the BVPs which have a unique solution.
The major advantage of our proposed technique is its ability to capture multiple solutions
together with a desired accuracy.

The remainder of the paper is focused on both theoretical and numerical results.
We prove some of the basic properties of the BVPs in Section 2. The monotone iterative
technique is presented in Section 3 to prove the existence of a solution. A wide range of
λ for Equation (6), corresponding to different types of boundary conditions, is shown in
Section 4. In section 5, we apply our proposed technique to the integral equations and show
a wide range of numerical results. Finally, in Section 6, we draw our main conclusions.

2. Preliminary Work

Corresponding to λ ≥ 0, we prove some basic qualitative properties of the solution
u ∈ C2

loc

(
(0, 1

2 ],R
)

, which satisfies the following inequality:

u′′ ≥ u2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
. (18)

Here, we omit the proof of Lemmas 1–3, Corollary 1, and Lemma 4, which were done
by Escudero et al. in [6].

Lemma 1. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfy lim
t→0+

√
tu′(t) = 0 and Equation (18), then

lim
t→0

u(t) = 0.

Lemma 2. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfy lim
t→0

u(t) = 0, u
(

1
2

)
= 0 and Equation (18), then

u(t) ≤ 0 for all t ∈
(

0, 1
2

]
.

Lemma 3. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfy lim
t→0

u(t) = 0, u
(

1
2

)
= u′

(
1
2

)
and Equation (18),

then u(t) ≤ 0 for all t ∈
(

0, 1
2

]
.

Corollary 1. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfy lim
t→0

u(t) = 0, u(t) ≤ 0 and Equation (18), then

lim
t→0+

√
tu′(t) = 0 if and only if lim

t→0+

u(t)√
t
= 0.

Lemma 4. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfy lim
t→0+

u(t)√
t
= 0. Then, for every µ ∈ [0, 1), we have

lim
t→0+

t1−µ
∫ 1

2

t

u2

s2 ds = 0. (19)
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Lemma 5. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfy lim
t→0

u(t) = 0, u′
(

1
2

)
= 0 and Equation (18), then

u(t) ≤ 0 for all t ∈
(

0, 1
2

]
.

Proof. First, we show that u
(

1
2

)
≤ 0. Assume u

(
1
2

)
> 0. Since lim

t→0
u(t) = 0, there exist

a t0 ∈
(

0, 1
2

]
such that u(t0) < u

(
1
2

)
. Now, from (18), u′(t) is an increasing function on(

0, 1
2

]
. Again, by mean value theorem, we have

u
(

1
2

)
− u(t0)

1
2 − t0

= u′(ξ), min
{

1
2

, t0

}
≤ ξ ≤ max

{
1
2

, t0

}
. (20)

Since u′
(

1
2

)
= 0, we have

(
u
(

1
2

)
− u(t0)

)
≤ u′

(
1
2

)(
1
2
− t0

)
= 0. Hence, we get

u
(

1
2

)
≤ u(t0), which is a contradiction. Therefore, we have u

(
1
2

)
≤ 0. Furthermore, u(t)

is a convex function along with u′
(

1
2

)
= 0. Moreover, u′(t) is increasing, which implies

u′(t) ≤ 0. Again, u(t) is a decreasing function on
(

0, 1
2

]
. Therefore, lim

t→0
u(t) = 0 and

u
(

1
2

)
≤ 0 lead to u(t) ≤ 0 on

(
0, 1

2

]
.

Lemma 6. Let u ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 3, then u(t) satisfies the following
integral equation:

u(t) = −
[(

t +
1
2

) ∫ t

0

u(s)2

4s
ds + t

∫ 1
2

t

u(s)2

4s2

(
s +

1
2

)
ds +

λ

4
t
(

3
2
− t
)]

, (21)

and

lim
t→0+

|u(t)|
t

< +∞. (22)

Proof. The Green’s function of Problem 3 can be written as

G(s, t) =


−2s

(
t +

1
2

)
, 0 ≤ s ≤ t,

−2t
(

s +
1
2

)
, t ≤ s ≤ 1

2 .
(23)

Therefore, from Equation (23) and Problem 3, we can easily deduce the integral
Equation (21). Now, using the result of Lemma 1, we have

lim
t→0+

|u(t)|
t

=

∣∣∣∣∣
∫ 1

2

0

u(s)2

4s2

(
s +

1
2

)
ds +

3λ

8

∣∣∣∣∣. (24)

Now, put

f (t) =
u(t)2

t
, g(t) =

1
tµ and h(t) =

1
t1−µ

for t ∈
(

0,
1
2

]
. (25)

Therefore, we get f g ∈ L
(
(0, 1

2 ]
)

provided µ ∈ (0, 1). Consequently, we have

∫ 1
2

0

u(s)2

s2 ds < ∞. (26)
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Hence, from Equation (24), we get Equation (22).

Lemma 7. Let u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 2, then u(t) can be written in
the following form:

u(t) = −
[∫ t

0

u(s)2

8s
ds + t

∫ 1
2

t

u(s)2

8s2 ds +
λ

4
t(1− t)

]
, (27)

and also satisfies

lim
t→0+

|u(t)|
t

< ∞. (28)

Proof. Using the boundary condition and properties of Green’s function, we have

G(s, t) =
{
−s, 0 ≤ s ≤ t,
−t, t ≤ s ≤ 1

2 .
(29)

From Equation (29) and Problem 2, we can easily derive Equation (27). Now, using
the result of Lemma 1, we have

lim
t→0+

|u(t)|
t

=

∣∣∣∣∣
∫ 1

2

0

u(s)2

8s2 ds +
λ

4

∣∣∣∣∣. (30)

Therefore, from Equation (30) and using a similar analysis as that in Lemma 6, we can
prove the result (28).

Lemma 8. Let u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 1, then u(t) can be written in
the following form:

u(t) = −
[(

1
2
− t
) ∫ t

0

u(s)2

4s
ds + t

∫ 1
2

t

u(s)2

4s2

(
1
2
− s
)

ds +
λ

4
t
(

1
2
− t
)]

, (31)

and satisfies

lim
t→0+

|u(t)|
t

< ∞. (32)

Proof. The Green’s function of Problem 1 is given by

G(s, t) =


−2s

(
1
2
− t
)

, 0 ≤ s ≤ t,

−2t
(

1
2
− s
)

, t ≤ s ≤ 1
2 .

(33)

Again, from Equation (33) and Problem 3, we derive integral Equation (31). Further-
more, using the result of Lemma 1, we have

lim
t→0+

|u(t)|
t

=

∣∣∣∣∣
∫ 1

2

0

u(s)2

4s2

(
1
2
− s
)

ds +
λ

8

∣∣∣∣∣. (34)

Again, using a similar analysis as that in Lemma 7, we get the inequality (32).

3. Existence of Solutions

In this section, we apply the monotone iterative technique coupled with lower and
upper solutions to prove the existence of at least one solution for Problems 1–3. For this
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purpose, we need to prove some lemmas, which help us to prove the main results of
this paper.

3.1. Construction of Green’s Function

To investigate the Problems 1–3, we consider the corresponding nonlinear singular
boundary value problems, which are given by

Problem 1(a):


u′′ + ku = h(t), for t ∈

(
0,

1
2

]
,

lim
t→0+

√
tu′(t) = 0, u

(
1
2

)
= −b1,

(35)

Problem 2(a):


u′′ + ku = h(t), for t ∈

(
0,

1
2

]
,

lim
t→0+

√
tu′(t) = 0, u′

(
1
2

)
= −b2,

(36)

Problem 3(a):


u′′ + ku = h(t), for t ∈

(
0,

1
2

]
,

lim
t→0+

√
tu′(t) = 0, u

(
1
2

)
− b3 = u′

(
1
2

)
,

(37)

where h(t) =
u2

8t2 +
λ

2
+ ku, k ∈ R, b1, b2, b3 ≥ 0, and λ ∈ R. Throughout the paper, we

assume the following conditions:

• H0 = {k ∈ R : k < 0};

• H1 = {k ∈ R : k < 0 ∧
√
|k| cosh

(√
|k|
2

)
− sinh

(√
|k|
2

)
> 0};

• H2 = {k ∈ R : 0 < k < 4π2};
• H3 = {k ∈ R : 0 < k < π2};

• H4 = {k ∈ R : 0 < k <
π2

4
∧
√

k cos

(√
k

2

)
− sin

(√
k

2

)
> 0}.

Lemma 9. Let k satisfy H0 and u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 1(a), then

u(t) = −
b1 sinh

(√
|k|t
)

sinh
(√

|k|
2

) +
∫ 1

2

0
G(s, t)h(s)ds, (38)

where Green’s function G(s, t) is given by

G(s, t) =



−
sinh

(√
|k|

2 −
√
|k|t
)

sinh
(√
|k|s
)

√
|k| sinh

(√
|k|

2

) , 0 ≤ s ≤ t,

−
sinh

(√
|k|

2 −
√
|k|s
)

sinh
(√
|k|t
)

√
|k| sinh

(√
|k|

2

) , t ≤ s ≤ 1
2 ,

(39)

and G(s, t) ≤ 0 for all 0 ≤ s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Proof. Using the boundary condition of Problem 1(a) and the properties of Green’s func-
tion, we can easily prove Equation (39). Furthermore, we have G(s, t) ≤ 0 for all 0 ≤ s ≤ 1

2
and 0 ≤ t ≤ 1

2 .
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Lemma 10. Let k satisfy H0 and u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 2(a), then

u(t) = −
b2 sinh

(√
|k|t
)

√
|k| cosh

(√
|k|

2

) +
∫ 1

2

0
G(s, t)h(s)ds, (40)

where Green’s function G(s, t) is given by

G(s, t) =



−
cosh

(√
|k|

2 −
√
|k|t
)

sinh
(√
|k|s
)

√
|k| cosh

(√
|k|

2

) , 0 ≤ s ≤ t,

−
cosh

(√
|k|

2 −
√
|k|s
)

sinh
(√
|k|t
)

√
|k| cosh

(√
|k|

2

) , t ≤ s ≤ 1
2 ,

(41)

and G(s, t) ≤ 0 for all 0 ≤ s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Proof. In a similar manner to that in Lemma 9, we can easily obtain Equation (41) and
prove G(s, t) ≤ 0 for all 0 ≤ s ≤ 1

2 and 0 ≤ t ≤ 1
2 .

Lemma 11. Let k satisfy H1 and u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 3(a), then

u(t) = −
b3 sinh

(√
|k|t
)

[√
|k| cosh

(√
|k|

2

)
− sinh

(√
|k|

2

)] +
∫ 1

2

0
G(s, t)h(s)ds, (42)

where Green’s function G(s, t) is given by

G(s, t) =



−
P(t) sinh

(√
|k|s
)

√
|k|
[√
|k| cosh

(√
|k|

2

)
− sinh

(√
|k|

2

)] , 0 ≤ s ≤ t,

−
P(s) sinh

(√
|k|t
)

√
|k|
[√
|k| cosh

(√
|k|

2

)
− sinh

(√
|k|

2

)] , t ≤ s ≤ 1
2 ,

(43)

where P(t) =

[√
|k| cosh

(√
|k|
2
−
√
|k|t
)
− sinh

(√
|k|
2
−
√
|k|t
)]

. Moreover, G(s, t) ≤ 0

for all 0 ≤ s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Proof. Again, using a similar analysis, we can easily derive the Green’s function. Now,
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√
|k| cosh

(√
|k|
2
−
√
|k|t
)
− sinh

(√
|k|
2
−
√
|k|t
)

=
√
|k| cosh

(√
|k|
2

)
cosh

(√
|k|t
)
−
√
|k| sinh

(√
|k|
2

)
sinh

(√
|k|t
)

− sinh

(√
|k|
2

)
cosh

(√
|k|t
)
+ cosh

(√
|k|
2

)
sinh

(√
|k|t
)

=

[√
|k| cosh

(√
|k|
2

)
− sinh

(√
|k|
2

)]
cosh

(√
|k|t
)

−
√
|k| sinh

(√
|k|
2

)
sinh

(√
|k|t
)
+ cosh

(√
|k|
2

)
sinh

(√
|k|t
)

≥
(√
|k| cosh

(√
|k|
2

)
− sinh

(√
|k|
2

))
(

cosh
(√
|k|t
)
− sinh

(√
|k|t
))

≥ 0, since tanh
(√
|k|t
)
≤ 1 for all t ∈

(
0,

1
2

]
.

Hence, from (43), we have G(s, t) ≤ 0 for all 0 ≤ s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Lemma 12. Let k satisfy H2 and u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 1(a), then

u(t) = −
b1 sin

(√
kt
)

sin
(√

k
2

) +
∫ 1

2

0
G(s, t)h(s)ds, (44)

where Green’s function G(s, t) is given by

G(s, t) =



−
sin
(√

k
2 −
√

kt
)

sin
(√

ks
)

√
k sin

(√
k

2

) , 0 ≤ s ≤ t,

−
sin
(√

k
2 −
√

ks
)

sin
(√

kt
)

√
k sin

(√
k

2

) , t ≤ s ≤ 1
2 ,

(45)

and G(s, t) ≤ 0 for all 0 ≤ s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Proof. The proof is similar to that shown in Lemma 9.

Lemma 13. Let k satisfy H3 and u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 2(a), then

u(t) = −
b2 sin

(√
kt
)

√
k cos

(√
k

2

) +
∫ 1

2

0
G(s, t)h(s)ds, (46)

where Green’s function G(s, t) is given by
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G(s, t) =



−
cos
(√

k
2 −
√

kt
)

sin
(√

ks
)

√
k cos

(√
k

2

) , 0 ≤ s ≤ t,

−
cos
(√

k
2 −
√

ks
)

sin
(√

kt
)

√
k cos

(√
k

2

) , t ≤ s ≤ 1
2 ,

(47)

and G(s, t) ≤ 0 for all 0 ≤ s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Proof. The proof is similar to that shown in Lemma 10.

Lemma 14. Let k satisfy H4 and u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

be the solution of Problem 3(a), then

u(t) = −
b3 sin

(√
kt
)

[√
k cos

(√
k

2

)
− sin

(√
k

2

)] + ∫ 1
2

0
G(s, t)h(s)ds, (48)

where Green’s function G(s, t) is given by

G(s, t) =



−
Q(t) sin

(√
ks
)

√
k
[√

k cos
(√

k
2

)
− sin

(√
k

2

)] , 0 ≤ s ≤ t,

−
Q(s) sinh

(√
kt
)

√
k
[√

k cos
(√

k
2

)
− sin

(√
k

2

)] , t ≤ s ≤ 1
2 ,

(49)

where Q(t) =

[
√

k cos

(√
k

2
−
√

kt

)
− sin

(√
k

2
−
√

kt

)]
. Moreover, G(s, t) ≤ 0 for all 0 ≤

s ≤ 1
2 and 0 ≤ t ≤ 1

2 .

Proof. The proof is similar to that shown in Lemma 11.

Proposition 1. Let k satisfy H0 or H2 (respectively, H0 or H3 and H1 or H4) and h(t) ∈
C2

loc

(
(0, 1

2 ],R
)

is such that h(t) ≥ 0, then the solution of Problem 1(a) (respectively, Problem
2(a) and Problem 3(a)) is nonpositive.

3.2. Monotone Iterative Technique

Here, we define lower and upper solutions corresponding to Problems 1–3.

Definition 1 ([37]). A function α ∈ C2
loc

(
(0, 1

2 ],R
)

is the upper solution of Problem 1 (respec-
tively, Problem 2 and Problem 3) if

α′′ ≤ α2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
, (50)

with lim
t→0

α(t)√
t
= 0 and α

(
1
2

)
≥ 0 (respectively, α′

(
1
2

)
≥ 0 and α

(
1
2

)
≤ α′

(
1
2

)
).

Definition 2 ([37]). A function β ∈ C2
loc

(
(0, 1

2 ],R
)

is the lower solution of Problem 1 (respec-
tively, Problem 2 and Problem 3) if

β′′ ≥ β2

8t2 +
λ

2
, for t ∈

(
0,

1
2

]
, (51)
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with lim
t→0

β(t)√
t
= 0 and β

(
1
2

)
≤ 0 (respectively, β′

(
1
2

)
≤ 0 and β

(
1
2

)
≥ β′

(
1
2

)
).

Now, we construct two sequences {αn} and {βn} corresponding to Problem 1(a)
(respectively, Problem 2(a) and Problem 3(a)), which are defined by

α0 = α,

α′′n+1 + kαn+1 =
α2

n
8t2 +

λ

2
+ kαn, for t ∈

(
0,

1
2

]
, (52)

lim
t→0

αn+1(t)√
t

= 0 and αn+1

(
1
2

)
= 0, (53)

(
respectively, α′n+1

(
1
2

)
= 0 and αn+1

(
1
2

)
= α′n+1

(
1
2

))
and

β0 = β,

β′′n+1 + kβn+1 =
β2

n
8t2 +

λ

2
+ kβn, for t ∈

(
0,

1
2

]
, (54)

lim
t→0

βn+1(t)√
t

= 0 and βn+1

(
1
2

)
= 0, (55)

(
respectively, β′n+1

(
1
2

)
= 0 and βn+1

(
1
2

)
= β′n+1

(
1
2

))
. We assume the following

properties:

• P1: α0 and β0 satisfies

lim
t→0

|α0(t)|
t

< ∞, lim
t→0

α0(t) = 0, α0(t) ≤ 0, (56)

and

lim
t→0

|β0(t)|
t

< ∞, lim
t→0

β0(t) = 0; (57)

• P2: h(t, u) is continuous on D0 where

D0 =

{
(t, u) ∈

(
0,

1
2

]
×R : β0 = β ≤ u ≤ α0

}
.

Now, we state our main existence theorems.

Theorem 1. Assume H0 (respectively, H0 and H1) is true, there exist α0, and
β0 ∈ C2

loc

(
(0, 1

2 ],R
)

are upper and lower solutions of Problem 1 (respectively, Problem 2 and
Problem 3), which satisfy the properties P1 and P2 such that β0 ≤ α0 = 0, then the Problem
1 (respectively, Problem 2 and Problem 3) has at least one solution in the region D0 and the se-
quences {αn}, {βn} defined by (52)–(55) converge to solutions u, v uniformly and monotonically,
respectively, such that

β ≤ u ≤ v ≤ α = 0, ∀t ∈
(

0,
1
2

]
. (58)

Proof. We divide the proof into three parts. In the first part, we prove that

βn is a lower solution of problem 1, βn ≤ βn+1 , and βn+1 ≤ α0 ∀n ∈ N∪ {0}. (59)
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We apply mathematical induction on n. For n = 0, from (54) and (55), we have

β′′1 + kβ1 =
β2

0
8t2 +

λ

2
+ kβ0, for t ∈

(
0,

1
2

]
, (60)

lim
t→0

β1(t)√
t

= 0 and β1

(
1
2

)
= 0. (61)

Now, from Equation (51), we have

(β0 − β1)
′′ + k(β0 − β1) = −

β2
0

8t2 −
λ

2
+ β′′0 ≥ 0, for t ∈

(
0,

1
2

]
, (62)

lim
t→0

β0 − β1(t)√
t

= 0 and (β0 − β1)

(
1
2

)
≤ 0. (63)

Therefore, by Proposition 1, we have β0 ≤ β1. Again from (50) and (60), we have

(β1 − α0)
′′ + k(β1 − α0) =

β2
0

8t2 +
λ

2
+ k(β0 − α0)− α′′0 , for t ∈

(
0,

1
2

]
(64)

≥
(

β0 + α0

8t
+ kt

)(
β0 − α0

t

)
. (65)

Since β0 ≤ α0, we have

(β1 − α0)
′′ + k(β1 − α0) ≥ 0, ∀t ∈

(
0,

1
2

]
, (66)

lim
t→0

(β1 − α0)(t)√
t

= 0 and (β1 − α0)

(
1
2

)
≤ 0. (67)

Hence, by Proposition 1, we have β1 ≤ α0. Therefore, our assumptions are true for
n = 0. Let our assumptions be true up to n = m. Then, we find that

βn is a lower solution of problem 1, βn ≤ βn+1 , and βn+1 ≤ α0 (68)

for n = 1, 2, . . . , m. Now, we want to show that our assumptions are true for n + 1. There-
fore, from Equation (54), we have

β′′n+1 −
β2

n+1
8t2 −

λ

2
=

β2
n − β2

n+1
8t2 + k(βn − βn+1), for t ∈

(
0,

1
2

]
(69)

≥
(

βn + βn+1

8t
+ kt

)(
βn − βn+1

t

)
. (70)

Again, by using conditions (68), we have

β′′n+1 ≥
β2

n+1
8t2 +

λ

2
, for t ∈

(
0,

1
2

]
, (71)

lim
t→0

βn+1(t)√
t

= 0 and βn+1

(
1
2

)
≤ 0. (72)

Hence, βn+1 is a lower solution of Problem 1. Now, from Equation (54) and (71), we have

(βn+1 − βn+2)
′′ + k(βn+1 − βn+2) = −

β2
n+1
8t2 −

λ

2
+ β′′n+1 ≥ 0, (73)

lim
t→0

(βn+1 − βn+2)(t)√
t

= 0 and (βn+1 − βn+2)

(
1
2

)
≤ 0. (74)
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Therefore, by Proposition 1, we have βn+1 ≤ βn+2. Again, from (50) and (54), we have

(βn+2 − α0)
′′ + k(βn+2 − α0) =

β2
n+1
8t2 +

λ

2
+ k(βn+1 − α0)− α′′0 (75)

≥
(

βn+1 + α0

8t
+ kt

)(
βn+1 − α0

t

)
. (76)

Using a similar analysis, we have βn+2 ≤ α0. Hence, by mathematical induction, we find
that

βn is a lower solution of Problem 1, βn ≤ βn+1 and βn+1 ≤ α0 ∀n ∈ N. (77)

In the second part of the proof, we have to show that

αn is an upper solution of Problem 1 and αn+1 ≤ αn ∀n ∈ N. (78)

Now, from (52) and (53), we have

α′′1 + kα1 =
α2

0
8t2 +

λ

2
+ kα0, for t ∈

(
0,

1
2

]
, (79)

lim
t→0

α1(t)√
t

= 0 and α1

(
1
2

)
= 0. (80)

Therefore, by using (50), we have

(α1 − α0)
′′ + k(α1 − α0) =

α2
0

8t2 +
λ

2
− α′′0 ≥ 0, for t ∈

(
0,

1
2

]
. (81)

Again,

lim
t→0

(α1 − α0)(t)√
t

= 0 and (α1 − α0)

(
1
2

)
≤ 0. (82)

Hence, by Proposition 1, we have α1 ≤ α0. Therefore, our assumptions are true for n = 0.
Let our assumptions be true up to n = m. Then, we find that

αn is an upper solution of Problem 1 and αn+1 ≤ αn for n = 1, 2, . . . , m. (83)

Now, for n + 1, we have

α′′n+1 −
α2

n+1
8t2 −

λ

2
=

α2
n − α2

n+1
8t2 + k(αn − αn+1), for t ∈

(
0,

1
2

]
, (84)

≤
(

1
8

αn + αn+1

t
+ kt

)(
αn − αn+1

t

)
≤ 0. (85)

Therefore,

α′′n+1 ≤
α2

n+1
8t2 +

λ

2
, for t ∈

(
0,

1
2

]
, (86)

and

lim
t→0

αn+1(t)√
t

= 0, αn+1

(
1
2

)
≥ 0. (87)

Hence, αn+1 is an upper solution of Problem 1. Therefore, by using (86), (52), and (53), we have

(αn+2 − αn+1)
′′ + k(αn+2 − αn+1) =

α2
n+1
8t2 +

λ

2
− α′′n+1 ≥ 0, (88)
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and

lim
t→0

(αn+2 − αn+1)(t)√
t

= 0, (αn+2 − αn+1)

(
1
2

)
≤ 0. (89)

Therefore, by Proposition 1, αn+2 ≤ αn+1. Hence, by mathematical induction, we conclude
that

αn is an upper solution of Problem 1 and αn+1 ≤ αn ∀n ∈ N. (90)

In the last part of the proof, we want to show βn ≤ αn for all n ∈ N. Again, from (71) and
(86), we have

(βn+1 − αn+1)
′′ + k(βn+1 − αn+1) =

β2
n

8t2 +
λ

2
+ k(βn − αn)− α′′n (91)

≥
(

βn + αn

8t
+ kt

)(
βn − αn

t

)
. (92)

Since βn ≤ αn ≤ 0, we have

(βn+1 − αn+1)
′′ + k(βn+1 − αn+1) ≥ 0, (93)

and

lim
t→0

βn+1 − αn+1(t)√
t

= 0, (βn+1 − αn+1)

(
1
2

)
≤ 0. (94)

Hence, by Proposition 1, βn+1 ≤ αn+1. Finally, we have

β = β0 ≤ β1 ≤ . . . ≤ βn ≤ . . . ≤ αn ≤ . . . ≤ α1 ≤ α0 = 0. (95)

Let tn ∈
(

0, 1
2

)
for n ∈ N such that

tn+1 < tn for n ∈ N, lim
n→∞

tn = 0. (96)

Therefore, for every n ∈ N, there exists a solution αn and βn to Equations (52) and (53),
while (54) and (55) satisfy the inequality (95) on the interval [tn, 1

2 ]. Since {αn} and {βn} are
monotone and bounded, they converge to function u(t) and v(t), respectively. Therefore,
by Dini’s theorem, there exists u(t) and v(t) such that

lim
n→∞

αn = u and lim
n→∞

βn = v uniformly on every compact interval
[
tn, 1

2

]
(97)

of
(

0, 1
2

]
. Hence, from (52)–(55) and (38), there exists solutions v(t) ∈ C2

loc

(
(0, 1

2 ],R
)

and

u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

to Problem 1, satisfying

β ≤ u ≤ v ≤ α0 = 0, ∀t ∈
(

0,
1
2

]
. (98)

Hence, the proof is complete.

Now, we assume the following conditions:

• H5 =

{
k ∈ R : 0 < k < k′, where k′ = min

{
4π2,− max

t∈(0, 1
2 ]

α0

2t

}}
,

• H6 =

{
k ∈ R : 0 < k < k′, where k′ = min

{
π2,− max

t∈(0, 1
2 ]

α0

2t

}}
,
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• H7 = {k ∈ R : 0 < k < k′},

where k′ = min

{
π2

4
,− max

t∈(0, 1
2 ]

α0

2t

}
∧
√

k cos

(√
k

2

)
− sin

(√
k

2

)
> 0.

Theorem 2. Let α0, β0 ∈ C2
loc

(
(0, 1

2 ],R
)

be the upper and lower solutions of Problem 1 (respec-
tively, Problem 2 and Problem 3), which satisfy the properties P1 and P2 such that β0 ≤ α0. Assume
H5 (respectively, H6 and H7) is true and λ ∈ R. Then, Problem 1 (respectively, Problem 2 and
Problem 3) has at least one solution in the region D0 and the sequences {αn}, {βn} defined by
(52)–(55) converge to solutions u, v uniformly and monotonically, respectively, such that

β ≤ u ≤ v ≤ α, ∀t ∈
(

0,
1
2

]
. (99)

Proof. The proof is same as that shown in Theorem 1.

4. Estimations of λ

The objective of this section is to derive some qualitative bounds of the parameter λ,
from which we can conclude about the nonexistence of solutions. Equation (11) can be
written in the following form:

(tu′ − u)′ =
u2

8t
+

λt
2

, ∀t ∈
(

0,
1
2

]
. (100)

Put v(t) = −u(t)
t

and integrating from 0 to t, Equation (100) becomes

v′(t) = − 1
8t2

∫ t

0
v2(s)s ds− λ

4
, ∀t ∈

(
0,

1
2

]
. (101)

Therefore, we have

v(t) ≥ 0, ∀t ∈
(

0,
1
2

]
. (102)

In view of the transformation, the boundary condition at r = 1 becomes

BC of Problem 1: v
(

1
2

)
= 0, (103)

BC of Problem 2: v
(

1
2

)
= −1

2
v′
(

1
2

)
, (104)

BC of Problem 3: v
(

1
2

)
= −v′

(
1
2

)
. (105)

Escudero et al. in [6] prove the following two lemmas:

Lemma 15. The set of numbers λ ≥ 0, for which there exists a solution u(t) ∈ C2
loc

(
(0, 1

2 ],R
)

of

Equation (11) satisfying lim
t→0

u(t)√
t
= 0 and u(t) ≤ 0, is nonempty and bounded from above.

Lemma 16. If Problem 1, Problem 2, and Problem 3 are solvable for some λ0 ≥ 0, then these are
solvable for every 0 ≤ λ ≤ λ0.

We present the following results which complement the results proved
by Escudero et al. [6].
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Lemma 17. Let there exist a function u ∈ C2
loc

(
(0, 1

2 ],R
)

satisfying Equations (101), (102),
and (104), then

λ ≤ 384
11
≈ 34.91. (106)

Proof. Now from Equation (101), we have

v′(t) ≤ 0, ∀t ∈
(

0,
1
2

]
. (107)

Again, from Equation (101), we get

v′′(t) =
1

4t3

∫ t

0
v2(s)s ds− v2(t)

8t
, ∀t ∈

(
0,

1
2

]
. (108)

Therefore, by using (107) and (102), from (108), we have

v′′(t) ≥ 0, ∀t ∈
(

0,
1
2

]
. (109)

Therefore, v′(t) is increasing in
(

0, 1
2

]
. Now,

v′(t) ≤ v′
(

1
2

)
= −1

2

∫ 1
2

0
v2(s)s ds− λ

4
, ∀t ∈

(
0,

1
2

]
. (110)

Therefore, we have

v′(t) ≤ −c, ∀t ∈
(

0,
1
2

]
, (111)

where

c =
1
2

∫ 1
2

0
v2(s)s ds +

λ

4
. (112)

Now, integrating Equation (111) from 0 to t and by using Equation (104), we have

v(t) ≥ c(1− t), ∀t ∈
(

0,
1
2

]
. (113)

Therefore, from Equations (112) and (113), we get

11
384

c2 − c +
λ

4
≤ 0, (114)

which implies Equation (106).

Lemma 18. Let
0 ≤ λ ≤ 2C and C ≤ 128

9
, (115)

then there exists a solution β ∈ C2
loc

(
(0, 1

2 ],R
)

that satisfies Equation (51), the assumption P1,

β′
(

1
2

)
= 0, and β(t) ≤ 0.

Proof. We put

β(t) = −Ct(A−
√

2t), ∀t ∈
(

0,
1
2

]
and C ≥ 0. (116)
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Obviously, β(t) satisfies assumption P1. Now, β′
(

1
2

)
= 0 implies A =

3
2

. Therefore,

β(t) ≤ 0 is also fulfilled. Now, we have

β′′(t)− β2(t)
8t2 −

λ

2
(117)

=
3C

2
√

2t
−

C2t2
(

3
2 −
√

2t
)2

8t2 − λ

2
(118)

=
C√
2t

(
3
2
− λ
√

2t
2C

)
−

C2
(

3
2 −
√

2t
)2

8
(119)

≥ C√
2t

(
3
2
−
√

2t
)
−

C2
(

3
2 −
√

2t
)2

8
, since λ ≤ 2C (120)

=
C2

8
√

2t

(
3
2
−
√

2t
)((√

2t− 3
4

)2
+
−9C + 128

16C

)
(121)

≥ 0, ∀t ∈
(

0,
1
2

]
, since C ≤ 128

9
. (122)

Hence, the inequality (51) is satisfied.

Lemma 19. Let
0 ≤ λ ≤ 3C and C ≤ 48, (123)

then there exists a solution β ∈ C2
loc

(
(0, 1

2 ],R
)

that satisfies Equation (51), the assumption

P1, β
(

1
2

)
= 0, and β(t) ≤ 0.

Proof. We put

β(t) = −Ct(A−
√

2t), ∀t ∈
(

0,
1
2

]
and C ≥ 0. (124)

Again, β(t) satisfies the assumption P1. Now, β
(

1
2

)
= 0 implies A = 1. Hence, β(t) ≤ 0 is

also fulfilled. Now, we have

β′′(t)− β2(t)
8t2 −

λ

2
(125)

=
3C

2
√

2t
−

C2t2
(

1−
√

2t
)2

8t2 − λ

2
(126)

=
3C

2
√

2t

(
1− λ

√
2t

3C

)
−

C2
(

1−
√

2t
)2

8
(127)

≥ 3C
2
√

2t

(
1−
√

2t
)
−

C2
(

1−
√

2t
)2

8
, since λ ≤ 3C (128)

=
C2

8
√

2t

(
1−
√

2t
)((√

2t− 1
2

)2
+
−C + 48

4C

)
(129)

≥ 0, ∀t ∈
(

0,
1
2

]
, since C ≤ 48. (130)

This completes the proof.
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Lemma 20. Let
0 ≤ λ ≤ 3C

2
and C ≤ 6, (131)

then there exists a solution β ∈ C2
loc

(
(0, 1

2 ],R
)

that satisfies Equation (51), the assumption P1,

β
(

1
2

)
= β′

(
1
2

)
, and β(t) ≤ 0.

Proof. We put

β(t) = −Ct(A−
√

2t), ∀t ∈
(

0,
1
2

]
and C ≥ 0. (132)

Now, β(t) also satisfies assumption P1. Similarly, β
(

1
2

)
= β′

(
1
2

)
implies A = 2. Therefore,

β(t) ≤ 0 is also fulfilled. Then, we have

β′′(t)− β2(t)
8t2 −

λ

2
(133)

=
3C

2
√

2t
−

C2t2
(

2−
√

2t
)2

8t2 − λ

2
(134)

=
3C

4
√

2t

(
2− 2λ

√
2t

3C

)
−

C2
(

2−
√

2t
)2

8
(135)

≥ 3C
4
√

2t

(
2−
√

2t
)
−

C2
(

2−
√

2t
)2

8
, since λ ≤ 3C

2 (136)

=
C2

8
√

2t

(
2−
√

2t
)((√

2t− 1
)2

+
−C + 6

C

)
(137)

≥ 0, ∀t ∈
(

0,
1
2

]
, since C ≤ 6. (138)

Hence, the proof is complete.

Theorem 3. Let λ0 ∈ R+. If 0 ≤ λ < λ0, then Equation (10) corresponding to different types
of boundary conditions are solvable. Moreover, there is no solution to these problems if λ > λ0.
Furthermore, every solution w(r) of a governing equation corresponding to these three types of
boundary condition satisfy

w(r) ≤ 0, r ∈ (0, 1] and lim
r→0+

w(r) = 0. (139)

Proof. The proof of this can be deduced from Lemma 15, Lemma 16, Lemma 1, Lemma 2,
Lemma 3, and Lemma 5.

Proposition 2. Corresponding to Equations (6) and (7), the value of λ0 admits the estimates

144 ≤ λ0 ≤ 307. (140)

Proof. From Lemma 7.7 in [6] and Lemma 19, we get Equation (140).

Proposition 3. Corresponding to Equations (6) and (9), the value of λ0 admits the estimates

256
9
≤ λ0 ≤

384
11

. (141)

Proof. From Lemmas 17 and 18, we have Equation (141).
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Proposition 4. Corresponding to Equations (6) and (8), the value of λ0 admits the estimates

9 ≤ λ0 ≤ 11.63. (142)

Proof. By using Lemma 7.6 in [6] and Lemma 20, we have Equation (142).

5. Numerical Results and Discussion

Here, we present the numerical data to validate our derived theoretical results. In
Section 5.1, we derive the numerical estimation of the bounds computed by ADM. In
Section 5.3, we numerically show the existence of at least one solution.

5.1. ADM

To find the approximate solutions, we develop the iterative numerical schemes with
the help of the Fredholm integral Equations (15), (16), and (17), respectively. Now, we
decompose the solution u(t) of the form u(t) = ∑∞

i=0 ui(t), and approximate the nonlinear
term in terms of Adomian’s polynomials [38], which is given by

N(u(t)) = −1
2

u2(t) =
∞

∑
i=0

Ai(u0, u1, . . . , ui), (143)

where

Ai =
1
i!

di

dβi N

(
i

∑
j=0

βjuj

)
β=0

, i = 0, 1, 2, . . . . (144)

Therefore, from integral Equation (15), we define

Scheme of Problem 1 =



u0(t) = −ct− λ
4 t
(

1
2 − t

)
,

...
un+1(t) =

∫ t
0

( s
2 −

t
2
) An

2s2 ds,
...,

and c = −
∫ 1

2
0 ∑n

i=0
Ai
2s2

(
1
2 − s

)
ds.

(145)

We compute the arbitary constant c using the Mathematica 10.9 program. For better
understanding, we present the algorithm of our proposed technique corresponding to
Equation (15) below.

Residue Error:
Here, we define the residue error [39] corresponding to Equation (15) for error analysis,

which is given by

R(t) = u(t) +
(

1
2
− t
) ∫ t

0

u(s)2

4s
ds + t

∫ 1
2

t

u(s)2

4s2

(
1
2
− s
)

ds +
λ

4
t
(

1
2
− t
)

, (146)

where λ is the parameter. Therefore, the maximum absolute residue error can be defined as

L∞ = max
i=0,··· ,10

|R(t0 + i× 0.1)|, where t0 = 0. (147)

5.2. Algorithm

Step 1. Convert Fredholm integral Equation (15) into the Voltera integral equation.
Step 2. Identify the constant term, and approximate the nonlinear term by Equation (143).
Step 3. Consider u0(t) as in (145), and obtain ui(t) for i = 1, 2, . . . , n + 1.

Step 4. Approximate the term
u2

4s2 by −
n

∑
i=0

Ai
2s2 in the equation c =

∫ 1
2

0

u2

4s2

(
1
2
− s
)

ds.
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Step 5. Compute the values of the constant and the approximate solutions u(t) =
n+1

∑
i=0

ui.

Step 6. Determine the residue error R(t) and set the stopping criteria L∞ < ε, where ε
is the tolerance.

Again, we apply the algorithm Section 5.2 to Equations (16) and (17), and we define
the following iterative schemes:

Scheme of Problem 2 =



u0(t) = −ct− λ
4 t(1− t),

...
un+1(t) =

∫ t
0 (s− t) An

4s2 ds,
...,

and c = −
∫ 1

2
0 ∑n

i=0
Ai
4s2 ds,

(148)

and Scheme of Problem 3 =



u0(t) = −ct− λ
4 t
( 3

2 − t
)
,

...
un+1(t) =

∫ t
0

( s
2 −

t
2
) An

2s2 ds,
...,

and c = −
∫ 1

2
0 ∑n

i=0

(
1
2 + s

)
Ai
2s2 ds.

(149)

Approximate solutions for Equations (16) and (17) can be written as u(t) =
n+1

∑
i=0

ui(t),

provided the series is convergent for n → ∞. Recently, the convergence of ADM was

established by Verma et al. in [9]. Now, by using the transformation t =
r2

2
, u(t) = w(r),

w(r) = rφ′(r), and φ(1) = 0, we get the solutions of Equation (6). We arrive at two cases:
Case (a): λ ≥ 0.

For λ = 0, we get one trivial and one nontrivial solution. For 0 < λ ≤ λcritical, we
always find two nontrivial solutions. We may refer to them as upper and lower solutions,
respectively. Corresponding to Equations (9), (8), and (7), we find the critical values of
λ, i.e., λcritical, are 31.94, 11.34, and 168.76, respectively. For λ > λcritical, we do not find
any numerical solutions, as the value of c become imaginary. In Section 5.2.1, we tabulate
residual errors of the approximate solutions corresponding to some λ.
Case (b): λ < 0.

In this case, we always have two nontrivial numerical solutions corresponding to three
types of boundary conditions. One solution is negative (namely, the negative solution) and
the other solution is positive (namely, the positive solution). We do not find any negative
critical λ. Please refer to Section 5.2.1 as regards residue errors.

5.2.1. Tables

Here, we have placed some numerical data of approximate solutions of φ(r) corre-
sponding to different types of boundary conditions below. If we are increasing the value of
λ, we see that the residue error of the lower solution is increasing and the residue error
of the upper solution is decreasing (see: Table 1). Similarly, if we are decreasing the value
of negative λ, we see that the residue error of both positive and negative solutions are
decreasing (see: Table 2). The same can be seen in Tables 3–6.
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Table 1. Maximum absolute residue error of approximate solutions φ(r) corresponding to boundary
conditions (8).

Lower Solution Upper Solution

λ 0 31.94 0 31.94
0 1.95399× 10−14 8.3347× 10−7 1.86517× 10−14

Table 2. Maximum absolute residue error of approximate solutions φ(r) corresponding to boundary
conditions (8).

Positive Solution Negative Solution

λ −1 −15 −1 −15
1.42341× 10−6 0.001199979 1.37856× 10−16 3.66374× 10−15

Table 3. Maximum absolute residue error of approximate solutions φ(r) corresponding to boundary
conditions (9).

Lower Solution Upper Solution

λ 0 11.34 0 11.34
0 3.55271× 10−15 3.55271× 10−15 2.66454× 10−15

Table 4. Maximum absolute residue error of approximate solutions φ(r) corresponding to boundary
conditions (9).

Positive Solution Negative Solution

λ −1 −15 −1 −15
6.83897× 10−14 4.59188× 10−13 2.54571× 10−16 7.77156× 10−16

Table 5. Maximum absolute residue error of approximate solutions φ(r) corresponding to boundary
conditions (7).

Lower Solution Upper Solution

λ 0 168.76 0 168.76
0 6.1668× 10−11 0.000557377 1.70296× 10−10

Table 6. Maximum absolute residue error of approximate solutions φ(r) corresponding to boundary
conditions (7).

Positive Solution Negative Solution

λ −1 −15 −1 −15
0.000557832 0.000562261 7.29668× 10−17 6.2797× 10−16

5.3. Monotone Iterative Method

Here, we compute the monotone iterations using Equations (52)–(55) corresponding
to three types of boundary condition.

Corresponding to problem (12): By using Lemma 19, we chose the lower and
upper iterations

β0(t) = −3t
(

1−
√

2t
)
∧ α0(t) = 0, ∀t ∈ [0, 1]. (150)

Therefore, it is easy to show that α0 and β0 both satisfy the inequalities (50), (51), (56), and
(57), such that β0 ≤ α0. We consider that k = −1. Hence, by using Theorem 1, we have a
monotonically and uniformly convergent sequence {βn} and {αn}, which are converging
to the solution v and u of the problem (12). We denote uADM as the approximation of the
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solution of (12) computed by ADM. By using the transformation t =
r2

2
, w(r) = u(t), and

w(r) = rφ′(r), we have the fourth-order iterations corresponding to the monotone iteration
αi and βi. φαi and φβi are the fourth-order solutions corresponding to the monotone
iteration αi and βi for i = 0, 1, . . ., respectively.

In Figure 1a, we plotted β0, β1, uADM, α1, and α0 corresponding to problem (12) for
λ = 2. We have seen that the lower sequence {βn} and upper sequence {αn} always
satisfies the inequality βn ≤ αn. In Figure 1b, we have placed the monotone iterations of
fourth-order SBVP corresponding to problem (12) for λ = 2. Here, we also observed the
existence of at least one solution for a fourth-order SBVP corresponding to the Dirichlet
boundary condition.
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- 0 . 2

0 . 0
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)

t

 β
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 β
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 u A D M
 α

1  
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(a) λ = 2
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0 . 2
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 φ
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0

 φ
α 

1

 φ
ΑD M

 φ
β 

1

 φ
β 

0

(b) λ = 2
Figure 1. Approximate monotone iterations of Equations (52)–(55) corresponding to problem (12) for
k = −1 and λ = 2.

Corresponding to problem (13): From Lemma 18, we chose the initial monotone iterations
as follows:

β0(t) = −t
(

3
2
−
√

2t
)
∧ α0(t) = 0, ∀t ∈ [0, 1]. (151)

The same remarks follow as discussed above.
In Figure 2a,b, we present the numerical results for k = −1 and λ = 2. We noticed

that the approximate solution uADM and φADM always lies between the lower sequence
{βn} and upper sequence {αn}.
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- 0 . 2 5

- 0 . 2 0
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 φ
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 φ
α 

1

 φA D M
 φ

β 

1

 φ
β 

0

(b) λ = 2
Figure 2. Approximate monotone iterations of Equations (52)–(55) corresponding to problem (13) for
k = −1 and λ = 2.

Corresponding to problem (14): Here, we consider the initial monotone iterations

β0(t) = −
2
3

t
(

2−
√

2t
)
∧ α0(t) = 0, ∀t ∈ [0, 1]. (152)

We also included the same remarks as those stated above.
Monotone lower and upper iterations corresponding to the second-order and the

fourth-order differential equation are plotted in Figure 3.
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Figure 3. Approximate monotone iterations of Equations (52)–(55) corresponding to problem (14) for
k = −1 and λ = 1.

6. Conclusions

In this work, we derived some qualitative properties of the singular boundary value
problems that arise in the theory of epitaxial growth. Moreover, we proved the existence of a
solution and discovered a range of parameter k, for which the nonlinear problem has multiple
solutions in the region D0. We established the bounds of the parameter λ, from which we
confirmed the nonexistence of solutions. Furthermore, the boundary value problems have
multiple solutions, therefore it is challenging for researchers to obtain a suitable scheme
to capture both solutions with the desired accuracy. However, we successfully developed
iterative schemes and captured both solutions with a high accuracy. From Tables 1–4, we
can see that the approximate solutions computed by our proposed method converge to the
exact solutions very quickly. Corresponding to the boundary conditions (7), we notice that
the positive approximate solution converges to the exact positive solution very slowly (See
Table 6). We verified that our numerical results matched well with our theoretical results
as well as the existing numerical results [9]. We conclude that our proposed technique is
relatively powerful and efficient. Furthermore, this technique is an effective tool to solve
BVPs, which have multiple solutions.
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