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Abstract: Fuzzy systems have become a good solution to the problem of fixed parameters in meta-
heuristic algorithms, proving their efficiency when performing dynamic parameter adaptations using
type-1 and type-2 fuzzy logic. However, the computational cost of type-2 fuzzy systems when using
the continuous enhanced Karnik–Mendel (CKM) algorithm for type-reduction, when applied to
control and optimization, is too high. Therefore, it is proposed to use an approximation to the CKM
algorithm in the type-2 fuzzy system for adjusting the pitch adjustment rate (PArate) parameter
in the original harmony search algorithm (HS). The main contribution of this article is to verify
that the implementation of the proposed methodology achieves results that are equivalent to the
interval type-2 fuzzy system with the CKM algorithm, but in less computing time and also allowing
an efficient dynamic parameter adaptation. It is noteworthy that this method is relatively new in
the area of metaheuristics algorithms so there is a current interest to work with this methodology.
The proposed method was used in optimizing the antecedents and consequents for an interval
type-2 fuzzy controller of direct current motor. Experimental results without noise and then with
uniform random noise numbers (Gaussian noise) in the controller were obtained to verify that the
implementation is efficient when compared to conventional and other existing methods.

Keywords: interval type-2 fuzzy logic; dynamic adaptation; pitch adjustment parameter; fuzzy
harmony search algorithm

1. Introduction

Currently, in state of the art science, there exists a plethora of algorithms for solving
real world problems, and some of them are classified as bio-inspired algorithms, which
replicate the way in which nature deals with optimization problems. Examples of these
algorithms are shown in [1–5]: metaheuristics that are derived from hybrid algorithms,
mechanisms, and statistics, as we find in [6–8], applied to neural networks as in [9–11]; and
type-2/3 fuzzy systems applied in various applications, such as in [12,13] among others.
Most of these algorithms use fixed parameters throughout their iterations, which causes
them to fall with higher probability into local minima. For this reason, there is current
interest in methods for parameter adaptation in metaheuristics, and fuzzy systems have
been put forward as a viable alternative for achieving this goal. Therefore, in the following
articles, a solution to this problem has been presented using conventional type-1 [14–16]
and type-2 [17–19] fuzzy logic for parameter adaptation, and they have been implemented
with relative success in various control problems and benchmark mathematical functions,
as shown in [20,21].

Interval type-2 fuzzy logic has the ability to deal with uncertainty; its main advantages
are that it achieves the stabilization and improvement of results on complex problems,
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unlike type-1 fuzzy logic, which cannot fully deal with uncertainty. However, the compu-
tational cost that type-2 fuzzy logic requires with the continuous enhanced Karnik–Mendel
(CKM) algorithm, when applied to control and optimization, is too high. Due to this, the
use of a relatively new methodology approach for type-reduction called approximate to the
continuous enhanced Karnik–Mendel (NACEKM) for dynamic adaptation of parameters
in metaheuristic algorithms is proposed in this article. The approximate NACEKM type
reduction method used in this work has many key advantages when compared to the
original CKM method, such as the following: it is faster because the defuzzification method
is reduced to calculating a polynomial; it estimates inherent errors; it is non iterative;
sampling is not required; and it is ideal for implementation in hardware problems. On the
other hand, the mathematical model is required by the methodology for its implementation,
and in the adaptation part, it is required to carry out the methodology for each variation
with which it is intended to work. On the other hand, this methodology can be adapted to
any problem.

This article describes an algorithm based on a metaheuristic of musical improvisation,
which is known as the harmony search algorithm (HS), that has been used to deal with
various applications as can be seen in [22–25]. The main goal of this article is to use an
approximation to the continuous enhanced Karnik–Mendel method (CKM), to adjust the
pitch adjustment rate (PArate) parameter in the original harmony search (HS) algorithm,
thereby solving the problem of having fixed parameters during execution and applying it
to the optimization of a benchmark control case.

The organization of the remaining article is outlined as follows: Section 2 describes
the terminology of type-2 fuzzy logic. Section 3 describes the terminology of the new ap-
proximate continuous enhanced Karnik–Mendel (NACEKM) algorithm, Section 4 presents
the terminology of the original harmony search algorithm. Section 5 presents the pro-
posed methodology. Section 6 describes the benchmark control problem and contains the
experimentation and results, and finally, Section 7 outlines the conclusions.

2. Fuzzy Logic

The theoretical constructs of interval type-2 fuzzy logic are described in this section.
The objective of this work is to implement an approximation method that was recently
published by [26] in parameter adaptation for HS, where it is possible to demonstrate the
reduction of the computational cost when carrying out experimentation in various case
studies. In this article, this approximate method for type reduction was implemented with
the main goal of efficiently finding good results for HS.

Type-2 Fuzzy Logic

Interval type-2 fuzzy sets (IT2 FSs) were inspired by the traditional fuzzy sets put
forward by Zadeh [27]. IT2 FSs help to manage uncertainty through a secondary do-
main. Recently, the following advances have been developed in this area [28–33]. The
mathematical expression that describes IT2 FSs is shown in Equation (1).

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

The primary domain is represented by X and the secondary domain is denoted by Jx.
The IT2 FS is comprised of the upper and lower membership functions and the region

contained inside these functions is called footprint of uncertainty (FOU) [34].
Equation (2) illustrates the form of the fuzzy rules of the interval type-2 fuzzy system,

and its structure is illustrated in Figure 1.

Rl : IF x1 is F̃l
1 and . . . and xp is F̃l

p, THEN y is G̃l ,
where l = 1, . . . , M

(2)
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A type-reducer and a defuzzifier are included in the output processing block, which
produces a type-1 fuzzy set output (from the type-reducer) or a precise value (from the
defuzzification block) [35,36].

3. Numerical Approximation of the New Approximate Continuous Enhanced
Karnik–Mendel (NACEKM) Method and Methodology

Liu and Mendel in [37] presented a method called CKM algorithm where they pose
type-reduction calculation as root-finding for a function, and the work in this article is
based on that idea. The objective is to implement the numerical approximation of the new
approximate continuous enhanced Karnik–Mendel (NACEKM) method that was recently
published in [26]. In the work presented in [37], the CKM algorithm was explained in
detail, from which the CKM type reduction approach was posed as finding the roots of a
function. Equations (3) and (4) define the critical points of the upper (x̂u) and lower (x̂l)
membership functions.

Based on Equations (3) and (4), two functions are proposed, which are represented
as Equations (5) and (6), where ϕ(ξ) represents the type-reduction for the upper mem-
bership function and ψ(ξ) and ξ ∈ [a, b] represent the type-reduction for the lower
membership function.

x̂l =

∫ ξ
a xµ(x)dx +

∫ b
ξ xµ(x)dx∫ ξ

a µ(x)dx +
∫ b

ξ µ(x)dx
(3)

x̂u =

∫ ξ
a xµ(x)dx +

∫ b
ξ xµ(x)dx∫ ξ

a µ(x)dx +
∫ b

ξ µ(x)dx
(4)

ϕ(ξ) =
∫ ξ

a
(ξ − x)µ(x)dx +

∫ b

ξ
(ξ − x)µ(x)dx (5)

ψ(ξ) =
∫ ξ

a
(ξ − x)µ(x)dx +

∫ b

ξ
(ξ − x)µ(x)dx (6)

Since the functions contain only a single root, it is intended to solve this problem by
means of the Newton–Raphson method, specifically using the root-finding problem.

Equations (7) and (8) are based on NACEKM [21], where the first iteration of Newton–
Raphson is considered to be an efficient approximation of CKM, where ξl and ξr represent
the left and right switch points, respectively.

ξl ≈ ξl0 −
ϕ
(
ξl0
)

ϕ
(
ξl0
)
′

(7)

ξr ≈ ξr0 −
ψ(ξr0)

ψ(ξr0)′
(8)
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Equation (9) establishes the enhanced version of the Karnik–Mendel method (EKM)
criteria to initialize the Newton–Raphson method.

ξl0 =
(x f − xo)

2.4
+ x0, ξr0 =

(x f − xo)

1.7
+ x0 (9)

Equations (5) and (6) are intended to obtain the NACEKM. In this situation, Equations (10)
and (11) are put forward as a part of the solution to Equations (5) and (6).

ϕ(ξ) = (ξ − x)
∫ ξ

x0

µ(x)dx +
∫ ξ

x0

(∫
µ(x)dx

)
dx + (ξ − x)

∫ x f

ξ
µ(x)dx +

∫ x f

ξ

(∫
µ(x)dx

)
dx (10)

ψ(ξ) = (ξn − x)
∫ ξ

x0

µ(x)dx +
∫ ξ

x0

(∫
µ(x)dx

)
dx + (ξ − x)

∫ x f

ξ
µ(x)dx +

∫ x f

ξ

(∫
µ(x)dx

)
dx (11)

Equation (12) represents the A(ξ) and V(ξ) functions where they represent the upper
and lower limits, respectively, that compose Equations (10) and (11).

Based on Equation (12), the ϕ(ξ) and ψ(ξ) functions are defined in Equation (13), where
bl represents the upper and bl the lower left points. Similarly, br and br represent the upper
right and lower right points, respectively.

A(ξ) = (ξ − x)
∫

µ(x)dx, V(ξ) =
∫
(
∫

µ(x)dx)dx
A(ξ) = (ξ − x)

∫
µ(x)dx, V(ξ) =

∫ (∫
µ(x)dx

)
dx

(12)

ϕ(ξl) =
bl−1
∑

i=1
A
∣∣x fi
x0i

+ A
∣∣ξl
xbl

+
bl−1
∑

i=1
V
∣∣x fi
x0i

+ V
∣∣ξl
xibl

+ A|
x fbl
ξl

+
n
∑

i=b+1
A|

x fi
xoi

+ V|
x fbl
ξl

+
n
∑

i=1
V|

x fi
xoi

ψ(ξr) =
br−1
∑

i=1
A|

x fi
x0i

+ A|ξr
xbr

+
br−1
∑

i=1
V|

x fi
x0i

+ V|ξr
xibr

+
_
A
∣∣∣x fbr
ξr

+
n
∑

i=b+1

_
A
∣∣∣x fi

xoi

+
_
V
∣∣∣x fbr
ξr

+

_
n
∑

i=1

_
V
∣∣∣x fi

xoi

(13)

Based on Equation (13), the algorithm for NACEKM is illustrated in Figure 2.
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4. Harmony Search Algorithm

In 2001, Zong Woo Geem developed an algorithm based on musical improvisation
called harmony search (HS), and it specifically referred to Jazz in this case. [38]. This
algorithm uses three parameters to mimic the behavior of an orchestra that consists of:
pitch adjustment rate (PArate) parameter, harmony memory accepting (HMR), and random
selection, and these parameters are outlined by Equations (14)–(16).

HMR ∈ [0, 1] (14)

Xnew = Xold + bp(2 rand− 1) (15)

PArate = PLower limit + PRange ∗ rand
Where PRange = PUpper Limit − PLower Limit

(16)

Based on HMR, HS performs memory consideration if 0 ≤ Rand ≤ HMR and ran-
dom selection if HMR ≤ Rand ≤ 1. With PArate, HS performs pitch adjustment if
0 ≤ Rand ≤ PArate and does nothing if PArate ≤ Rand ≤ 1. Memory consideration means
Xnew comes from HM. Random selection means Xnew comes from the total value range.
Pitch adjustment means Xnew is further tweaked by adding delta (a tiny positive or neg-
ative value; if we want to use bp, we have to define it first) once Xnew is obtained from
memory consideration.

5. Methodology for Implementing NACEKM in Parameter Adaptation of HS

The NACEKM numerical approximation was implemented for achieving parameter
adaptation in a dynamic fashion in the original HS. Previously, the operation and perfor-
mance of this algorithm was studied in detail, as mentioned in [39–45], to identify and
understand the behavior of each parameter within the algorithm. In the proposed fuzzy
system for parameter adaptation, the iterations are taken as input and the pitch adjustment
rate (PArate) parameter as the output. Equations (17) and (18) represent the mathematical
expressions of these fuzzy variables.

Iterations =
Current Iteration

Maximun o f iterations
(17)

PArate =
∑rPArate

i=1 µPArate
i (PArate1i)

∑rPArate
i=1 µPArate

i
(18)

where PArate is the pitch adjusment; rPArate represents the number of rules of the IT2 FS
corresponding to PArate; PArate1i represents the output result for rule i with respect to
PArate; µPArate

i is the membership function of rule i corresponding to PArate.
The parameters used for the construction of the interval type-2 fuzzy system (IT2FHS)

and its triangular interval type-2 (IT-T2) membership function with uncertainty in a are
represented in Table 1.

Equation (19) represents the partial knowledge of the construction of each IT-T2
membership function for each input and output, and the linguistic terms of the fuzzy sets
are lower, middle and higher, respectively.

The IT2FHS rules are expressed in increasing fashion as the iterations progress, as
illustrated in Table 2. The knowledge expressed by the fuzzy rules is that as iterations
increase, then HMR is also increasing (nonlinearly) to improve the HS performance.
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Table 1. Partial knowledge of the interval type-2 fuzzy system (IT2FHS) expressed in the
membership functions.

Lower

µ1(x) = maximum
(

minimum
(

x−0.58
−0.66 , 0.41−x

0.49

)
, 0
)

µ2(x) = maximum
(

minimum
(

x+0.41
0.49 , 0.58−x

0.5

)
, 0
)

µ(x) = maximum(µ1(x), µ2(x))∀x /∈ (−0.08, 0.08)
µ(x) = 1∀x ∈ (−0.08, 0.08)

µ(x) = minimum(µ1(x), µ2(x))

Middle

µ1(x) = maximum
(

minimum
(

x+0.83
1.24 , 0.91−x

0.5

)
, 0
)

µ2(x) = maximum
(

minimum
(

x−0.08
0.5 , 1.08−x

0.5

)
, 0
)

µ(x) = maximum(µ1(x), µ2(x))∀x /∈ (0.41, 0.58)
µ(x) = 1∀x ∈ (0.41, 0.58)

µ(x) = minimum(µ1(x), µ2(x))

Higher

µ1(x) = maximum
(

minimum
(

x−0.41
0.5 , 1.41−x

0.5

)
, 0
)

µ2(x) = maximum
(

minimum
(

x−0.58
0.5 , 1.58−x

0.5

)
, 0
)

µ(x) = maximum(µ1(x), µ2(x))∀x /∈ (0.91, 1.08)
µ(x) = 1∀x ∈ (0.91, 1.08)

µ(x) = minimum(µ1(x), µ2(x))

Table 2. Representation of fuzzy rules.

Iteration
HMR

Lower Middle Higher

Lower Lower − −
Middle − Middle −
Higher − − Higher

6. Experiment to Direct Current Motor Speed Controller

In this section, the case of a speed control problem in a direct current motor (DC) was
considered. The fuzzy harmony search approach was used for optimal design of the fuzzy
controller antecedents and consequents. IT2 FSs was implemented in the controller and
the goal was validating the effectiveness of the proposed method. Figure 3 illustrates the
graphical view of the DC motor components.
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The type-2 fuzzy system for controlling the speed of the DC motor is constituted
by the following inputs and outputs: input 1 is the error and uses two trapezoidal and
one IT-T2 membership functions; input 2 is the error change and voltage is the output,
both containing the same type of two trapezoidal and three triangular type-2 membership
functions, respectively. The parameter values considered for the construction of the IT2
FSs controller for DC motor are represented in Table 3.

Table 3. IT2 FSs membership functions.

Input Error

IT2MF a1 a2 b1 b2 c1 c2 d1 d2

Negv −1.956 −1.346 −0.955 −0.345 −1.622 −1.012 −0.622 −0.012
CeroV −0.574 −0.140 0.441 −0.219 0.250 0.743 − −
PosV −0.002 0.607 0.997 1.606 0.329 0.940 1.33 1.94

Input Change_Error

ErrNeg −1.956 −1.346 −0.955 −0.345 −1.622 −1.012 −0.622 −0.012
ErrNegM −0.029 −0.468 −0.124 −0.489 −0.193 0.065 − −
SinErr −0.390 −0.091 0.251 −0.112 0.193 0.437 − −

ErrMaxM −0.029 0.278 0.627 0.230 0.579 0.817 − −
ErrMax 0.007 0.618 1.008 1.615 0.340 0.950 1.34 1.949

Output Voltage

Dis −1.956 1.346 −0.955 −0.345 −1.622 −1.012 −0.622 −0.012
Dism −0.761 −0.468 −0.124 −0.489 −0.193 0.065 − −
Man −0.390 −0.091 0.251 −0.112 0.193 0.437 − −

Aumm −0.013 0.294 0.643 0.246 0.595 0.833 − −
Aum 0.007 0.618 1.008 1.615 0.340 0.950 1.34 1.949

The IT2 FS is of Mamdani type, and its structure is presented in Figure 4. The IT2 FS
contains fifteen fuzzy rules that are represented in Table 4.
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Table 4. Fuzzy rules for the motor controller.

Number
Inputs Output

Error Change in Error Voltage

1 NegativeV ErrNegative Dis
2 NegativeV SinError Dis
3 NegativeV ErrMaximum Dis_m
4 CeroV ErrNegative Aum_m
5 CeroV ErrMaximum Dis_m
6 PositiveV ErrNegative Aum_m
7 PositiveV SinError Aum
8 PositiveV ErrMaximum Aum
9 CeroV SinError Man
10 NegV ErrNegative_M Dis
11 CeroV ErrNegative_M Aum_m
12 PositiveV ErrNegative_M Aum
13 PositiveV ErrMaximum_M Aum
14 CeroV ErrMaximum_M Dis_m
15 NegativeV ErrMaximum_M Dis

The nonlinear surface of the controller is represented in Figure 5.

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. DC motor surface controller. 

For the optimization of the antecedents and consequents of the IT2 FS controller for 
the direct current DC motor controller, the HS with parameter adaptation is used. The 
representation of the IT-T2 membership function with uncertainty is shown in Figure 6 
and its mathematical expression in Equation (19). The illustration of the trapezoidal type-
2 membership functions (TI-T2) with a particular footprint of uncertainty is shown in Fig-
ure 7 and its mathematical expression in Equation (20). 

 
Figure 6. IT-T2 with uncertain parameter 𝑎. 
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For the optimization of the antecedents and consequents of the IT2 FS controller for
the direct current DC motor controller, the HS with parameter adaptation is used. The
representation of the IT-T2 membership function with uncertainty is shown in Figure 6
and its mathematical expression in Equation (19). The illustration of the trapezoidal type-
2 membership functions (TI-T2) with a particular footprint of uncertainty is shown in
Figure 7 and its mathematical expression in Equation (20).
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µ1(x) = maximum
(

minimum
(

x−a1
b1−a1

, c1−x
c1−b1

)
, 0
)

µ2(x) = maximum
(

minimum
(

x−a2
b2−a2

, c2−x
c2−b2

)
, 0
)

µ(x) =

{
maximum(µ1(x), µ2(x)) ∀x /∈ (b1, b2)

1 ∀x ∈ (b1, b2)

µ(x) = minimum(µ1(x), µ2(x))

(19)

µ1(x) = maximum
(

minimum
(

x−a1
b1−a1

, 1, d1−x
d1−c1

)
, 0
)

µ2(x) = maximum
(

minimun
(

x−a2
b2−a2

, 1, d2−x
d2−c2

)
, 0
)

µ(x) =

{
maximum(µ1(x), µ2(x)) ∀x /∈ (b1, c2)

1 ∀x ∈ (b1, c2)

µ(x) = minimum(α, minimum(µ1(x), µ2(x)))

(20)

A TI-T2 membership function has eight parameters, and an IT-T2 membership function
has six parameters. In total there are 90 parameters for the antecedents and consequents of
the controller, which can be optimized with the proposed method to improve performance
and achieve the objective. Table 5 summarizes the values assigned to each parameter.

Table 5. Summarizes the details of the values considered in each parameter for the experimentation.
PArate, pitch adjustment rate; HMR, harmony memory accepting.

Parameter FHS

Harmonies 50
Dimension 90
Iterations 30

Number of experiments 30
HMR harmony memory accepting 0.95

PArate pitch adjustment rate Dynamic

Experimentation was performed with uniform random number noise at a level of 0.09,
which represented 90 percent of noise. Figure 8 shows how the uniform random noise was
implemented in the controller.
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The root mean square error (RMSE) is the objective function considered in the opti-
mization process, as is outlined in Equation (21):

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (21)

The performance of the controller is illustrated in Figure 9, where we can appreciate
that the motor must increase the velocity to reach its steady-state speed as soon as it turns
on, which in this case, is at a velocity of 40 rad/s.
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6.1. Results for the Experiment of Direct Current Motor Speed Controller

The results obtained when performing the 30 simulations using the proposed method
for the optimal design of the type-2 fuzzy controller for the DC motor are illustrated
in Table 6. Experiments were done without considering noise and then also with noise
perturbing the controller, in this way verifying that, on average, type-2 performs better
when noise exists in the control process.

Table 6. Results for the experiments without considering noise and with the use of noise.

Without Noise With Noise

Best 1.51 × 10−1 4.11 × 10−1

Worst 9.86 × 10−1 2.01 × 10−2

Average 3.67 × 10−1 1.38 × 10−2

Standard deviation 1.68 × 10−1 1.89 × 10−3

The best simulation results obtained without considering noise and with the presence
of noise are graphically represented in Figures 10 and 11, respectively.
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Figure 12 illustrates the architecture of the fuzzy controller for the best simulation
result obtained without considering noise applied in the control of the plant, and the
surface is shown in Figure 13.
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Figure 14 illustrates the structure of the best design for the fuzzy system obtained
with noise applied in the fuzzy controller of the plant and the surface of this fuzzy system
is illustrated in Figure 15.
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6.2. Comparison of the Proposed Method with Other Existing Methods

The following Tables 7 and 8 show the results that were obtained in other articles
when optimizing the DC motor controller, the main difference of the proposed method
with respect to these articles is that, in the proposal presented in this article, a type-2 fuzzy
controller is implemented.

Table 7. Comparison with other existing methods [26].

FHS FIS 3 [26] FDE FIS 3 [26] Proposed Method without Noise Proposed Method with Noise

Best 2.36 × 10−1 2.73 × 10−1 1.51 × 10−1 4.11 × 10−1

Worst 7.00 × 10−1 6.06 × 10−1 9.86 × 10−1 2.01 × 10−2

Average 4.52 × 10−1 4.35 × 10−1 3.67 × 10−1 1.38 × 10−2

Table 8. Comparison with other existing methods [46]. HS, harmony search; FHS, type-1 fuzzy harmony search algorithm.

HS without
Noise HS with Noise FHS without

Noise
FHS with

Noise
Proposed Method

without Noise
Proposed Method

with Noise

Best 4.64 × 10−1 4.65 × 10−1 4.41 × 10−1 0.00 × 10+0 1.51 × 10−1 4.11 × 10−1

Worst 5.85 × 10−1 5.84 × 10−1 7.01 × 10−1 3.45 × 10−4 9.86 × 10−1 2.01 × 10−2

Average 5.21 × 10−1 5.35 × 10−1 5.78 × 10−1 4.20 × 10−5 3.67 × 10−1 1.38 × 10−2

Standard
deviation 3.33 × 10−2 2.95 × 10−2 7.77 × 10−2 8.43 × 10−5 1.68 × 10−1 1.89 × 10−3

Table 7 shows the comparison of the results obtained with the Approximate continues
Enhanced Karnik–Mendel method of the Fuzzy Harmony Search algorithm (FHS FIS 3) and
the Approximate continues Enhanced Karnik-Mendel method of the Differential Evolution
Search algorithm (FDE FIS 3). against the results obtained in the proposed methods without
noise and with noise.

Table 8 shows the comparison of the results obtained with the Harmony Search
Algorithm without noise (HS without noise), Harmony Search Algorithm with noise (HS
with noise), Type-1 Fuzzy Harmony Search Algorithm without noise (FHS without noise)



Mathematics 2021, 9, 758 15 of 18

and Type-1 Fuzzy Harmony Search Algorithm with noise (FHS with noise) against the
results obtained in the proposed methods without noise and with noise.

The results summarized in Table 7 show the obtained RMSE when applying the CKM
approach methodology for the parameter adjustment of the HMR parameter in the HS
algorithm and the F parameter in the differential evolution algorithm (FDE); these two
methods were used to optimize the type-1 controller of the DC motor. The results with the
proposed method are also presented.

Table 8 summarizes the results obtained in [46] for the DC Motor type-1 controller
optimization, where the dynamic adaptation of the HMR parameter is done with type-1
fuzzy logic. The noise that was applied was with a level of 0.05, which represents 5%. The
results with the proposed method are also illustrated.

When comparing the results obtained with other articles, such as in [26], with the
proposed method, it can be noted that the obtained error average was lower. By comparison
of the results with the work in [46] against the original HS method without noise and with
noise and the FHS method without noise, it can be concluded that better results were
obtained with the proposed method. The results were better in the FHS Type-1 with noise,
because in that article, a Gaussian noise of 0.05 was used, and in the proposed method, a
higher level of noise of 0.09 was used. In any case, it was possible to verify that, when using
the approximation of CKM method for the PArate parameter adaptation in the original HS
algorithm and when it is used in the optimization of the Interval Type-2 controller of the
DC Motor, the main goal of this article was achieved, and the efficiency of the proposed
method was verified.

7. Conclusions and Future Work

This article has presented the implementation of the NACEKM method in the parame-
ter adaptation of the original HS algorithm. The NACEKM is a relatively new methodology
that offers performance improvements and lower computational cost; therefore, the main
contribution of this article was verifying that the implementation of the proposed method-
ology has equivalent performance to the type-2 fuzzy system and eliminates the problem
of fixed parameters in the HS algorithm. In addition, it was also applied to the optimiza-
tion of a type-2 control problem without and with noise in the controller. Analyzing the
results obtained from the proposed numerical approximation of the CKM algorithm, it
can be observed that good results are achieved in both cases by applying noise or not in
the controller.

The results were also compared with two existing articles where it can be noted that
the proposed methodology has excellent performance for this optimization problem.

This methodology can be applied in a wide range of different problems, such as
hardware, control, adaptation, etc. Due to the significant advantages it has, its limitation
would be that, in the mathematical model and in the adaptation, the methodology must
be carried out with each variation of the intended work, but it can be adapted to each
specific case.

As future work, the proposed methodology can be implemented in the experimen-
tation of other Type-2 fuzzy controller cases in order to validate that the results are also
relevant when the proposed method is applied to other problems. We also still have to
elevate the use of fuzzy logic to what is called generalized type-2 fuzzy logic or shad-
owed type-2 fuzzy logic until reaching type-3 fuzzy logic, and in theory, better results can
be expected.
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The following abbreviations are used in this manuscript:
CKM Continuous enhanced Karnik–Mendel
PArate Pitch adjustment rate parameter
HS Original harmony search algorithm
NACEKM Numerical approximation of the new approximate continuous enhanced Karnik–Mendel
IT2 FSs Interval type-2 fuzzy set
EKM Enhanced version of the Karnik–Mendel method
HMR Harmony memory accepting parameter
IT2FHS Interval type-2 fuzzy system for harmony search
IT-T2 Triangle interval type-2 membership function
DC Direct current motor speed controller
TI-T2 Trapezoidal interval type-2 membership functions
RMSE Root mean square error
FHS Type-1 fuzzy harmony search algorithm
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