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Abstract: In this work, we began to take forward kinematics of the Gough–Stewart (G-S) platform as
an unconstrained optimization problem on the Lie group-structured manifold SE(3) instead of simply
relaxing its intrinsic orthogonal constraint when algorithms are updated on six-dimensional local flat
Euclidean space or adding extra unit norm constraint when orientation parts are parametrized by
a unit quaternion. With this thought in mind, we construct two kinds of iterative problem-solving
algorithms (Gauss–Newton (G-N) and Levenberg–Marquardt (L-M)) with mathematical tools from
the Lie group and Lie algebra. Finally, a case study for a general G-S platform was carried out
to compare these two kinds of algorithms on SE(3) with corresponding algorithms that updated
on six-dimensional flat Euclidean space or seven-dimensional quaternion-based parametrization
Euclidean space. Experiment results demonstrate that those algorithms on SE(3) behave better than
others in convergence performance especially when the initial guess selection is near to branch
solutions.

Keywords: Gough–Stewart platform; forward kinematics; lie group; lie algebra; exponential map;
Gauss–Newton; Levenberg–Marquardt

1. Introduction

The six degree-of-freedom Gough–Stewart (G-S) type motion platforms have been
extensively employed to realize fully operational flight training simulation with high
fidelity. This spatial G-S platform had six identical extensible active legs connected with an
upper moving platform and a fixed lower platform using six upper passive joints and six
lower passive joints. The forward kinematics of the G-S platform allows the platform to
configure the pose (position and orientation) of end-effectors on the moving platform when
the lengths of the six linear actuators are provided. However, the closed loop kinematic
relations between the moving platform and the fixed base platform in 3-D space made
forward kinematic problems a challenging issue among all kinematic research of parallel
manipulators during the past few decades.

A significant amount of research has been focused on the forward kinematics of the
G-S platform, which has lead us to understand the difficulty of this problem. Generally,
there exist three main research directions to address the forward kinematics problem, which
are the analytic method, numerical iterative method, and auxiliary-sensor-based method.
The majority of early research focused on finding all possible closed-form direct solutions
for different types of G-S platforms. Since Raghavan [1] and Ronga [2] firstly proved
that there existed at most 40 distinct solutions in the complex domain for a general G-S
platform, many researchers succeed in determining all 40 direct solutions using algebraic
elimination, interval analysis, or numerical continuation methods, etc. Husty [3] obtained
a 40-th degree univariate polynomial through complicated algebraic elimination based on
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a spatial kinematic mapping. For a symmetrical 6-6 G-S platform, the degree of polynomial
was ultimately reduced to 14 by Huang [4]. Researcher Ji [5] focused on a special type
6-6 G-S platform in which both the fixed base platform and the moving platform are
similar hexagons and only univariate quadratic equations are required to derive eight
possible symmetry solutions by introducing a quaternion to represent the orientation
matrix. As a general analytic form of direction solutions to forward kinematics of a
general G-S platform was luxurious, some scholars resorted to the numerical root-finding
method. Both Didrit [6] and Merlet [7] preferred to utilize the interval analysis method to
numerically solve the forward kinematic problem for the general G-S platform. Wampler [8]
implemented a polynomial continuation scheme to deal with this problem. Besides that,
Dietmaier [9] proposed a numerical procedure to change the parameters of the G-S platform
and ultimately obtained a particular asymmetry for the G-S platform, which possesses
40 real direct solutions.

As there exist multiple direct solutions, research attempting to solve the forward
kinematic problem is further expected to determine a unique actual pose (position and
orientation) of the G-S platform. Numerical iterative methods and auxiliary-sensor-based
methods are two common schemes to pursue this goal. As the forward kinematic problem
was easily boiled down to seeking six dimensional variables, satisfying six dimensional
kinematic equations, Newton-type iterative algorithms were extensively put into use be-
cause of its simplicity and fast convergence speed [10,11]. However, it had been well known
that the Newton-type algorithm usually converges to a particular solution near to initial
guess value. Therefore, some variants of the Newton-type algorithm had been discussed
to improve its performance in the following studies. Yang [12] modified the traditional
Newton–Raphson algorithm using a monotonic descent operator to achieve global conver-
gence regardless of the initial guess selection. Pratik [13] proposed a neural-network-based
hybrid strategy that combined with the standard Newton–Raphson algorithm to yield
better performance in dealing with uniqueness problem. Furthermore, Innocenti [14],
Parenti-Castelli [15], and Chiu [16] suggested adding one or more redundant sensors to
determine a unique real solution. Wang [17] designed a incremental iterative algorithm
through a series of continuous small changes in leg length to derive a unique forward
kinematic solution.

When iterative algorithms are employed to solve optimization that involves the SE(3)
configure pose, the problem of which parametrization scheme is beneficial to design its
updating framework must be addressed. As we all know, 3D+YPR and 3D+Quat are
two common parametrization schemes, as explained in Reference [18]. In the 3D+YPR
scheme, the iterative algorithm can be designed on flat Euclidean space R6 with orthogonal
constraints not taken into account. In the 3D+Quat scheme, a unit norm constraint equation
is added while state vector is updated on enlarged Euclidean space R7. In this work,
we address the forward kinematic as an unconstrained optimization problem on a Lie
group-structured manifold SE(3). In algorithm construction, the updating direction and
step size are computed on the associated tangent space TeSE(3) with differential properties
of the Lie group and Lie algebra. The result is then projected back on the manifold SE(3)
to update the next configure pose. The advantage in the optimization on manifold SE(3)
is that the exponential map that connects the Lie algebra and the Lie group naturally
preserves the orthogonal constraint during each iteration. An experimental comparison is
expected to show that the ways of simply updating the iteration on the local parameter
space make the forward kinematic optimization algorithms more susceptible to being stuck
in branch solutions.

The rest of this paper is organized as follows. In Section 2, some preliminary notations
and terminology from the theory of Lie group and Lie algebra is reviewed. Section 3
is devoted to formulating the problem of forward kinematics for a general type G-S
platform. Two kinds of iterative algorithms framework, the Gauss–Newton (G-N) and
Levenberg–Marquardt (L-M) type algorithms are employed in algorithm construction with
the mathematical tools from Lie group in Section 4. In Section 5, these two types of Lie
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group-based iterative algorithms are compared with traditional algorithms on Euclidean
space R6 as well as iterative algorithms using quaternion parametrization through a case
study for a general G-S platform.

2. Preliminary Notations and Terminology
2.1. Lie Group and Lie Algebra

We assume that readers are familiar with basic mathematical concepts about group
and manifold (see e.g., [19,20] and references therein). The configure pose of the G-S
platform end-effector belongs to a special Euclidean group SE(3), which is a semi-direct
product of R3 with special orthogonal group SO(3). An element g ∈ SE(3) can be presented
using a 4× 4 homogeneous transformation matrix as follows.

g =

[
R p
0T 1

]
(1)

where R ∈ SO(3) is a 3× 3 orientation matrix, p ∈ R3 is a 3× 1 translational vector.
The inverse of g can be written in the following formulation,

g−1 =

[
RT −RT p
0T 1

]
(2)

Given a basis {E1, · · · , E6} for matrix Lie algebra se(3), any arbitrary element X, which
is also called a “screw” matrix in the robot community, can be written in the following form,

X =


0 −x3 x2 x4
x3 0 −x1 x5
−x2 x1 0 x6

0 0 0 0

 =
6

∑
i=1

xiEi (3)

where E1, E2, · · · , E6 are listed as Equation (A1) in Appendix A.
Given a rigid body motion g(t) ∈ SE(3), its associated Lie algebra element shown as

Equation (4) denotes a spatial screw matrix Sr in an inertial frame. Meanwhile, Equation (5)
denotes a screw matrix Sb in body reference frame.

Sr = ġg−1 (4)

Sb = g−1 ġ (5)

Accordingly, there exist two 6× 1 column vectors, spatial screw vector sr and body
screw vector sb, which can be derived using following operation.

sr = S∨r =

[
(ṘRT)∨

−ṘRT p + ṗ

]
=

[
ωr
vr

]
(6)

sb = S∨b =

[
(RT Ṙ)∨

RT ṗ

]
=

[
ωb
vb

]
(7)

Here the vee operator (·)∨ : se(3)→ R6 is defined to extract screw coefficients from the
screw matrix to form a 6× 1 column vector. Conversely, a wedge operator (·)∧ : R6 → se(3)
maps the screw vector back to the matrix Lie algebra se(3), that is s∧r = Sr, s∧b = Sb.

2.2. Exponential Map

For each vector field X in tangent space TeG at group identity e, there exists a smooth
one-parameter subgroup γX(t) of a Lie group G parametrized by a scalar t ∈ R. There also
exists an exponential map defined as follows.

exp : TeG×R→ G, (X, t) 7→ exp(tX). (8)
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This is a unique homomorphism map from tangent space TeG around group identity
e to one-parameter subgroups of G. The exponential map is related with a one-parameter
subgroup by exp(X) = γ(1) at t = 1.

With these properties of the exponential map, we can define an integral curve of
right invariant vector field Xr passing through point g ∈ G at time zero as γr

X : R× G →
G, (t, g) 7→ exp(tX) ◦ g. Similarly, γl

X : R × G → G, (t, g) 7→ g ◦ exp(tX) denotes an
integral curve of left invariant vector field Xl passing through g ∈ G at time zero.

As for special the Euclidean group SE(3), there exists an associated screw matrix
as shown in Equation (3) at its tangent space TeSE(3). Then, motion around identity
I4 can be obtained by exponentiating these screw matrices. Here, the exponential map
exp : se(3) → SE(3) corresponds to matrix exponentiation, which has the closed-form
Rodriguez formula as shown in Equation (A2) in the Appendix A. Examples for rotational
screw vector x1 and translational screw vector x6 are expressed as follows,

exp(x1E1) =


cosxi −sinxi 0 0
sinxi cosxi 0 0

0 0 1 0
0 0 0 1

and exp(x6E6) =


1 0 0 0
0 1 0 0
0 0 1 x6
0 0 0 1

. (9)

2.3. Taylor Series Expansion of an Analytic Function on Lie Group

The Taylor series of a function on Euclidean space Rn can be extended naturally to Lie
group-structured non-Euclidean space. In the same way, there exists similar derivatives for
group-valued function f : G → R. Owing to the fact that there exist two invariant vector
fields around g ∈ G, The Taylor series expansion around g ∈ G can be formulated in two
ways. The following equation provides the right way.

f (g ◦ exp(tX)) = f (g) +
d
dt

f (g ◦ exp(tX))|t=0 +
1
2!

d2

dt2 f (g ◦ exp(tX))|t=0 + · · · (10)

As discussed in [21], the first and second-order term can be expressed in a different
form. Analogously to directional derivative, the first-order term are completely equivalent
to the following formulation,

(Xr f )(g) ,
d
dt

f (g ◦ exp(tX))|t=0 = lim
t→0

f (g ◦ exp(tX))− f (g)
t

. (11)

Here, (Xr f )(g) is called right Lie derivative of f (g) with respect to vector filed X.
Since Ei is a basis for Lie algebra g, which can be shown as X = ∑n

i=1 xiEi, then its
associated differential operators will be denoted as Er

i f . Thus, the right Lie derivative will
be as follows,

(Xr f )(g) =
n

∑
i=1

xi(Er
i f )(g) (12)

Finally, the “right” Taylor series expansion around g ∈ G can be written to a second
order in the following equation.

f (g ◦ exp(tX)) = f (g) + t
n

∑
k=1

(Er
k f )(g)xk +

1
2

t2
n

∑
i=1

n

∑
j=1

(Er
i Er

j f )(g)xkxl + O(‖x‖3t3) (13)

A “left” Taylor series expansion can also be derived in an analogous manner.

f (exp(−tX) ◦ g) = f (g) + t
n

∑
k=1

(El
k f )(g)xk +

1
2

t2
n

∑
i=1

n

∑
j=1

(El
i E

l
j f )(g)xkxl + O(‖x‖3t3) (14)
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3. Problem Formulation of Forward Kinematics for G-S Platform

This section is devoted to formulating the forward kinematic problem of a general
type G-S platform as a minimum optimization problem. The ultimate problem formulation
depends on which parametrization scheme of configure pose is applied. Here, we take
3D + YPR scheme as an example, where position is in three-dimensional flat Euclidean
space R3 and orientation is parametrized by three angles in Yaw–Pitch–Roll order.

As for a general G-S platform, its geometric structure of a general G-S platform is
depicted in the following Figure 1.

N
Z

N
O

N
X

N
Y

B
O

B
Z

B
Y

B
X

Figure 1. Geometric structure of a general Gough–Stewart (G-S) platform.

It consists of one lower fixed platform and one upper moving platform connected
through six identical extensible legs. Both two platforms are irregular hexagon structure
with their six vertices located at one circumcircle.

In order to describe the relative configure pose between two platform, one coordinate
frame {ON − XNYN ZN} is fixed at geometric center of lower fixed platform ON , another
frame {OB − XBYBZB} is fixed at geometric center of upper moving platform OB. Let T ∈
SE(3) denote the configure pose (position and orientation) of geometric center OB of upper
moving platform represented in lower fixed frame {N}.

T =

[
R p
0T 1

]
(15)

where orientation matrix R ∈ SO(3) is defined by successive rotation in Z-Y-X order.
Let ai denote the position vector of the lower joint center Ai of i-th leg in frame {N},

and let bi denote the position vector of upper joint center Bi of i-th leg in frame {B}.
The inverse kinematic function of the G-S platform defined as a six dimensional

real-valued function F : SE(3)→ R6 describes a kinematic mapping from configure pose
T of upper moving platform to its six leg lengths L1,. . . , L6. If T is locally parametrized
by 3D+YPR generalized coordinate variable q ∈ R6; thus, the ultimate inverse kinematic
function F̄(q) is defined as follows.

F̄(q) , F ◦ µT : R6 → R6, F ◦ µT(q) = ‖Rbi + p− ai‖2, i = 1, . . . , 6 (16)

The forward kinematic problem of the G-S platform is formulated as a minimum
optimization problem related with kinematic mapping residual error r(T). Each component
of r(T) is defined as follows.

ri(T) , ‖F̄i(T)‖2
2 − L2

i , i = 1, . . . , 6 (17)
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where L1, L2, · · · , L6 are six scalars for current leg length.
Let ϕ denote the objective function in the following formulation.

ϕ : SE(3)→ R, ϕ(T) =
1
2
‖r(T)‖2

2 (18)

As shown in Figure 2, local parametrization of objective function ϕ around configure
point T is described as follows,

T

T

T

Figure 2. ϕ ◦ µT is a local parametrization of function ϕ around configure pose T expressed in local
parameter space R6.

ϕ ◦ µT : R6 → R, ϕ ◦ µT(q) =
1
2
‖r(q)‖2

2. (19)

Finally, forward kinematic problem of the G-S platform can be formulated as a mini-
mum optimization problem as follows.

min
q∈R6

ϕ ◦ µT(q), q ∈ D (20)

where domain D denotes accessible workspace configure pose of the G-S platform.

4. Iterative Algorithms on SE(3)

As discussed in the introduction section, it will take considerable efforts before we can
arrive at an analytical solution to solve the forward kinematic problem in Equation (20).
In consideration of this difficulty, many numerical iteration algorithms, e.g., G-N and L-M,
have been extensively applied in practical engineering projects.

In order to minimize the quadratic sum of kinematic residual error r(T), the nu-
merically iterative algorithm is updated iteratively by means of a small increment until
convergence or the max number of iteration is reached. It should be noticed that all
these numerical iteration schemes are originally designed to work on flat Euclidean space,
i.e., Rn. If the update process was designed on generalized coordinates q ∈ R6 according
to Equation (16), there exists a gimbal lock problem as well as three Euler angles that may
reach out of their valid ranges. In this section, we begin to build up two elegant iterative
algorithms on the Lie group-structured manifold SE(3) with differential properties from
theory of the Lie group and Lie algebra.

The core issue in the Newton-type algorithm construction process is to determine the
small increments at each step through solving incremental normal equations related with
the first-order Taylor series expansion. According to Equation (13), the six-dimensional
inverse kinematic residual error function r(T) can be approximated in the neighborhood of
T ∈ SE(3) with first-order “right” Taylor series expansion as follows.

r(T ◦ exp(tsb)) ≈ r(T) + t(Xrr)(T) (21)
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As for computing the first order term, right Lie derivative of six-dimensional vector-
valued residual function r(T) was defined as Xrr = [Xrr1, Xrr2, . . . , Xrr6]

T . Each Lie deriva-
tive with respect to body screw matrix Sb can be derived using the following formulation.

(Xrri)(T) =
6

∑
k=1

(Er
kri)sb = 2(Tb̃i − ãi)TSb b̃i

= 2
(
(RTai − RT p)× bi)

T , (bi − RTai + RT p)T
)( ωb

vb

) (22)

where tilde on ai and bi means a extension by adding an extra element 1, that is ãi = (aT
i , 1)T

and b̃i = (bT
i , 1)T .

Similarly, a left Lie derivative with respect to spatial screw matrix Sr can be used to
approximate r(T) in “left” Taylor series expansion.

(Xlri)(T) =
6

∑
k=1

(El
kri)sr = 2(Tb̃i − ãi)SrTb̃i

= 2
(
(ai × (Rbi + p))T , (Rbi + p− ai)

T
)( ωr

vr

)
.

(23)

All these six right Lie derivatives can be formed into a 6× 6 Jacobian matrix, which is
named right Lie derivative matrix Jb with respect to body screw matrix Sb as follows.

Jb(T) = 2

 ((RTa1 − RT p)× b1)
T (b1 − RTa1 + RT p)T

...
...

((RTa6 − RT p)× b6)
T (b6 − RTa6 + RT p)T

 (24)

Then Equation (21) can be arranged in form of body screw vector sb as follows.

r(T ◦ exp(tSb)) ≈ r(T) + Jb(T)tsb (25)

Thus we can obtain body screw error sb = −J−1
b (T)r(T) by assuming r(T ◦ exp(tSb)) = 0.

This means that the updating direction in Lie algebra vector space at time step tk can be
given as follows.

s(k)b = −J−1
b (T(k))r(T(k)) (26)

After its updating direction has been chosen, a step factor αk (0 < α < 1) that satisfies
the following monotonic descent rule is dedicated to constraint step size at time tk so as to
avoid divergence during iterative process. If initial setting of step factor αk cannot meet
this rule, then multiply by itself αk = αm

k until the descent rule is met.

‖r(Tk ◦ exp(
α

2
S(k)

b ))‖ < ‖r(Tk)‖

‖r(Tk ◦ exp(αS(k)
b ))‖ < ‖r(T ◦ exp(

α

2
Sk

b))‖
(27)

Once a descent step size has been determined, the next configure pose can be up-
dated by mapping selected descent screw error in Lie algebra to Lie group using the
exponential map.

T(k+1) = T(k) ◦ exp(αS(k)
b ) (28)

In the end, a Lie group-based G-N algorithm for the forward kinematics of the G-S
platform can be constructed as the Algorithm A1 in the Appendix B. Figure 3 provides an
intuitive explanation of this algorithm.
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se se
b
S

Figure 3. Updating process of G-N type algorithm on Lie group SE(3).

However, it is well known that G-N type algorithms depend heavily on good local
linearization around selected expansion points. As to this issue, L-M type algorithms
behave better in adjusting to a descent direction within an appropriate dynamically tuned
trust region. An L-M type iterative algorithm under the framework of the Lie group is
shown in Algorithm A2 in the Appendix B.

5. Implementation of Algorithms and Discussions

In this section, we first compare the aforementioned Lie group-based G-N type itera-
tive algorithm (GN-SE(3)) with corresponding G-N type algorithms (GN-Quat and GN-R6).
Then, it is followed with three L-M type algorithms (LM-SE(3), LM-Quat, and LM-R6).
A general type G-S platform is leveraged to test the performance of these algorithms.
The following Table 1 provides those lower joint coordinate vectors on fixed platform {N}
and upper joint coordinate vectors on moving platform frame {B} as referred in [22].

Table 1. Coordinate vectors of the G-S platform’s upper and lower joints with respect to their own
coordinate frame.

Lower Joint Coordinates on Frame {N} (cm) Upper Joint Coordinates on Frame {B} (cm)

a1 = [28.9778, 7.7646, 0]T b1 = [14.1421, 14.1421, 0]T

a2 = [−7.7646, 28.9778, 0]T b2 = [5.1764, 19.3185, 0]T

a3 = [−21.2132, 21.2132, 0]T b3 = [−19.3185, 5.1764, 0]T

a4 = [−21.2132,−21.2132, 0]T b4 = [−19.3185,−5.1764, 0]T

a5 = [−7.7646,−28.9778, 0]T b5 = [5.1764,−19.3185, 0]T

a6 = [28.9778,−7.7646, 0]T b6 = [14.1421,−14.1421, 0]T

Take a group of current leg lengths as our destination Ld, which corresponds to the
true value of platform pose qC = [0, 0, 50, 20◦, 0◦,−30◦]T . Figure 4a provides true state of
G-S platform in 3D Cartesian coordinate frame.

Ld = [55.8558, 62.5313, 52.7436, 55.1457, 44.7972, 55.9910](cm) (29)

Due to the existence of multiple solutions for the G-S platform, we can easily find
out another two branch solutions qS1 = [17.58, 10.34, 36.71,−90.72◦,−112.2◦, 38.00◦]T and
qS2 = [17.58, 10.34, 36.71, 89.28◦,−67.82◦,−142.0◦]T that correspond to the same lengths
group Ld. Although the two branch solutions qS1 and qS2 are represented with different
Euler angles, their orientation parts actually correspond to the same orientation matrix.
Therefore, both branch solutions qS1 and qS2 should be regarded as one configure pose Ts
as follows. The following Figure 5 gives its platform state in 3D Cartesian space.

Ts =


−0.2975 0.7374 −0.6064 17.58
−0.2324 0.5602 0.7951 10.34
0.9260 0.3775 0.0047 36.71

0 0 0 1

 (30)
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(a) True State (b) Initial State 1 (c) Initial State 2

(d) Initial State 3 (e) Initial State 4 (f) Initial State 5

Figure 4. True state and five initial guess states of the G-S platform.

Figure 5. Platform state Ts corresponding to branch solutions qS1 and qS2.

In algorithm initialization phase, five configure poses as shown in Table 2 are provided
as initial guess states to testify to three kinds of G-N type forward kinematic algorithms.
All these initial states are chosen to be far away from the true value qC. The choice of these
five configure poses are based on the performance that G-N and L-M algorithms on R6

(GN-R6 and LM-R6) act at these initial guess states. State 1, state 2, and state 4 represent a
group of initial guess values that GN-R6 and LM-R6 deteriorated quickly, while state 3 and
state 5 represent the opposite type of initial guess value, these two algorithms converged
to the true value normally.

The other algorithms that were constructed on quaternion-based Euclidean space
R7 and SE(3) are expected to improve the convergence performance when starting from
state 1, state 2, and state 4 because both of them have kept the orthogonal constraint at
each iteration process. Meanwhile, state 3 and state 5 are necessary moderate choices to
verify the reliability of the other two algorithms. In order to evaluate the influence of
the step factor α on algorithm performance, the step factor α is selected from 0.50 to 0.99
with an equal interval of 0.01. The reason to choose a relatively large value for the step
factor is to make sure at least half of the derived updating direction could be exploited
at each iteration. All tested G-N type algorithms share the same accuracy threshold
(ε1 = 1.0× 10−14, ε2 = 1.0× 10−14, ε3 = 1.0× 10−14), and max iteration time kmax = 200
to end their iteration. Figure 4b–f corresponds to these five initial guess states of the G-S
platform, respectively.
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Table 2. Five initial configure poses of the G-S platform and performance comparison of G-N type
algorithms.

[x,y,z] (cm) [φ, θ, ψ]
Percentage That Converges to True Value

GN-R6 GN-Quat GN-SE(3)
[0, 20, 20] [10◦, 100◦, 5◦] 10% 52 % 52%
[0, 20, 40] [0◦,−50◦, 70◦] 0.0% 0.0% 20%

[20, −15, 70] [20◦,−20◦, 50◦] 100% 100% 100%
[−20, 10, 70] [50◦,−20◦, 70◦] 0.0% 4% 54%
[20, −10, 40] [60◦, 70◦, 50◦] 100% 100% 100%

In this experiment, two criteria were employed to evaluate algorithm performance,
one is the range of step factor that converges to true value qC, the other is convergence
speed. The algorithm performance reflects significant difference among these five initial
states. Their performance difference comparisons are shown in Figures 6 and 7, which
take step factor α and iteration time as their coordinate axes. Let the positive direction
of longitudinal axis indicate the iteration time that an algorithm reaches final true value
qC within given accuracy threshold while negative direction indicates the iteration time
that it takes to converge to other branch solutions. This comparison analyst yields the
following conclusions.
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Figure 6. G-N algorithm performance comparison for initial guess state 1, state 2, and state 3.
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Figure 7. G-N type algorithm performance comparison for initial guess state 4 and state 5.

1. For GN-R6, it achieves fast convergence when it starts from state 2, state 3, and
state 5. However, it is more likely to reach one branch solution qS2 when state 2 is
selected. For state 4, the algorithm is inclined to another branch solution qS1 within
some isolated range. As to state 1, due to its divergence under the large range of the
step factor, it means that state 1 is not an appropriate choice for the GN-R6 initial
guess value.

2. For GN-Quat, it ends up with the true value qC among some isolated range of step
factor when starting from state 1. For state 2, it always converges to qS2. For state 3
and state 5, although it achieves convergence to the true value qC, but it could possibly
behave worse if the convergence speed is slowed down at some specific larger step
factors. The state 4 is definitely no longer a suitable choice for GN-Quat algorithm
initialization.

3. For GN-SE(3), when it starts from state 3 and state 5, it always converges to the true
value and the larger step factor would be helpful to reduce iteration time. When
state 1 is provided as the initial guess state, it converges to the true value qC with a
probability of more than fifty percent. For state 4, it converges to the true value with a
consecutive range from 0.60 to 0.84.

In the second comparison experiment, these five configure poses were provided
as input to L-M type algorithms (LM-R6, LM-Quat and LM-SE(3)). Their performance
comparison with respect to the damping ratio τ is given in Table 3. The logarithmic
of the damping ratio τ that was taken as horizontal coordinate is assigned to a range
between −9 and −3.12 with an equal interval of 0.12. Its iteration time is taken as its
longitudinal coordinate. All these tested L-M type algorithms share the same accuracy
threshold (ε1 = 1.0× 10−14, ε2 = 1.0× 10−144) and max iteration time kmax = 200 to
terminate their iteration.

As seen in Table 3 and Figure 8, if state 3 is employed for algorithm initialization, all
three kinds of L-M type algorithms converge to the true value qC at an acceptable speed
in the whole range of the damping ratio τ. However, there exists obvious performance
differences between these L-M type algorithms when the four other states are used to
initialize these algorithms. Their performance comparisons are arranged in Figures 8 and 9.
From these comparisons, we can draw the following conclusions,

1. For LM-R6, when its is initialized from state 5, it achieves fast convergence toward
true value qC in the whole range of damping factor. However, it is more likely to
converge to branch solution qS2 when state 2 is employed. If state 4 is taken into
consideration, it reaches the true value qC within some isolated regions for damping
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factor selection. As to state 1, it has a higher chance to converge to the branch solution
qS1 within some isolated regions.

2. For LM-Quat, it would converge to the true value qC when it starts form state 5.
From state 2, it also achieves almost total convergence towards branch solution qS2.
For state 1, it is definitely not suitable for initialization as it cannot converge to any
solution within the whole selection range. Finally, when the algorithm initialized from
state 4, it can achieve some convergence to the true value qC within some isolated
regions for damping factor τ.

3. For LM-SE(3), it can converge to the true value qC with almost the whole range of
damping factor selection except some large values. For state 2, it behaved better in
convergence to the true value qC when the logarithm value of the damping factor
is selected from −5.5 to −3.12. For state 1 and state 4, its convergence probability
towards the true value qC is quite small, which means that the two states cannot be
appropriate for LM-SE(3) algorithm initialization.
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Figure 8. L-M type algorithm performance comparison for initial guess state 1, state 2, and state 3.

Table 3. Five initial configure poses of the G-S platform and performance comparison for L-M
type algorithms.

[x,y,z] (cm) [φ, θ, ψ]
Percentage to True Value

LM-R6 LM-Quat LM-SE(3)
[0, 20, 20] [10◦, 100◦, 5◦] 0.0% 4.0% 14%
[0, 20, 40] [0◦,−50◦, 70◦] 0.0% 0.0% 66%

[20, −15, 70] [20◦,−20◦, 50◦] 100% 100% 100%
[−20, 10, 70] [50◦,−20◦, 70◦] 44% 68% 12%
[20, −10, 40] [60◦, 70◦, 50◦] 100% 100% 92%
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Finally, we consider two evaluation indicators for the initial guess state selection,
convergence probability toward the true value qC and consecutive region for influence
factors’ selection. For GN type algorithms, state 1, state 4, and state 5 are totally or
conditionally suitable for LM-SE(3). State 5 is the only suitable initial guess state for
GN-R6 and conditionally acceptable for GN-Quat. For LM type algorithms, state 5 is
totally suitable initial guess state choice for all three algorithms. Meanwhile, state 2 is
conditionally acceptable for LM-SE(3) algorithm.

In summary, we can arrive at some conclusions through the above comparative
analysis. Firstly, the iterative algorithms constructed on SE(3) would leave more space for
initial guess state selection in the workspace of the G-S platform. Secondly, the algorithm
on SE(3) has few chances to be stuck in other branch solutions even though the initial guess
value is near to the branch solution.
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Figure 9. L-M algorithm performance comparison for initial guess state 4 and state 5.

6. Conclusions

In this paper, we discussed how to construct G-N and L-M type iterative algorithms
(GN-SE(3) and LM-SE(3)) to solve the forward kinematics problem of a G-S platform with
mathematical tools from the Lie group. The key part of the Lie group-based iterative
algorithm was to determine an updating direction in Lie algebra se(3) and was then
projected back to the Lie group SE(3) with exponential map, which differentiates the
algorithm from traditional iterative algorithms based on locally Euclidean space R6 or
quaternion-based parametrization space R7. Five different initial configure poses of a
general G-S platform were used to compare Lie group-based algorithms (GN-SE(3) and
LM-SE(3)) with two other kinds of iterative algorithms. Experiment results demonstrated
that Lie group-based iterative algorithms behave better in converging to the true solution
while the two other algorithms leave more chance in converging to another branch solutions.
In the future, more work is needed to study how geometric parameters of the G-S platform
can influence the choice of the iterative forward kinematic algorithm.
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Appendix A

Appendix A.1

The following E1, E2, · · · , E6 are six basis components for matrix Lie algebra se(3).

E1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

, E2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

, E3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

,

E4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, E5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, E6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


(A1)

Appendix A.2

The Rodriguez formula for screw matrix S in se(3) is as follows,

eS = I4 + S +
1
θ2 (1− cosθ)S2 +

1
θ3 (θ − sinθ)S3 (A2)

where θ2 = ||ω||2.

Appendix B

The G-N algorithm that constructed on Lie group-structured manifold SE(3) are shown
as follows. Here, sgn denotes the updating direction in Lie algebra vector space R6 during
each iteration.

Algorithm A1 G-N Type Algorithm on SE(3) for solving the forward kinematics problem
of a G-S platform.

Input: Coordinate vectors of upper and lower joints with respect to their own coordinate
frames: b1, · · · , b6; a1, · · · , a6; Current leg lengths: L1, · · · , L6; Initial Configuration
pose: T0; Accuracy threshold: ε1, ε2, ε3; Max iteration time kmax.

Output: Final configuration pose: Tf .
1: k← 0, T ← T0;
2: A← Jb(T)T Jb(T), g← Jb(T)Tr(T);
3: f ound← (‖g‖∞ ≤ ε1)

4: while (not found) and (k < kmax) do
5: k← k + 1;
6: Solve normal equation: A · sgn = −g;
7: if ‖sgn‖ ≤ ε2 then
8: f ound← true;
9: α← α0

10: accept ← (‖r(T ◦ exp(0.5αSgn))‖ ≤ ‖r(T)‖)&&(‖r(T ◦ exp(αSgn)) ≤ ‖r(T ◦
exp(0.5αSgn))‖);

11: while (accept or α ≤ ε3) do
12: accept ← (‖r(T ◦ exp(0.5αSgn))‖ ≤ ‖r(T)‖) && (‖r(T ◦ exp(αSgn)) ≤ ‖r(T ◦

exp(0.5αSgn))‖);
13: α← α · α;
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14: end while
15: if α ≤ ε3 then
16: f ound← true; //No appropriate descent step
17: else
18: T ← T ◦ exp(αSgn); //Update configuration pose
19: A← Jb(T)T Jb(T), g← Jb(T)Tr(T);
20: f ound← (‖g‖∞ ≤ ε1);
21: end if
22: end if
23: end while
24: return Final configure pose Tf ← T.

Likewise, the L-M type algorithm on SE(3) is constructed as follows. Here, slm denotes
the updating direction in Lie algebra vector space R6 during each iteration process.

Algorithm A2 L-M Type Algorithm on SE(3) for solving the forward kinematics problem
of G-S platform.

Input: Coordinate vectors of upper and lower joints with respect to their own coordinate
frames: b1, · · · , b6; a1, · · · , a6; Current leg lengths: L1, · · · , L6; Initial Configuration
pose: T0; Accuracy threshold: ε1, ε2; Max iteration time kmax.

Output: Final configuration pose: Tf .
1: k← 0, T ← T0;
2: A← Jb(T)T Jb(T), g = Jb(T)Tr(T);
3: f ound← (‖g‖∞ ≤ ε1), µ = τ ·max{aii};
4: while (not f ound) and (k < kmax) do
5: k← k + 1.;
6: Solve: (A + µI)slm = −g;
7: if ‖slm‖ ≤ ε2 then
8: f ound← true;
9: else

10: Tnew ← T ◦ exp(Slm);
11: $ = F(T)−F(Tnew)

L(T)−L(Tnew)
;

12: if $ > 0 then
13: T ← Tnew;
14: A← Jb(T)T Jb(T), g← Jb(T)Tr(T);
15: f ound← (‖g‖∞) ≤ ε1;
16: µ← µ ·max{ 1

3 , 1− (2$− 1)3}, ν← 2;
17: else
18: µ← µ · ν, ν← 2 · ν;
19: end if
20: end if
21: end while
22: return Final configure pose Tf ← T.
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