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Abstract: The widespread acceptance and increase of the Internet and mobile technologies have
revolutionized our existence. On the other hand, the world is witnessing and suffering due to
technologically aided crime methods. These threats, including but not limited to hacking and
intrusions and are the main concern for security experts. Nevertheless, the challenges facing effective
intrusion detection methods continue closely associated with the researcher’s interests. This paper’s
main contribution is to present a host-based intrusion detection system using a C4.5-based detector
on top of the popular Consolidated Tree Construction (CTC) algorithm, which works efficiently in
the presence of class-imbalanced data. An improved version of the random sampling mechanism
called Supervised Relative Random Sampling (SRRS) has been proposed to generate a balanced
sample from a high-class imbalanced dataset at the detector’s pre-processing stage. Moreover, an
improved multi-class feature selection mechanism has been designed and developed as a filter
component to generate the IDS datasets’ ideal outstanding features for efficient intrusion detection.
The proposed IDS has been validated with state-of-the-art intrusion detection systems. The results
show an accuracy of 99.96% and 99.95%, considering the NSL-KDD dataset and the CICIDS2017
dataset using 34 features.

Keywords: intrusion detection; IDS; intrusion detection systems; multiclass IDS; CTC based IDS;
J48Consolidated; SRRS; IIFS-MC; NSLKDD; ISCXIDS2012; CICIDS2017; C4.5 based IDS

1. Introduction

Due to the extensive proliferation of network and communication devices in data-
centric environments, security experts’ managing security becomes an utmost challenge.
The challenge is the evolvement of newfangled network threats that sneak into the com-
puting environments to compromise the security policies, privacy, and even locking down
the system indefinitely. Intrusion Detection System (IDS) plays a crucial role in countering
incoming network threats before it starts its harmful behavior. Intrusion detection consists
of identifying the malevolent activities in a host, which eventually propagate to the other
hosts over the network. The harmful behavior of these activities is visible once it starts
affecting the target hosts. An efficient IDS acts as a second line of defense and comes into
action when a firewall fails to detect a threat. The objective of IDS is to analyze, detect
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and report malicious activities in a host or network [1]. For efficient detection, an IDS
employs anomaly-based detection [2,3], signature-based detection [4–6], or a combination
of both [7,8].

An Anomaly-based Detection Engine (ADE) relies on normal profiles of metrics such
as protocol, flow duration, total forwarded packets, and the total length of forwarded
packets. Any deviation of the normal profile is triggered as an intrusion. On the other
hand, a Signature-based Detection Engine (SDE) builds a detection model using the nor-
mal and attack patterns of network traffics. These methods have their advantages and
disadvantages. The ADE detects unknown attacks [9], and an SDE efficiently detects
known attacks [10]. The SDEs effectively detect threats and employ various cutting-edge
technologies such as machine learning, artificial intelligence, and deep learning. Almost all
the SDEs have three standard stages of pre-processing, processing, and post-processing.
However, a design flaw in any of these stages of SDEs may make the system ineffective, and
the detection model ends up generating numerous false alarms. This limitation is related
to the detection model’s training on the high-class imbalance [11] dataset. In a high-class
imbalanced dataset, the ratio of majority to minority class instances is significantly high.
This situation destabilizes and biased the detector towards the majority class. Therefore,
this scenario generates false alarms. Class imbalance is critical challenging to solve even
for the hosts present in a network of nominal size.

Therefore, this paper’s main objective is to propose a C4.5 based IDS based on Con-
solidated Tree Construction (CTC) algorithm to solve the class imbalance issue. The main
contribution is to propose a mechanism of intrusion detection designed to be placed in
the hosts of a computer network to monitor and detect incoming network threats. The
proposed IDS functions in two phases. In phase 1 deals with pre-processing, and phase 2
deals with intrusion detection. At the pre-processing stage, an improved random sampling
mechanism, namely, Supervised Relative Random Sampling (SRRS) has been proposed to
generate a balanced sample even from a high-class imbalanced dataset.

Furthermore, an improved probabilistic graph-based feature selection mechanism
called Improved Infinite Feature Selection for Multiclass Classification (IIFS-MC), which is
based on the top of Infinite Feature Selection (IFS) [12,13] has been deployed to select the
n-best feature of the designed sample. The IIFS-MC allocates appropriate weights to each
feature of the underlying IDS dataset and ranks them accordingly. This feature ranking
approach is considered to be the most effective mechanism for selecting attributes [12,13]. It
is possible to select the best number of attributes for classification and detection by ranking
the attributes. Moreover, at the detection phase, a C4.5 based classification mechanism
called J48Consolidated [14] empowered with CTC [15] is deployed to detect possible
threats. The detector has been tested extensively on three widely cited datasets of the
Canadian Institute of Cybersecurity, i.e., NSL-KDD, an extension of the famous KDD
dataset, ISCXIDS2012, and the latest CICIDS2017 dataset.

The remaining document is structured as follows: Section 2 presents the related works;
Section 3 describes the materials and methods; Section 4 shows the results and discussion,
and Section 5 concludes the paper by presenting the most significant shortcomings of the
proposed work.

2. Related Works

Multiple research proposals in the field of signature-based intrusion detection are
available in the literature. Most of such work focuses on binary detection engines, i.e.,
evaluating instances as an attack or benign or multiclass detection engines, i.e., evaluating
instances to determine the class of threats. This section presents a literature review on binary
detection engines and multiclass detection engines in Sections 2.1 and 2.2, respectively.

2.1. Binary Detection Engines

The binary class intrusion detection model addresses an incoming instance as to
whether attack or benign. Due to the involvement of two classes, this type of detection
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model is essential. A new multi-objective optimization approach [16] plays a crucial role
in efficient intrusion detection. The bagging and boosting approach of multiple detection
models on the top of features selected through Naïve Bayes (NB) detects intrusions with
a detection rate of 92.7%. Similarly, an unsupervised machine learning-based IDS [17]
categorizes network traffic into standard and suspicious profiles without prior knowledge
about the attack events. The unsupervised approach is adaptive and a distributed structure
for intrusion detection. The distributed structure of intrusion detection is appealing as
compared to the centralized model of intrusion detection.

Apart from NB and unsupervised learning, the decision tree is also significantly
used for designing IDS. A Snort based intrusion detection approach [18] and decision
tree have been designed for high-speed networks. The Snort detection model trained
and tested three features of the ISCXIDS2012 dataset that reveal a detection accuracy of
99%. A C4.5 decision tree and Multilayer Perceptron (MCP) combined to form a hybrid
detection model [19], which demonstrated 99.50% accuracy with a lower false alarm rate
of 0.03%. This performance is associated with the discernibility function-based feature
selection that the author employed during the preprocessing stage. The high-speed big
data networks also influenced the researchers to design parallel machine learning-based
intrusion detection systems. A cutting-edge machine learning-based technique known
as XGBoost specifically designed for big data acts as an IDS [20] in a parallel computing
environment. The XGBoost IDS achieves a detection rate of 99.60% and an accuracy rate of
99.65%, with a low false alarm rate of 0.302%. However, the system should be validated on
other datasets to understand the true capability of the XGBoost based IDS.

Several other binary intrusion detection models have been proposed. A Bayesian
network-based IDS using a flow-based validation to detect network worms and brute force
attacks is proposed by [21]. The authors of [22] present a multilayer feedforward Neural
Network in collaboration with the decision tree to detect P2P Botnets. A bigram technique
on the top of Recursive Feature Addition (RFA) feature selection to detect stealthy and low
profile attacks is presented [23].

2.2. Multiclass Detection Engines

A multi-class intrusion detection model provides detailed attack information as com-
pared to binary IDS. Similar to a binary IDS, a multi-class IDS identifies an instance either
as an attack or benign. Numerous authors proposed multiple variations of multi-class
IDS. A multi-class IDS has been proposed using an ensemble of Support Vector Machine
(SVM) [24] to detect four categories of attacks such as R2L, U2R, DoS, and Probe. The
SVM ensemble IDS shows a detection rate of 93.40% on the NSL-KDD dataset. Though
this multi-class detection model reveals an impressive detection rate, at the same time, it
suffers from a substantial false alarm rate of 14%. SVM is also hybridized with Genetic
Algorithm (GA) [25] and Multiple Criteria Linear Programming (MCLP) [26] for intrusion
detection, where both GA and MCLP extracted suitable features from CICIDS2017 and
NSL-KDD intrusion dataset respectively. The CICIDS2017 and NSL-KDD datasets are
highly imbalanced, where the CICIDS2017 dataset contains a huge instance set representing
up-to-date attack features. Therefore, an appropriate sampling technique should have been
deployed to generate a suitable balanced sample, which is not clear in [25]. Similarly, an
updated version of SVM called Ramp Loss K-Support Vector Classification-Regression
(Ramp-KSVCR) [27] has been proposed as an intrusion detector, which proved to be robust
and intelligently takes care of imbalanced and skewed attack distributions, where the
Ramp Loss function handles the noise present in the intrusion dataset. The Ramp-KSVCR
detection model is silent about any feature selection mechanisms. Adopting a feature selec-
tion mechanism may be beneficial in improving the detection rate and accuracy further.
Another variation of SVM called Least Square Support Vector Machine (LSSVM) [28] acts
as an SDE where LSSVM reveals the accuracy of 99.94% on the features selected through a
mutual information-based feature selection mechanism.
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The NB classifier also plays an imperative role in intrusion detection. NB-based IDS
has been proposed to tackle HTTP attacks [29], where NB acts as both feature selector and
intrusion detector. The NB detection model successfully achieved a 99.38% detection rate,
1% false-positive rate, and 0.25% false-negative rate on the NSL-KDD dataset.

Similar to supervised learning, unsupervised learning principles have been used
extensively to design cutting-edge IDSs. Growing Hierarchical Self-Organizing Maps
(GHSOMs), as an unsupervised intrusion detection scheme [30], employs a multi-objective
approach for extracting suitable features. The detector makes it possible to differentiate
between normal and anomalous traffic and different anomalies. The GHSOMs approach
on multi-objective feature selection shows detection rates up to 99.8% and 99.6% with
normal and anomalous traffic and accuracy values up to 99.12%. Furthermore, an IDS
approach is proposed [31] using a modified version of Optimum-Path Forest (OPF) and
K-means unsupervised learning. The K-means algorithm is used for producing different
homogeneous training subsets from original heterogeneous training samples. The pruning
module of MOPF uses centrality and the social network analysis’s prestige concepts for
finding attack instances. The experiment is conducted on the NSL-KDD dataset, and the
forestalling results reveal that the method shows superior results in terms of detection and
false alarm rate.

Supervised and unsupervised techniques are also combined to design intrusion de-
tection engines. For instance, a Non-symmetric Deep AutoEncoder (NDAE) and Random
Forest classifiers [32] have been used on the top of NDAE based unsupervised feature
learning. The stacked classifiers have been implemented in the Graphics Processing Unit
(GPU) -enabled TensorFlow and evaluated using the benchmark KDD Cup ’99 and NSL-
KDD datasets. The proposed architecture [32] of NDAE has demonstrated high accuracy,
precision, and recall and reduced training time. Though the approach appears to be stable
and accurate, the authors acknowledged that it is not perfect, and there is further room
for improvement.

3. Materials and Methods

The proposed approach includes three broad logical modules: preprocessing, feature
ranking and selection, and decision making. The issue of class imbalance has been re-
duced in three stages in all the modules [33]. Figure 1 presents the proposed framework
block diagram.

Data preprocessing starts with first removing duplicate and missing value instances
of the dataset on which the system will be trained. Once the duplicate and missing values
are removed, the related attack labels are merged with new class labels. By forming the
new attack labels, it reduces the class imbalance issue significantly. A supervised sampling
approach has been proposed to generate class-wise samples. Therefore, the class imbalance
issue of the IDS datasets has been improved. A suitable normalizer has been applied to fix
the dataset values in the range of 0 and 1.

In the feature selection phase, a suitable feature selector is deployed to retrieve the
essential features by eliminating redundant features of the dataset. In the final stage, an
intelligent C4.5 classifier is deployed, which resumes the training samples using CTC. The
detailed procedure from dataset selection to intrusion detection is described as follows.
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3.1. IDS Datasets

The preparation of data is critical for the training and testing of the IDS model. The
candidate datasets NSLKDD [34], ISCXIDS2012 [35], CICIDS2017 [36] provided by the
Canadian Institute for Cybersecurity are the basis of the proposed IDS. On the one hand,
the NSLKDD and CICIDS2017 datasets are multiclass and contain benign and multi-attack
instances. On the other hand, the ISCXIDS2012 is a binary IDS dataset containing a mixture
of benign and attack instances. These datasets’ features contain normal and the most recent
frequent attacks resembling the real-world network environment. These datasets contain
a considerable number of instances and feature sets, which is sufficient enough to be a
bottleneck for any IDS. Therefore, these datasets can be considered reliable candidates for
evaluating the proposed IDS architecture’s actual performance.

The system has been designed to select a required number of features with a reasonably
small number of samples from these datasets for training and testing purposes. Before
sampling and feature selection, the duplicate instances have been removed using Weka’s
unsupervised RemoveDuplicates filter, and the unique instances are considered for feature
selection and sampling. Furthermore, biases of the detector towards majority classes
happen if the dataset is a high-class imbalance in nature. A reliable IDS detector must be
prepared for such an adverse situation. The three datasets considered here are prone to
high-class imbalance.

The prevalence ratio of normal labels and attack labels is 51.882% and 48.118%, respec-
tively, for the NSLKDD dataset. Though the prevalence ratio seems to be convincing by
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just keeping normal instances on one side and attacking instances on the other side but
observing the individual attack labels, the ratio seems discouraging. There is a consider-
able gap between majority class labels (Normal) and minority class labels (Spy, udpstorm,
worm, SQL attack). This prevalence gap of attack labels makes the dataset imbalanced.
By combining a few attack labels through forming a new label is possible to solve the
imbalance issue.

In the ISCXIDS2012 dataset, data of normal and malicious instances are scattered
in seven different XML files. The data from those XML files are merged into a single
CSV file for analyzing the characteristics of the whole dataset. An XML file named
“TestbedThuJun17-1Flows.xml” was found to be corrupted at the source during the extrac-
tion process. Therefore, it has been decided to drop that file from the analysis. The rest
of the data files of the ISCXIDS2012 dataset are so large that the idea of excluding the file
“TestbedThuJun17-1Flows.xml” had a negligible contribution to the entire set of data and
hence will not affect the detection process. The ISCXIDS2012 is a high-class imbalanced
dataset. The majority class (Normal) has a 96.98% prevalence rate. By considering this,
the dataset directly may bias the detection model towards the majority class. Therefore,
an efficient sampling technique is needed that can generate a balanced sample from this
unbalanced dataset.

Finally, the most recent dataset, named CICIDS2017, is considered. The dataset
contains a mixture of the most up-to-date attacks and normal data. The dataset claims to
fulfill all the 11 criteria of an IDS described by Gharib et al. [37]. By analyzing these IDS
dataset design criteria, CICIDS2017 appears to be the most prominent dataset in evaluating
the proposed IDS. Physically inspecting the dataset, it has been found that the dataset
contains 3,119,345 records. Out of which, 288,602 instances have missing class labels,
and 203 instances have missing values. Therefore, it has been decided to remove these
outliers before conducting any further experiments. After removing 203 missing values and
288,602 missing class labels, a dataset is reduced to 2,830,540 distinct records. Furthermore,
it is found that the dataset contains 15 attack labels and 83 features. It is also observed that
there is a considerable class imbalance between the majority class and other classes. In this
situation, if a detection model is created considering this CICIDS2017 dataset directly, then
a false alarm might be generated for any incoming instance of attack class Heartbleed or
Infiltration. Therefore, the dataset must be sampled in a balanced manner before training
the IDS detector.

All the datasets NSLKDD, ISCXIDS2012, and CICIDS2017 are highly class imbalanced.
Therefore, the challenge is to design a sampling model and detector, which can work
efficiently on these imbalanced datasets.

3.2. Attack Relabeling

The class imbalance problem is widely cited in [11,38,39], and its countermeasures
have been addressed elaborately in [40]. The problem of class imbalance lies more with the
multiclass intrusion datasets. Numerous attack labels are found in a multiclass intrusion
dataset that needs to be relabeled by merging two or more similar kinds of attacks either
in terms of similar characteristics, features, or behaviors. Therefore, the NSLKDD and
CICIDS2017 multiclass intrusion datasets have been considered to merge the respective
minor class labels to form the new class information.

The NSLKDD dataset contains 39 types of attack and benign instances. The normal
labels have more than 51% occurrence, whereas many attacks have a very low prevalence
rate of 0.001%. Various similar attack labels of the NSLKDD dataset have been merged to
generate new attack labels to reduce such imbalances. The selection of new attack labels
has been considered per the guideline provided in [41,42]. The newly formed attack labels
are presented as follows.

• Denial of Service Attack (DoS): It is an attack in which the attacker makes some comput-
ing or memory resource too busy or too full to handle legitimate requests or denies
legitimate users access to a machine. The NSLKDD dataset’s various attacks that fall
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within this category are apache2, back, land, mailbomb, neptune, pod, processtable,
smurf, teardrop, udpstorm, and warezclient.

• User to Root Attack (U2R): It is a class of exploit in which the attacker starts with access
to a normal user account on the system (perhaps gained by sniffing passwords, a
dictionary attack, or social engineering) and can exploit some vulnerability to gain
root access to the system. U2R attacks of the NSLKDD dataset are buffer_overflow,
httptunnel, loadmodule, perl, ps, rootkit, sqlattack, and xterm.

• Remote to Local Attack (R2L): It occurs when an attacker who can send packets to a
machine over a network but does not account on that machine exploits some vulner-
ability to gain local access as a user of that machine. The attacks that fall into this
group are ftp_write, guess_passwd, imap, ftp_write, multihop, named, phf, sendmail,
snmpgetattack, snmpguess, spy, warezmaster, worm, xlock, and xsnoop.

• Probing Attack: It is an attempt to gather information about a network of computers
for the apparent purpose of circumventing its security controls. Probing attacks are
ipsweep, mscan, nmap, portsweep, saint, and satan.

Once the new attack labels are identified, the old labels are mapped to form new
attack labels. The characteristics of new attack labels in the NSLKDD dataset with their
prevalence rate are presented in Table 1.

Table 1. Characteristics of new attack labels in NSLKDD dataset with their prevalence rate.

Sl
No

Normal/Attack
Labels

Number of
Instances

% of Prevalence with
Respect to the
Majority Class

% of Prevalence with
Respect to the Total

Instances

1 DoS 54,275 70.44 36.54
2 Normal 77,054 100.00 51.88
3 Probe 14,077 18.27 9.48
4 R2L 2859 3.71 1.93
5 U2R 252 0.33 0.17

The imbalance ratio of newly created attack labels has been improved significantly as
compared to the old attack labels. The prevalence rate of majority to minority class becomes
51.88:0.17, which is far better than earlier 51.88:0.001. Moreover, comparing the majority
benign label (Normal) with other attack labels, it can be realized that the imbalance ratio
has also been improved to a great extent.

Multiclass dataset CICIDS2017 has 15 different types of attack information. The
normal label (Benign) has more than 83% occurrence, whereas many attacks have a very
low prevalence rate of 0.00039%. To reduce such imbalances, various similar attack labels
of this dataset have to be merged to generate new attack labels. The selection of new
attack labels has been considered as per the guideline provided by the publisher of the
CICIDS2017 dataset. The newly formed attack labels with their characteristics are presented
in Table 2.

The imbalance ratio of newly created attack labels has been improved significantly
compared to the old attack labels of the CICIDS2017 dataset. The majority’s prevalence rate
to minority class becomes 83.34%:0.001%, which is far better than earlier 83.34%: 0.00039%.
Moreover, comparing the majority label (Normal) with other attack labels, it can be realized
that the imbalance ratio has also been improved to a great extent.
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Table 2. Characteristics of new attack labels in CICIDS2017 dataset with their prevalence rate.

Sl
No New Labels Old Labels Number of

Instances

% of Prevalence with
Respect to the Majority

Class

% of Prevalence with
Respect to the Total

Instances

1 Normal Benign 2,359,087 100 83.34
2 Botnet ARES Bot 1966 0.083 0.06
3 Brute Force FTP-Patator, SSH-Patator 13,835 0.59 0.48

4 Dos/DDos

DDoS, DoS GoldenEye,
DoS Hulk, DoS

Slowhttptest, DoS
slowloris, Heartbleed

294,506 12.49 10.4

5 Infiltration Infiltration 36 0.001 0.001
6 PortScan PortScan 158,930 6.74 5.61

7 Web Attack
Web Attack—Brute Force,
Web Attack—Sql Injection,

Web Attack—XSS
2180 0.092 0.07

3.3. Supervised Relative Random Sampling (SRRS)

The random sampling procedure is either a probability sampling or nonprobability in
nature. In probability sampling, the probability of an object being included in the sample is
defined by the researcher. On the other hand, there is no tactic of estimating the probability
of an item being included in the sample in nonprobability sampling. Suppose the interest
is to infer that a sample is in line with the original data’s finding. In that case, probability
sampling is the better approach to consider. Random sampling is popularly known as a
probability sampling mechanism [43].

Random sampling ensures each item of the original item set stands a chance to be
selected in the sample. The n samples are selected tuple-by-tuple from an original dataset
of size N through random numbers between 1 and N. By signifying the dataset having N
tuples as Fin—the focusing input and the desired samples as Fout—focusing output, and
the random sampling procedure has been represented in Algorithm 1.

Algorithm 1 Random Sampling
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Algorithm 1. Random Sampling. 

Input:    
 Fin = {i1, i2, i3,……in} focusing input 0 < i < n 
 n = Number of samples required  
Output:    
 Fout = Focusing output 
Begin    
 Step 1: Initialize focusing output 
  Fout := Æ 
 Step 2: Generate sample 
  while (|Fout| ≠ n) 
   i := random(1, |Fin|) 
   Fout := Fout È {ti} 
  end   
 return(Fout) 
End    
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In this algorithm, the sampling is done with replacement, i.e., each tuple has the same
chance at each draw regardless of whether it has already been sampled or not. However,
this kind of simple random sampling is purely unsupervised. In the case of a high-class
imbalanced dataset, it does not guarantee a specific class label tuple will fall in the sample
set. By observing the datasets considered here, especially the CICIDS2017 dataset, it is
evident that the minority class contains only 36 tuples, whereas the primary class contains
a vast volume of 2,359,087 tuples. In such a scenario, merely drawing a random sample will
not help retrieve a balanced sample consisting of instances of all the class labels. Therefore,
a specialized sampling mechanism needs to be developed, which should guarantee all
class labels’ equal chances to participate in the sample space.

Keeping in view this requirement a supervised sampling technique has been designed
that generates random samples for each class label of the dataset. Each instance of each
class label has an equal priority and probability of participating in the sample space. The
proposed sampling algorithm generates a sample of each class by assigning weight to each
class label based on the frequency it holds. The number of random samples of a class label
is generated according to the allocated weight at each iteration. The iteration continues
until the desired samples of the specified size are generated. The allocated weight is relative
and depends upon the frequency of the class label in the current sample set. The more the
frequency, the less the weight allocated. This strategy has been imposed deliberately to
give more weight to the class, having low frequency. The detailed step of the SRRS has
been presented in Algorithm 2.

The main logic behind sample generation is generating class-wise random samples.
The class-wise random sample is possible through

WC[P] = 100−
[

s f C[p]
|stepSc|

∗ 100
]

(1)

where, WC[P] = desired sample weight for class number p, stepSc = stepwise total instances
for all classes. Once the desired weight is on hand, the random sampling algorithm
(Algorithm 1) is called to get the required sample from each attack class instance. It should
be noted that the sampling generation holds the principle k ≤ |Fout|.

The proposed Supervised Relative Random Sampling (SRRS) has been validated using
NSLKDD, ISCXIDS2012, and CICIDS2017 datasets through—

• Improvement in class imbalance
• The margin of sampling error.

Class imbalance of a class is measured as the ratio of the number of instances of a
class with the total number of instances of the dataset. On the other hand, the margin of
sampling error is calculated through the Yamene formula as

n =
N

1 + N(e)2 (2)

where, n = required sample size, N = total number of instances in a dataset, e = Margin of
error. Simplifying the formulae, the margin of error e is

e =

√
N − n
N·n (3)

The output of the SRRS algorithm is presented in Tables 3–5.



Mathematics 2021, 9, 751 10 of 35

Algorithm 2 Supervised Relative Random Sampling (SRRS)
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End    

  

Table 3. Performance outcome of Supervised Relative Random Sampling (SRRS) on NSLKDD dataset for varying sam-
ple threshold.

Dataset
(Total Number of Instances) NSLKDD (148517)

Sample Threshold 20,000 60,000 100,000

Sample Size Generated 19,080 56,032 87,312

Margin of Error (MOE) 0.007 0.003 0.002
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Table 3. Cont.

Attack Labels Sample
Size

Prevalence
(%)

Sample
Size

Prevalence
(%)

Sample
Size

Prevalence
(%)

DoS 5804 29.02 20,855 34.76 34,440 34.44
Normal 5817 29.09 21,332 35.55 37,076 37.08
Probe 5029 25.15 10,882 18.14 12,742 12.74
R2L 2187 10.94 2713 4.52 2803 2.80
U2R 243 1.22 250 0.42 251 0.25

Table 4. Performance outcome of SRRS on ISCXIDS2012 dataset for varying sample threshold.

Dataset
(Total Number of Instances) ISCXIDS2012 (1500722)

Sample Threshold 20,000 60,000 100,000

Sample Size Generated 10,988 43,952 87,906

Margin of Error (MOE) 0.010 0.005 0.003

Attack Labels Sample
Size

Prevalence
(%) Sample Size Prevalence

(%) Sample Size Prevalence
(%)

Attack 5494 27.47 21,976 36.63 43,953 43.95
Normal 5494 27.47 21,976 36.63 43,953 43.95

Table 5. Performance outcome of SRRS on CICIDS2017 dataset for varying sample threshold.

Dataset(Total Number of
Instances) CICIDS2017 (2830540)

Sample Threshold 20,000 60,000 100,000

Sample Size Generated 16,264 52,317 91,830

Margin of Error (MOE) 0.008 0.004 0.003

Attack Labels Sample
Size

Prevalence
(%)

Sample
Size

Prevalence
(%)

Sample
Size

Prevalence
(%)

Botnet ARES 1359 6.80 1785 2.98 1873 1.87
Brute Force 3055 15.28 7870 13.12 10,201 10.20
Dos/DDos 3459 17.30 13,595 22.66 26,066 26.07
Infiltration 22 0.11 27 0.05 29 0.03
Normal 3460 17.30 13,618 22.70 26,185 26.19
PortScan 3453 17.27 13,462 22.44 25,409 25.41
Web Attack 1456 7.28 1960 3.27 2067 2.07

The SRRS algorithm performs consistently for all three datasets for varying sampling
thresholds. The sampling thresholds considered here are 20,000, 60,000, and 100,000. In
the case of the NSLKDD dataset for these sampling thresholds, SRRS generates 19,080,
56,032, and 87,312, respectively. This sample set leads to a very low sampling error of 0.007,
0.003, and 0.002, respectively. A similar kind of performance outcome is found for the
ISCXIDS2012 and CICIDS2017 datasets.

Furthermore, considering class prevalence, it is found that the SRRS maintains a
consistent prevalence ratio for all the attack labels. The improvement of prevalence (%) for
all three datasets are summarized in Table 6.
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Table 6. Improvement of class prevalence in samples due to SRRS.

Sampling Thresholds (→) 20,000 60,000 100,000

Normal/Attack
Labels

Prevalence %
in Original

Dataset

Prevalence
(%)

Improvement
(%)

Prevalence
(%)

Improvement
(%)

Prevalence
(%)

Improvement
(%)

NSLKDD

DoS 36.54 29.02 −7.52 34.76 −1.78 34.44 −2.10
Normal 51.88 29.09 −22.80 35.55 −16.33 37.08 −14.80
Probe 9.48 25.15 15.67 18.14 8.66 12.74 3.26
R2L 1.93 10.94 9.01 4.52 2.59 2.80 0.87
U2R 0.17 1.22 1.05 0.42 0.25 0.25 0.08

ISCXIDS2012

Attack 3.02 27.47 24.45 36.63 33.61 43.95 40.93
Normal 96.98 27.47 −69.51 36.63 −60.35 43.95 −53.03

CICIDS2017

Botnet ARES 0.06 6.80 6.74 2.98 2.92 1.87 1.81
Brute Force 0.48 15.28 14.80 13.12 12.64 10.20 9.72
Dos/DDos 10.4 17.30 6.90 22.66 12.26 26.07 15.67
Infiltration 0.001 0.11 0.11 0.05 0.04 0.03 0.03
Normal 83.34 17.30 −66.04 22.70 −60.64 26.19 −57.16
PortScan 5.61 17.27 11.66 22.44 16.83 25.41 19.80
Web Attack 0.07 7.28 7.21 3.27 3.20 2.07 2.00

3.4. Feature Ranking and Selection using IIFS-MC

The principle of feature selection falls into three types [44]. i.e., wrapper based,
embedded and filter based. In wrapper-based feature selection, classifiers are used to
generate feature subsets. Similarly, in embedded methods where feature selection is an
inbuilt approach within the classifier, and the filter methods where properties of instances
are analyzed to rank features followed by a feature subset selection. In the ranking phase,
the reputation of each feature is evaluated through weight allocation [45]. Moreover, in the
subset selection phase, only those ranked features are selected for which a classifier shows
the highest accuracy [46–51]. However, the features can also be chosen, ignoring ranks [52].
In most cases, the subset selection procedure is supervised in nature.

There are several variations of filter-based feature selection mechanisms found in the
literature. These feature selection mechanisms have their outcomes and limitations. The
IFS is one of the recent unsupervised filter-based feature selection schemes that proved to
be a magnificent feature selector over traditional popular schemes such as Fisher score [52],
Relief [53], Mutual information (MI) [49,54], and Laplacian Score (LS) [55]. As a filter-based
algorithm, the feature selection process in IFS [12] takes place in two steps. First, each
feature of the underlying dataset is ranked in an unsupervised manner, and then the best
m ranked features are selected through a cross-validation strategy. The distinguishing
characteristic of IFS over other peer FS schemes is that all the features participate in
estimating each feature’s weight. The idea is to construct an affinity graph from the feature
set where the subset of features is realized as a path connecting them. The detailed steps of
the IFS have been outlined in Algorithm 3.
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Algorithm 3 Infinite Feature Selection (IFS)

Mathematics 2021, 9, x FOR PEER REVIEW 3 of 5 
 

 

Algorithm 3. Infinite Feature Selection (IFS). 

Input:    

 𝑀|௥|×|௙| = data matrix r = instances, i.e., t1, t2, t3, …….tm and |r| = m 
f = features (i.e., attributes), f1, f2, …., fn, where fn is the feature 
containing class labels and |f| = n 
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Begin    
 Step 1: Feature score initialization  
  for i := 1 to c − 1 do 
   W[i] := 0.0 
  end 
 Step 2: Building the graph  
  for i := 1 to |f| − 1 do 
   for j := 1 to |f| − 1 do 
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   end 
  end 
 Step 3: Feature score matrix 
   𝑆 =  𝑒 ቈ൬𝐼 − 0.9𝜌(𝐴) 𝐴൰ିଵ − 𝐼቉ 

 Step 4: Calculate feature weight 
  for i := 1 to |f| − 1 do 
   W(i) = average(S(∀r,i)) 
  end 
 return(W) 
End    

  

For a generic distribution F = { f1, f2, . . . , fc}, x represents the random set of samples
of the instance set R, i.e., x ∈ R (where |x| = t). Now the target is to construct a fully
connected graph G = (V, E) so that V represents the set of vertices representing each
feature of sample x. The graph G is nothing but an adjacency matrix A, where E represents
the weighted edges through pairwise relation of the feature distribution. In other words,
each element aij of matrix A(1 ≤ i, j ≤ t), represents a pairwise energy term. Therefore, the
element aij can be represented as a weighted linear combination of two features fi and f j is

aij =∝ σij + (1− ∝)cij (4)

where,
α = a loading coefficient ∈ [0, 1]
σij = max(σi, σj), where σi and σj are the standard deviation of fi and fj, respectively.
cij = 1 − Spearman(fi, fj) is the absolute Spearman’s rank correlation coefficient
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Once the matrix A has been determined, the score of each feature can be estimated as:

S = e

[(
I − 0.9

ρ(A)
A
)−1
− I

]
(5)

where ρ(A) denotes spectral radius and can be calculated as

ρ(A) = max(|λi|) (6)

Here, λiε{λ1, λ1, λ1 . . . . . . . . . , λt−1} represent the eigenvalues of matrix A.
The authors found that there is considerable scope for improvement in the IFS algo-

rithm. Equation (4) is the IFS algorithm’s heart, where the correlation matrix Cij has been
generated in an unsupervised manner. It should be noted that the correlation between the
features of intraclass instances is close to each other. Similarly, the correlation between
the features of inter-class distances hugely deviates. Therefore, analyzing features using
a correlation matrix for each class will provide better insight than the overall correlation
matrix of all the instances. Algorithm 3 can be used for each class of the sample and a
weighted matrix should be prepared to contain weights of features of all the classes, where
the total number of rows represents the number of classes and the columns represent the
number of features, respectively. As a final step, the real weight of features can be realized
by calculating each column of the weight matrix’s average. The improved version of IFS
has been named IIFS-MC has been represented in Algorithm 4. The idea behind IIFS-MC
is to calculate the weight of features based on the class information of instances. The
class-wise feature weights improve classification accuracy to an impressive level.

As the class-wise weights of features have been calculated, therefore the complexity
of this algorithm would be

O
{

C[n2.37(1 + T)]
}

(7)

T is the number of samples, n is the number of initial features, and C is the number
of classes.

The proposed IIFS-MC analysis has been conducted similar to the guideline provided
in [12], where the mechanisms have been analyzed through a variety of datasets. Unfortu-
nately, the analysis [12] missed the standard intrusion detection datasets such as NSLKDD
or CICIDS2017. Therefore, it has been decided to analyze the FS mechanisms through
the most widely used NSLKDD, ISCXIDS2012, and CICIDS2017 datasets. In this regard,
5000 random samples of the NSLKDD dataset have been generated using the proposed
Supervised Relative Random Sampling (SRRS) consisting of a mixture of normal and
intrusion instances.

Furthermore, six popular supervised classifiers such as SVM, NB, Neural Network,
Logistic Regression, C4.5, and Random Forest has been analyzed to judge the performance
of the FS mechanisms discussed in this chapter along with the improved version of the
infinite multiclass feature selection scheme. The classification accuracy of these supervised
classifiers has been observed considering the varying size of features.

Table 7 reflects the performance of SVM on varying feature size. It can be seen that
the accuracy of SVM improves with a change in feature size.
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Algorithm 4 Improved Infinite Feature Selection for Multiclass classification (IIFS-MC)
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Begin    
 Step 1: Feature score initialization 
  for i := 1 to c − 1 do 
   S[i] := 0.0 
  end 
 Step 2: Retrieve unique classes 
  C := unique(fn) 
 Step 3: Calculate the feature weight matrix for all the classes. 
  for i := 1 to c do 
   Step 3.1: Classwise feature graph generation 
    for j := 1 to |f| − 1 do 
     for k := 1 to |f| − 1do 
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     end 
    end 
   Step 3.2: Classwise feature score matrix generation 
    for j := 1 to |f| − 1 do 
    for k := 1 to |f| − 1 do 
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    end 
  end 
 Step 4: Calculate feature weight 
  for i := 1 to |f| − 1 do 
   W(i) = average(M(∀r,i)) 
  end 
 return(W) 
End    
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Table 7. Classification accuracy of Support Vector Machine (SVM) on various feature selection mechanisms.

FS Mechanisms (↓)
Feature Size (→) 5 10 15 20 25 30 37

ReliefF 85.885 86.281 86.388 90.403 91.267 92.589 92.655
Fisher 83.999 84.910 86.249 90.351 91.225 92.351 92.415
MIFS 51.771 55.539 82.883 85.172 89.272 90.504 92.051
LSFS 84.457 85.712 85.332 90.108 91.294 92.178 92.698
IFS 86.216 86.806 86.442 92.439 92.012 92.819 92.844
IIFS-MC 88.237 88.914 88.941 92.443 92.144 92.821 92.875

Using five features of NSLKDD, the SVM method shows the highest accuracy of
88.237% when the features are selected using IIFS-MC. Nevertheless, with the increase in
feature size, the IFS magnificently improves the classifier’s accuracy, leading to an accuracy
of 92.844%. However, IIFS-MC consistently shows significantly better accuracy for varying
feature subsets among all other feature selection schemes.

A similar outcome has been observed for IIFS-MC when the classification has been con-
ducted with NB. The adequate class information and class-wise feature weight calculation
enable IIFS-MC to boost the accuracy of NB (Table 8).

Table 8. Classification accuracy of Naïve Bayes (NB) on various feature selection mechanisms.

FS Mechanisms (↓)
Feature Size (→) 5 10 15 20 25 30 37

ReliefF 83.817 85.298 85.564 86.442 87.007 87.254 86.585
Fisher 83.744 84.764 85.489 86.056 86.927 86.898 86.833
MIFS 51.541 51.553 53.440 78.187 86.702 86.873 86.370
LSFS 84.412 85.279 85.633 86.289 86.977 86.977 86.865
IFS 85.383 85.081 85.885 86.453 87.007 87.438 86.875
IIFS-MC 85.590 85.321 85.887 86.715 87.419 87.838 86.875

For Neural Network classification (Table 9), IIFS-MC again performs better as com-
pared to other FS schemes.

Table 9. Classification accuracy of Neural Network on various feature selection mechanisms.

FS Mechanisms (↓)
Feature Size (→) 5 10 15 20 25 30 37

ReliefF 87.165 88.529 94.651 96.257 97.099 97.465 97.686
Fisher 85.977 88.489 94.336 95.992 97.049 97.418 97.606
MIFS 48.239 71.592 88.903 91.339 95.000 96.708 97.557
LSFS 82.335 84.406 88.899 89.991 94.665 96.110 97.557
IFS 87.856 89.900 95.126 96.891 97.317 97.473 97.864
IIFS-MC 87.857 89.922 96.144 97.119 97.590 97.479 97.864

The IIFS-MC shows a distinct improvement over LSFS for almost all feature sizes. On
the other hand, IIFS-MC shows distinctive accuracy only between 10–20 features. However,
for all other feature sizes, both IFS and IIFS-MC produce a similar amount of accuracy. The
logistic regression results FS schemes results are presented in Table 10. Though the IIFS-MC
scheme shows better accuracy as compared to other peer schemes, at the same time, IFS
shows equivalent classification accuracy along with IIFS-MC. Similarly, Logistic Regression
suffers from the original five features through MIFS. However, the situation becomes
comfortable with an increase in feature size. Slowly, MIFS shows Logistic Regression’s
performance at par with other FS schemes with 30 features in hand. The accuracy output
of Logistic Regression for all the feature selectors has been presented in Table 10.
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Table 10. Classification accuracy of Logistic Regression on various feature selection mechanisms.

FS Mechanisms (↓)
Feature Size (→) 5 10 15 20 25 30 37

ReliefF 83.992 85.162 88.261 89.119 90.700 91.943 92.013
Fisher 84.992 86.160 89.242 90.091 91.638 91.868 91.938
MIFS 51.771 54.378 59.712 82.365 88.856 90.796 91.891
LSFS 86.432 86.853 89.346 90.304 91.712 91.992 91.985
IFS 86.890 87.177 88.165 92.737 92.928 92.046 92.141
IIFS-MC 86.911 87.321 88.166 92.741 92.931 92.137 92.140

Similarly, with all the ranked features in hand, the IFS, RelieF, and IIFS-MC show
improved accuracy than that of the Fisher, MIFS, and LSFS schemes.

All the feature selection schemes show a close accuracy rate for Naïve Bayes and
Function-based classifiers. However, the decision tree shows a distinct result and outper-
forms the other classifiers (Table 11).

Table 11. Classification accuracy of a C4.5 decision tree on various feature selection mechanisms.

FS Mechanisms (↓)
Feature Size (→) 5 10 15 20 25 30 37

ReliefF 92.181 92.997 93.301 95.526 98.119 98.354 99.005
Fisher 96.708 97.382 97.958 98.306 99.032 99.069 99.082
MIFS 95.745 96.690 97.657 98.020 98.948 99.047 99.055
LSFS 94.684 94.739 95.681 96.644 97.679 97.682 97.730
IFS 98.154 98.874 98.916 98.985 99.042 99.087 99.106
IIFS-MC 98.359 98.926 98.941 99.050 99.057 99.101 99.111

According to Table 11, it is evident that IIFS-MC shows better accuracy for a little
number of feature segments. However, with the increase in several features, the accuracy
of C4.5 becomes close for all the feature selectors.

The Random Forest also reveals a similar accuracy rate for all the FS schemes except
the Fisher score method. Random Forest’s accuracy improves with the Feature score, which
was not visible earlier in the case of other decision trees (Table 12).

Table 12. Classification accuracy of Random Forest decision on various feature selection mechanisms.

FS Mechanisms (↓)
Feature Size (→) 5 10 15 20 25 30 37

ReliefF 95.971 96.913 97.393 98.762 99.115 99.134 99.217
Fisher 96.921 97.720 98.371 98.752 99.139 99.163 99.185
MIFS 92.153 93.321 93.510 96.613 97.370 98.987 99.116
LSFS 94.245 94.747 95.399 97.554 98.308 99.103 99.001
IFS 98.005 98.033 98.165 99.144 99.158 99.198 99.256
IIFS-MC 98.011 98.052 98.168 99.149 99.188 99.205 99.239

Furthermore, up to the 20th feature, there was a close accuracy observed between IFS
and IIFS-MC approaches. After the 20th feature to 30th, Random Forest’s accuracy deviates
to a better position due to IIFS-MC. However, all the feature selectors show equivalent
results while attaining the 37th feature of the NSLKDD dataset.

While analyzing the accuracy of supervised classifiers with various feature selection
schemes, the following broad inferences have been observed.

(i) The improvised version of the IFS scheme ranks the features better to boost supervised
classifiers’ accuracy to the maximum extent possible.

(ii) Moreover, it is observed that from the 20th feature onwards, the supervised classifiers
show a similar accuracy as it is achieved with the whole set of features. Therefore,
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20 features of the NSLKDD dataset are viable to achieve a similar accuracy level to
the original feature set.

In this way, it has been observed that 20 ranked features of the NSLKDD dataset
provide optimum detection results for a variety of supervised classifiers. Therefore out of
all the ranked features of NSLKDD, the top 20 features are considered as feature subsets.
All the ranked features of the NSL-KDD dataset have been outlined in Table 13.

Table 13. Features of the NSLKDD dataset and the ranks achieved from the Improved Infinite Feature Selection for
Multiclass Classification (IIFS-MC) scheme.

Features Weights Ranks Features Weights Ranks

duration 88.416 28 count 88.7059 27
src_bytes 175.8377 1 srv_count 89.4354 24
dst_bytes 124.7694 2 serror_rate 90.9481 19
land 104.7941 4 srv_serror_rate 94.9831 16
wrong_fragment 103.4189 5 rerror_rate 86.0638 34
urgent 101.3082 8 srv_rerror_rate 84.9429 36
hot 88.8224 26 same_srv_rate 89.6115 23
num_failed_logins 98.8864 11 diff_srv_rate 90.231 21
logged_in 85.7754 35 srv_diff_host_rate 94.7382 17
num_compromised 91.3376 18 dst_host_count 87.1505 30
root_shell 97.0207 13 dst_host_srv_count 86.3458 32
su_attempted 101.7004 7 dst_host_same_srv_rate 83.6507 38
num_root 96.2312 14 dst_host_diff_srv_rate 87.2725 29
num_file_creations 95.8735 15 dst_host_same_src_port_rate 86.1824 33
num_shells 99.7178 9 dst_host_srv_diff_host_rate 89.9631 22
num_access_files 99.5172 10 dst_host_serror_rate 88.9801 25
num_outbound_cmds 106.4365 3 dst_host_srv_serror_rate 90.9277 20
is_host_login 103.2251 6 dst_host_rerror_rate 86.7442 31
is_guest_login 97.0961 12 dst_host_srv_rerror_rate 84.8889 37

A similar kind of analysis on ISCXIDS2012 and CICIDS2017 datasets was also conducted,
and the ranks of features for these two datasets are outlined in Tables 14 and 15, respectively.

Table 14. Features of the ISCXIDS2012 dataset and the ranks achieved from the IIFS-MC scheme.

Features Weights Ranks Features Weights Ranks

totalSourceBytes 90.5724 2 totalDestinationPackets 67.9925 4
totalDestinationBytes 131.7119 1 totalSourcePackets 68.7046 3

Table 15. Features of the CICIDS2017 dataset and the ranks achieved from the IIFS-MC scheme.

Features Weights Ranks Features Weights Ranks

Flow_Duration 156.2878 1 Max_Packet_Length 75.061 66
Total_Fwd_Packets 72.2566 73 Packet_Length_Mean 76.6557 58
Total_Backward_Packets 71.5679 75 Packet_Length_Std 74.513 67
Total_Length_of_Fwd_Packets 75.126 64 Packet_Length_Variance 85.483 46
Total_Length_of_Bwd_Packets 72.3641 71 FIN_Flag_Count 105.8041 22
Fwd_Packet_Length_Max 76.165 61 SYN_Flag_Count 99.5921 28
Fwd_Packet_Length_Min 92.5984 35 RST_Flag_Count 109.4512 20
Fwd_Packet_Length_Mean 77.2543 55 PSH_Flag_Count 82.1651 51
Fwd_Packet_Length_Std 77.0665 57 ACK_Flag_Count 83.0612 49
Bwd_Packet_Length_Max 75.2258 63 URG_Flag_Count 89.1086 41
Bwd_Packet_Length_Min 95.2222 31 CWE_Flag_Count 109.5332 18
Bwd_Packet_Length_Mean 76.3922 59 ECE_Flag_Count 109.4512 20
Bwd_Packet_Length_Std 75.9892 62 Down_Up_Ratio 86.7568 43
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Table 15. Cont.

Features Weights Ranks Features Weights Ranks

Flow_Bytess 100.2816 27 Average_Packet_Size 78.4452 54
Flow_Packetss 101.6872 25 Avg_Fwd_Segment_Size 77.2543 55
Flow_IAT_Mean 86.3648 44 Avg_Bwd_Segment_Size 76.3922 59
Flow_IAT_Std 89.0092 42 Fwd_Avg_Bytes_Bulk 110.0787 10
Flow_IAT_Max 117.6991 7 Fwd_Avg_Packets_Bulk 110.0787 10
Flow_IAT_Min 90.2506 40 Fwd_Avg_Bulk_Rate 110.0787 10
Fwd_IAT_Total 151.7406 3 Bwd_Avg_Bytes_Bulk 110.0787 10
Fwd_IAT_Mean 94.5922 32 Bwd_Avg_Packets_Bulk 110.0787 10
Fwd_IAT_Std 86.3099 45 Bwd_Avg_Bulk_Rate 110.0787 10
Fwd_IAT_Max 113.8831 8 Subflow_Fwd_Packets 72.2566 73
Fwd_IAT_Min 102.5826 24 Subflow_Fwd_Bytes 75.126 64
Bwd_IAT_Total 151.8053 2 Subflow_Bwd_Packets 71.5679 75
Bwd_IAT_Mean 91.173 38 Subflow_Bwd_Bytes 72.3641 71
Bwd_IAT_Std 83.9898 47 Init_Win_bytes_forward 82.9362 50
Bwd_IAT_Max 110.5083 9 Init_Win_bytes_backward 81.4162 52
Bwd_IAT_Min 90.7754 39 act_data_pkt_fwd 74.4535 68
Fwd_PSH_Flags 99.5921 28 min_seg_size_forward 96.7778 30
Bwd_PSH_Flags 110.0787 10 Active_Mean 92.4295 36
Fwd_URG_Flags 109.5332 18 Active_Std 100.4379 26
Bwd_URG_Flags 110.0787 10 Active_Max 93.3521 34
Fwd_Header_Length 73.9079 69 Active_Min 92.0777 37
Bwd_Header_Length 72.4535 70 Idle_Mean 122.1465 6
Fwd_Packetss 80.0147 53 Idle_Std 104.5515 23
Bwd_Packetss 83.9013 48 Idle_Max 123.5961 4
Min_Packet_Length 93.4662 33 Idle_Min 122.2231 5

Similarly, observing the drifting of the accuracy of various classifiers similar to infer-
ence (ii), an attempt has been made to generate a feature subset of NSLKDD, ISCXIDS2012,
and CICIDS2017 dataset, which will be taken into account to improve the performance of
IDS detector in the subsequent stages of detection. The ideal feature subsets of IDS datasets
are presented in Tables 16–18.

Table 16. Feature Subset generated by IIFS-MC for the NSLKDD dataset.

Ranks Features Ranks Features

1 src_bytes 11 num_failed_logins
2 dst_bytes 12 is_guest_login
3 num_outbound_cmds 13 root_shell
4 land 14 num_root
5 wrong_fragment 15 num_file_creations
6 is_host_login 16 srv_serror_rate
7 su_attempted 17 srv_diff_host_rate
8 urgent 18 num_compromised
9 num_shells 19 serror_rate

10 num_access_files 20 dst_host_srv_serror_rate

Table 17. Feature Subset generated by IIFS-MC for the ISCXIDS2012 dataset.

Ranks Features Ranks Features Ranks Features

1 totalDestinationBytes 2 totalSourceBytes 3 totalSourcePackets



Mathematics 2021, 9, 751 20 of 35

Table 18. Feature Subset generated by IIFS-MC for the CICIDS2017 dataset.

Ranks Features Ranks Features

1 Flow_Duration 18 Fwd_URG_Flags
2 Bwd_IAT_Total 19 CWE_Flag_Count
3 Fwd_IAT_Total 20 RST_Flag_Count
4 Idle_Max 21 ECE_Flag_Count
5 Idle_Min 22 FIN_Flag_Count
6 Idle_Mean 23 Idle_Std
7 Flow_IAT_Max 24 Fwd_IAT_Min
8 Fwd_IAT_Max 25 Flow_Packetss
9 Bwd_IAT_Max 26 Active_Std

10 Bwd_PSH_Flags 27 Flow_Bytess
11 Bwd_URG_Flags 28 Fwd_PSH_Flags
12 Fwd_Avg_Bytes_Bulk 29 SYN_Flag_Count
13 Fwd_Avg_Packets_Bulk 30 min_seg_size_forward
14 Fwd_Avg_Bulk_Rate 31 Bwd_Packet_Length_Min
15 Bwd_Avg_Bytes_Bulk 32 Fwd_IAT_Mean
16 Bwd_Avg_Packets_Bulk 33 Min_Packet_Length
17 Bwd_Avg_Bulk_Rate 34 Active_Max

It should be noted that, before the features ranking and subset selection process, all
the identification attributes, such as Source and destination IP address, protocol name,
system name, etc. have been removed from the dataset. This is because the feature selection
technique used here is designed to work on numerical features only. Once the required
numbers of features are selected, the training and testing data have been extracted from the
samples. To achieve an unbiased experiment, both train and test data have been selected
from the samples randomly in such a way that, Tr ∩ Ts = 0, where Tr represents the training
and Tr represents the testing instances. In this case, 66% of the sample has been used for
training, and 34% of the sample has been used for testing [56,57], the proposed detection
model. The generated training and test samples that have been used to train and test the
IDS detection engine are presented in Table 19.

Table 19. Training and Testing samples used in the proposed IDS.

Datasets Sample Size Training Samples Testing Samples

NSL-KDD 87,325 57,639 29,686
ISCXIDS2012 87,906 58,018 29,888
CICIDS2017 91,830 60,608 31,222

3.5. IDS Detector

The J48Consolidated is a C4.5 supervised classifier, which is based on CTC [14,15,58]
algorithm to counter the class imbalance problem. Instead of using several samples to
build a classifier model, the CTC builds a single decision tree [15]. The CTC procedure
used in J48Consolidated has been described in Algorithm 5.
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Algorithm 5 CTC of J48Consolidated
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End    

 

The algorithm attracts the researchers for its inherent ability to be trained on class
imbalance datasets. Initially, the CTC-based classifier was used in car insurance fraud
detection [58]. From an architectural point of view, the technique of J48Consolidated
is fundamentally different from boosting and bagging. Only one tree is built, and the
agreement is achieved at each step of the tree building process. However, the different
subsamples are used to select suitable features that ultimately split in the current node.
Information gain ratio criterion, Gini Index, or χ2 (CHAID) are used as the split function
during the tree building process. The splitting decision of the tree is achieved node by node
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voting process. The resampling methodology [15] undertaken by the CTC classifier helps to
achieve the notion of coverage. The notion of coverage in a sense, considering the class-wise
lowest number of sample instances from training data having a different class distribution,
to identify the number of subsamples required. Therefore, the class distribution, type of
subsample, and the coverage value chosen jointly determine the number of subsamples to
be selected. The subsamples to be generated are directly proportional to the degree of class
imbalance in the dataset. Subsequently, a consolidated tree has been built with the similar
principle of a C4.5 decision tree.

The J48Consolidated is built upon the CTC algorithm described in Algorithm 5 and
employs a C4.5 classification algorithm to classify test instances. It has been seen that the
CTC algorithm resample the data to a balanced form and classifies the data using the C4.5
decision tree, hence making the detection mechanism remains stable in case of high-class
imbalanced training data. This unique feature, J48Consolidated, is best suited as the base
detector in the proposed IDS scenario.

4. Results and Discussion

In Section 3, the proposed SRRS algorithm has been used to generate class-wise true
random samples from NSLKDD, ISCXIDS2012, and CICIDS2017 datasets. Furthermore, the
IIFS-MC has been used with the samples to rank features and to generate feature subsets.
In this section, to validate the proposed model, both the features subset and all the features
(as per ranking given by IIFS-MC) have been considered separately for individual datasets.
The outcome of the proposed system has been described in the following sections.

4.1. Performance of Proposed IDS on NSL-KDD Dataset

When the proposed IDS model is validated on the NSL-KDD dataset separately using
the feature subset (20 features) and all the ranked features generated by IIFS-MC, the
proposed IDS model reveals a decent detection output. For the best 20 features obtained
out of the NSL-KDD dataset, the proposed CTC detector’s overall performance remains
consistent as that of the performance of the same detector on all features. The performance
of the proposed model combining CTC, IIFS, and SRRS is outlined in Table 20, and detection
output has been depicted in Figures 2 and 3. By observing the overall performance
outcomes outlined in Table 20 of the proposed model, it can be realized that the IDS
detection engine has an impressive accuracy and detection rate of 99.9562% with a low
misclassification rate of 0.0438%. Out of the testing instances of 29,686, the proposed model
cannot detect attack labels of 13 instances correctly, which is considered very low in the
field of intrusion detection. The model also consumes a very lower amount of training and
testing time of 11.8 and 0.25 s because of fewer features. Similarly, the model also reveals
a very low FPR and FNR of 0.0004. Extending, the validation process on the NSL-KDD
dataset, the entire features of the NSL-KDD sample arranged according to the rank given
by IIFS-MC has been used for training and testing purposes. In this regard, it is observed
to have a little better overall accuracy of the model. An accuracy of 99.9629% has been
achieved but with the cost of a higher model build time of 19.41 s. It should be noted that
the average testing time for each instance consumes 0.07 s due to the additional feature
information. Again, the proposed model also achieves a significantly low misclassification
rate of 0.0371%.

Comparing the performance of the proposed model, both for 20 and all features of
IIFS, the detection accuracy of the detector was almost the same as approximately 99.96%.
The false-positive rate and false-negative rate also remain the same for both cases. This
shows the detector remains stable even in the presence of 20 features. On the other hand,
the detector takes a convincing amount of testing time per instance when all the features
ranked as per IIFS-MC are fueled for training.
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Table 20. Overall performance of the CTC model + IIFS-MC on the NSL-KDD dataset.

Performance Metrics
IIFS Ranked Features

20 Features All Features

Testing Time/instance 0.25 s 0.07 s
Overall Accuracy 99.9562% 99.9629%
Misclassification Rate 0.0438% 0.0371%
False Positive Rate (FPR) 0.0004% 0.0004%
False Negative Rate (FNR) 0.0004% 0.0004%
Mean Absolute Error 0.0002% 0.0002%
Root Mean Squared Error 0.0132% 0.0122%
Relative Absolute Error 0.077% 0.074%
Root Relative Squared Error 3.6922% 3.3961%
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Similarly, visualizing the detection output of the model on the NSL-KDD dataset sepa-
rately for 20 prominent and all the ranked features the classification and misclassification
output appears to be promising. In both cases, the detector swiftly detects the event of
intrusions. However, in very few cases the model struggles to detect the intrusion, which
is the main reason behind the FPR and FNR of 0.0004%. Out of all incoming attacks, the
probe attacks are detected brilliantly by the model.

4.2. Performance of Proposed IDS on ISCXIDS2012 Dataset

With the similar guideline of the NSL-KDD dataset, the proposed IDS model has
also been validated through the ISCXIDS2012 dataset separately using the feature subset
(3 features) and features ranked according to their weights generated by IIFS-MC. The
performance outcome for this dataset has been recorded in Table 21; whereas, the detection
output has been depicted in Figure 4 (for best 3 features) and Figure 5 (for all the ranked
features). It should be noted that, while considering the ISCXIDS2012 dataset, the proposed
SRRS algorithm generates 87,906 instances randomly as training and testing instances.
However, the ratio of training to testing instances has remained the same at 66% and 34%,
respectively. Only three features provided by IIFS-MC have been selected to build the
detection model. For 29,888 testing instances, a sum total of 162 misclassified instances has
been generated; thus, producing a false positive rate and misclassification rate of 0.0054 and
0.5420%, respectively. At the same time, the mean absolute error (MAE) generated by the
detector is 0.0083. Furthermore, the model’s training time lies at 6.06 s, and the testing
time of the model is 0.06 s. Overall accuracy and detection rate of the system achieved
consistently with 99.4580%. It should be noted that the proposed system can detect the
underlying attacks with such an appealing detection rate that too considering only three
features (Table 21 and Figure 4).

Table 21. Overall performance of the CTC model + IIFS-MC on the ISCXIDS2012 dataset.

Performance Outcome
IIFS Ranked Features

3 Features All Features

Testing Time/instance 0.06 s 0.04 s
Overall Accuracy 99.4580% 99.9364%
Misclassification Rate 0.5420% 0.0636%
False Positive Rate (FPR) 0.0054% 0.0006%
False Negative Rate (FNR) 0.0054% 0.0006%
Mean Absolute Error 0.0083% 0.0008%
Root Mean Squared Error 0.0719% 0.025%
Relative Absolute Error 1.6552% 0.1683%
Root Relative Squared Error 14.3741% 4.9932%

The rates of MA and RMS errors generated by the system are 0.0083 and 0.0719, re-
spectively. On the other hand, the proposed model’s RA and RRS error rates are 1.6552 and
14.3441, respectively. While considering all the features, it is observed that the performance
of the detection model improves significantly. The detection model generates only 19 false
positives and 19 false negatives, with improved accuracy of 99.9364%. Similarly, the system
also exhibits a low misclassification rate of 0.0636%. Even with additional features, the
training time remains low at 5.08 s. The testing time per instance was recorded as 0.05 s
(Figure 5). One unique observation found in the case of the ISCXIDS2012 dataset is that the
model shows a distinguished detection result with a higher number of features. In other
words, the model shows superior results on all the features but ranked as per IIFS-MC
for the ISCXIDS2012 dataset. This proves that any feature subsets on the IIFS-MC feature
selection are not admirable for binary detection scenario.
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The visualization of the CTC IDS model shows similar output in line with Table 21.
The detected and undetected attacks and normal instances are shown in Figures 4 and 5.
Figures 4 and 5 show the detection output of detected and missed attacks. It can be seen
that with all the ranked features of the binary attack environment, the detector identifies
almost all the attacks leaving few false alarms.

4.3. Performance of the Proposed IDS on CICIDS2017 Dataset

In this section, the recent CICIDS2017 dataset has been taken into consideration for
validating the proposed model. It is interesting to see the proposed model’s performance as
this dataset is a high-class imbalance in nature compared to other datasets considered pre-
viously. A similar evaluation procedure that was followed for NSL-KDD and ISCXIDS2012
has also been followed for the CICIDS2017 dataset. This dataset’s features have been
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ranked, and 34 optimum features having no similarity with each other have been retrieved.
When the proposed IDS model is validated on the CICIDS2017 dataset, separately using
the feature subset (34 features) and feature ranking of all the features generated by IIFS-MC,
the performance outcomes observed are listed in Table 22 and visualized in Figures 6 and 7,
respectively. By observing the proposed detector’s overall performance, it is realized that
the IDS detection engine has an attractive accuracy and detection rate of 99.9552% with a
low misclassification rate of 0.0004%. Out of the testing instances of 31,222, the proposed
model cannot detect attack labels of 14 instances correctly, which again proves to be very
low. The model also consumes a lower amount of testing time of 0.41 s 34 features. It is
clearly observed that the model’s performance quickly boost even with a little number of
features in the adverse class imbalance condition. The proposed model also generates an
MAE with a rate of 0.003.

Table 22. Overall performance of the CTC model + IIFS-MC on CICIDS2017 dataset.

Performance Outcome
IIFS Ranked Features

34 Features All Features

Testing Time/instance 0.41 s 0.06 s

Overall Accuracy 99.9552% 99.9488%

Misclassification Rate 0.0448% 0.0512%

False Positive Rate (FPR) 0.0004 0.0005

False Negative Rate (FNR) 0.0004 0.0005

Mean Absolute Error 0.0003 0.0003%

Root Mean Squared Error 0.0113 0.0121%

Relative Absolute Error 0.1191% 0.1264%

Root Relative Squared Error 3.4588% 3.6978%
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Graphically the detected and undetected instances of the CICIDS2017 testing sample
can be seen in Figure 6. The figure shows that almost all attack instances are detected
correctly, leaving only 14 instances, which leads to a little misclassification rate of 0.0448%.

Extending the validation process on samples of the CICIDS2017 dataset using all the
features ordered as per their ranks, it is observed that the performance of the model is
slightly decreased. The overall accuracy was found to be 99.9488%, with a misclassification
rate of 0.0512%.

4.4. Analysis of the Proposed Model with Existing IDSs

The proposed IDS model shows a great extent in all three datasets. However, the
model itself alone cannot claim a good IDS model unless until it is compared with existing
detection models in the literature. Therefore, it has been decided to compare the proposed
approach of intrusion detection with the existing intrusion detectors described in the
literature review section. As the proposed IDS model has been validated across three
datasets, it is, therefore, essential to compare and analyze the model with the present works
based on those datasets. Furthermore, several researchers evaluated their models based on
a variety of performance measures. Only those parameters are considered for comparison,
which is mostly used by most existing IDS.

The output of the proposed model is compared with 12 existing IDS models for the
NSL-KDD dataset. The performance measures used for comparison are detection rate,
false-positive rate, and accuracy (Table 23).

Several inferences have been deduced while comparing the proposed model for
samples of the NSL-KDD dataset. These are—

(i) The proposed model leads the IDS models pool with the highest amount of accuracy
and detection rate of 99.9629%.

(ii) The proposed model proves to be best by revealing the lowest false alarm rate of
0.004%.

(iii) DLANID+FAL model performs very poorly in the IDS pool with a low detection rate
and accuracy of 85.42%, while the system generates false alarms with a rate of 14.58%.

(iv) The reason behind the poor performance of DLANID+FAL is that the model is based
on 13 attack labels where the class imbalance ratio is very poor.
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Table 23. Comparison of the proposed approach with existing approaches for the NSL-KDD dataset.

IDS Approaches Year of
Release

Attack Labels
Considered

Features
Selected

Detection Rate
(DR)

False Positive
Rate (FPR) Accuracy

SVC+KPCA[24] 2013 5 23 93.4 14 93.4
HTTP based IDS [29] 2014 5 13 99.03 1 99.38
GHSOM + NSGA-II [30] 2014 5 All 99.7 1.59 99.12
LSSVM-IDS + FMIFS [28] 2016 5 18 98.93 0.28 99.94
TVCPSO–SVM [26] 2016 5 17 97.03 0.87 97.84
TVCPSO–MCLP [26] 2016 5 17 97.23 2.41 96.88
Logitboost + RF [59] 2017 5 All 99.1 0.18 99.45
Ramp-KSVCR [27] 2017 5 All 98.48 0.86 98.68
MOPF [31] 2017 5 All 96.2 1.44 91.74
BC + kNN [60] 2018 5 All 92.28 1.59 94.92
DLANID + TAL [32] 2018 13 All 89.22 10.78 89.22
DLANID + FAL [32] 2018 5 All 85.42 14.58 85.42
SRRS + IIFS-MC(20) + CTC 5 20 99.9562 0.0004 99.9562
SRRS + IIFS-MC(ALL) + CTC 5 All 99.9629 0.0004 99.9629

At the second stage of the analysis, the proposed IDS is compared with 11 existing state-
of-the-art intrusion detection models. The models that have been taken for comparison
are recent and well-validated through ISCXIDS2012. The performance outcome of these
models, along with the proposed IDS, are tabulated in Table 24.

Table 24. Comparison of the proposed approach with existing approaches on the ISCXIDS2012 dataset.

IDS Approaches Year of
Release

Attack Labels
Considered

Features
Selected

Detection Rate
(DR) (%)

False Positive
Rate (FPR) Accuracy (%)

BN-IDS [21] 2018 2 N/A 98.79 0.029 99.93
AMGA2-NB [16] 2013 2 9 94.5 0.07 94.5
DT + SNORT [18] 2015 2 5 98 0.06 99
RFA-IDS + BIGRAM [23] 2018 2 N/A 89.6 2.6 92.9
PBMLT + LR [20] 2017 2 8 98.87 0.454 99.27
PBMLT + XGB [20] 2017 2 8 99.6 0.302 99.65
AISIDS-ULA [17] 2014 2 N/A 95.37 4.53 96.23
AMNN + CART [22] 2018 2 10 99.08 0.75 99.2
AMNN + RELIEFF [22] 2018 2 10 93.77 1.08 97.37
AMNN + PCA [22] 2018 2 10 93.23 5.84 91.06
MHCVF [19] 2016 2 N/A 99.5 0.0003 99.57
SRRS + IIFS-MC (3) + CTC 2 3 99.5 0.005 99.458
SRRS + IIFS-MC(ALL) + CTC 2 All 99.9 0.001 99.9364

The inferences observed through the comparison are as follows.

(i) The proposed model was placed equivalently at the top and the BN-IDS model with
equal accuracy of 99.93%. However, the proposed model with all the features leads to
detectors’ pool in terms of detection rate. The proposed model achieves the highest
detection rate of 99.9%.

(ii) The intrusion detector lies far ahead of its peers, with the lowest false-positive rate
of 0.001.

(iii) RFA-IDS+BIGRAM suffers due to its low detection rate of 89.6%. Similarly, the
AMNN+PCA, AISIDS-ULA, and RFA-IDS+BIGRAM models reveal a low rate of false
positives during the analysis.

(iv) The PBMLT+XGB model is the runner up by consistently winning in two performance
measures, i.e., accuracy and detection rate.

(v) The proposed model is based on the considerably lowest number of features with an
impressive detection rate and accuracy rate.

Finally, in the CICIDS2017 dataset, an attempt has been made to compare the proposed
IDS with three existing cutting-edge intrusion detection models. These models are based
on the CICIDS2017 dataset; hence, they are good candidate models to compare with
the proposed IDS. As the CICIDS2017 dataset is very recent, the detection models that
have been taken for comparison are also developed recently. These are the only three
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intrusion detection systems available and published recently while writing this thesis. The
performance outcome of those models is silent about the detection rate. Therefore, the
False Negative Rate (FNR) is considered in the detection rate for comparing the proposed
detector. The performance outcome of these detection models and the proposed IDS are
tabulated in Table 25.

Table 25. Comparison of the proposed approach with existing approaches on the CICIDS2017 dataset.

IDS Approaches Year of
Release

Attack Labels
Considered

Features
Selected

False Negative
Rate (FNR)

False Positive
Rate (FPR) Accuracy

GA + SVM[25] 2018 7 N/A 0.0009 0.0009 99.8
MI + SVM[25] 2018 7 N/A 0.185 0.0041 98.9
SVM[25] 2018 7 N/A 0.185 0.0041 98.9
SRRS + IIFS-MC (34) + CTC 7 34 0.0004 0.0004 99.9552
SRRS + IIFS-MC(ALL) + CTC 7 All 0.0005 0.0005 99.9488

In this case, the proposed work also performed well ahead of GA + SVM, MI + SVM,
and SVM intrusion detection models. The proposed detection model successfully achieves
the highest accuracy and the lowest equal amount of false-positive and false-negative rates.
By just considering 34 features, the proposed model detects the underlying threats more
efficiently than using all the features.

We compared our approach of IDS with many other supervised and unsupervised ap-
proaches including decision trees and Bayes oriented approaches. It has been found that the
proposed approach shows a significantly better detection result. For an instance, the pro-
posed approach shows 0.5% better detection accuracy as compared to Logitboost+RF [59]
based decision tree approach on the NSL-KDD dataset, 0.93% and 0.7% more than the
DT + SNORT [18] and AMNN + CART [22] decision tree approaches respectively on IS-
CXIDS2012 datasets. It has been observed earlier that the class-imbalance issue lies with
both NSLKDD and ISCXIDS2012 datasets, which is the main reason for the Logitboost +
RF [59] decision tree approach slightly lacks while detecting attacks. On the other hand,
the class-imbalance issue has been addressed in a dual stage within our approach. At
first, the class-imbalance issue has been addressed through the SRRS down sampling
scheme, where an attempt has been made to arrange attack-wise random samples. Sec-
ondly, the J48Consolidated scheme generates synthetic samples for attacks keeping in view
the majority attack instances. In this way, the proposed IDS gets balanced samples for
training the model, which overall improves the detection result. Another aspect is that the
Logitboost+RF [59] approach took all the features of NSL-KDD datasets as compared to
20 features of our proposed approach. This makes our proposed approach to be a better
choice when it comes to handle Intrusions. Not only that, the proposed IDS also outper-
formed other state-of-the-art approaches presented in this decades. Therefore, it is proved
that, in both multi attacks and binary attack scenarios, the proposed approach shows
reasonably better detection results as compared to other intrusion detection approaches.

4.5. Analysis of the Proposed Model across Datasets

The proposed IDS model’s performance considering feature subset and feature ranking
suggested by IIFS-MC on three high-class imbalance datasets performs consistently well
for all three datasets. Furthermore, a comparison of the proposed IDS with existing models
has also been conducted. In that comparison also, the proposed IDS performs consistently
well over other existing models. In this section, the proposed IDS to come across the best
setting specific to each dataset is analyzed. More emphasis is given to errors generated
by the detector along with both training and testing time. Figure 8 shows the error of the
proposed model for three datasets. It is observed that the model generates a very low
amount of errors on the CICIDS2017 dataset. It is advisable to use 34 features to detect all
the attacks most precisely as this setting reveals the very least amount of errors.
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Figure 9 shows training time and testing time per instance of the proposed model
across all the datasets. The following inferences are observed both for training and testing
times:

(i) The model works best with the ISCXIDS2012 dataset. With the ISCXIDS2012 dataset,
the system quickly trained and detected the attacks.

(ii) The system will be fast if deployed considering all the features of the ISCXIDS2012
dataset both for training and detecting.

(iii) The system is fast for a binary attack scenario.
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Finally, the proposed system has been tested through overall accuracy and false-
positive rate. The outcome has been depicted in Figure 10. The following inferences have
been outlined:

(i) NSL-KDD is the ideal dataset for building the intrusion detection model as it exhibits
the highest amount of accuracy significantly.

(ii) If the NSL-KDD dataset is used, the system should be trained considering all the features.
(iii) On the other hand, if the CICIDS2017 dataset is used, the system should be trained,

considering 34 features generated by IIFS-MC. It is because the proposed system
shows the highest ever accuracy under this feature set.



Mathematics 2021, 9, 751 31 of 35

(iv) It is observed that the proposed model works brilliantly with multiclass datasets
(NSL-KDD, CICIDS2017).
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4.6. Analysis of the Proposed Model Specific to Attacks in Datasets

The proposed model is suitable for NSL-KDD multiclass dataset. In this subsection,
the comparison process to come across a conclusion specific to attacks is presented. The
proposed IDS performance outcomes for various attacks have been analyzed to identify
the specific attacks for which the system works considerably. Therefore, future researchers
can design that attack specific detection engines. It should be noted that both NSL-KDD
and CICIDS2017 are multiclass datasets, which contain varieties of attacks. Therefore,
it is relevant to consider these two datasets to undertake an attack-specific comparison.
Therefore, being a binary dataset, ISCXIDS2012 has been ignored in this analysis. The ROC
curves of the proposed models’ attacks are shown in Tables 26 and 27.

Table 26. Area under Curve of the detected attacks of the proposed CTC model IIFS-MC on the NSL-KDD Dataset.

Dataset Features DoS Probe R2L U2R

NSL-KDD 20 features 0.9999 0.9999 1.000 0.9999

NSL-KDD All features 0.9999 0.9998 1.000 1.000

Table 27. Area under Curve of the detected attacks of the proposed CTC model IIFS-MC on CICIDS2017 Dataset.

Dataset Features DoS PortScan Brute Force Infiltration Botnet ARES Web Attack

CICIDS2017 34 features 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

CICIDS2017 All features 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

Considering the 20 features NSL-KDD dataset, it is observed that the proposed model
works well for R2L attacks with 100% accuracy, detection rate, and precision. The Probe
attacks are also detected considerably well with an accuracy and detection rate of 99.9899%
and 100%, respectively. The traditional performance measures such as accuracy, detection
rate, and precisions are not enough to understand a detection model’s real performance
built upon a high-class imbalanced dataset. Therefore, the ROC curves of the NSL-KDD
dataset’s attacks have been analyzed to observe the performance of the proposed IDS. The
AUC value of the ROC curve of R2L attacks proves that the R2L attacks were detected well
by considering 20 features of the NSL-KDD dataset.
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Similarly, when all the features are used to build the detection model, it is observed
that the U2R attacks are nicely detected with 100% accuracy, detection rate, and precision.
The ROC curve of U2R attacks also supports the claim. The AUC value of U2R lies at 1,
indicating the IDS detector is a perfect detector for U2R attacks.

In the CICIDS2017 dataset, when the proposed model is built upon 34 features, the
model correctly detects attacks such as BruteForce, Infiltration, BotnetARES, and WebAt-
tack. The model on 34 features also detects other attacks such a DoS/DDoS and PortScan
brilliantly with 99%+ accuracy. In a nutshell, if the target is to detect BruteForce, Infiltration,
BotnetARES, and WebAttack attacks, the proposed IDS model is ideally suited and hence
can be trained on 34 features.

The proposed model using 34 features of the CICIDS2017 dataset presents an AUC
of BruteForce, Infiltration, BotnetARES, and WebAttack also justifies the inference about
the model for these attacks. In this case, the model is not that much convincing as that
of 34 features of the CICIDS2017 dataset, considering all the features of the CICIDS2017.
It is because BruteForce and WebAttacks are detected with lesser accuracy through all
the features. Overall, though the model seems to be efficient for the CICIDS2017 dataset
considering all the dataset features, it is advisable to consider only 34 stated features to
achieve better accuracy for a maximum number of attacks.

The detection of new cyberattacks and the discovery of system intrusions can be
automated to predict future intrusion patterns based on machine learning methods that
can be tested in available historical datasets [61]. Future cyber-security research must focus
on the development of novel automated methods of cyber-attack detection. Furthermore,
machine learning methods must be used to automatically classify malicious trends and
predict future cyber-attacks for enhanced cyber defense systems. These systems can
support police officers’ decision-making and enable prompt response to cyber-attacks, and,
consequently, provide an enhanced response to cyber-crimes.

5. Conclusions

This paper validates the proposed IDS through NSL-KDD, ISCXIDS2012, and CI-
CIDS2017 datasets. A C4.5 based algorithm with the facility of CTC has been deployed to
detect attacks quickly and efficiently. The model has been validated separately, considering
the feature subset and all the features ordered as per the rank generated by IIFS-MC. The
highest accuracy of 99.96% has been achieved for the NSL-KDD dataset for all the features
and 99.95% for the CICIDS2017 dataset only for 34 features. The proposed model is best
suitable for a binary class dataset. However, a multiclass environment also shows promis-
ing results in terms of detection and classification accuracy. The research works carried out
here also tried to provide insight to choose the best dataset for the model. The NSL-KDD
dataset has been identified as the best dataset for the proposed model.

Detailed performance analysis of the proposed IDS for each attack reveals that an
attack-specific IDS provides a better detection rate and classification accuracy as compared
to the IDS for all attack instances. The proposed model was also compared and vali-
dated through the new state-of-the-art intrusion detection systems separately for separate
datasets. In the event of comparison, the proposed IDS stands firm with the highest ever
detection rate and accuracy.

The proposed method has limitations, which can be addressed to improve the de-
tection process further. A feedback approach in the proposed IDS is missing, which can
be incorporated to strengthen the system towards more dynamism. The feedback ap-
proach helps the administrative host to isolate the malicious host out of the main network.
Moreover, the proposed system is a standalone signature-based system, which can be
incorporated along with an anomaly detection engine to improve the detection rate. Fur-
thermore, the attack correlation strategies can be implemented to understand the severity
of attacks, which helps the security managers to take preventive steps. It should be noted
that the proposed system has been trained and tested on the samples of the two multiclass
IDS datasets, where the sample contains a mixture of standard and various attack instances.
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However, it is observed that the SRRS sampling algorithm generates a perfect balanced
sample for the binary ISCXIDS2012 dataset. Therefore, instead of generating a mixture of a
sample of all types of attacks and benign instances, the sample can be realized on a mixture
of benign and specific attack instances; thus, generating a binary attack sample set for each
attack class. A corresponding IDS engine can be built for each sample set of benign and
specific attack classes. The incoming testing instances must be passed through all these
engines to be detected by at least one detector somewhere in the detection process, thus
expected to reduce the detection time to a certain level.
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