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Abstract: We model day-ahead electricity prices of the UK power market using skew generalized
error distribution. This distribution allows us to take into account the features of asymmetry, heavy
tails, and a peak higher than in normal or Student’s t distributions. The adequacy of the estimated
volatility model is verified using various tests and criteria. A correctly specified volatility model
can be used for analyzing the impact of reforms or other events. We find that, after the start of the
COVID-19 pandemic, price level and volatility increased.

Keywords: electricity price; volatility; skew generalized error distribution (SGED); maximum likeli-
hood estimation (MLE); Kullback–Leibler distance; COVID-19

1. Introduction

We study electricity prices of the UK power market N2EX. This market is operated
as a day-ahead auction and was launched on 12 January 2010 by Nord Pool Spot AS
in cooperation with Nasdaq Commodities [1]. The daily price data are summarized in
Figure 1. Complete data are available starting from the year 2013. We analyze the price
data until 31 December 2020 because we believe that, after the end of the Brexit transition
period, the price level and volatility may have changed.
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Figure 1. Electricity prices on the N2EX market during 1 January 2013–31 December 2020. Source:
https://www.nordpoolgroup.com/, accessed on 1 January 2021. Author’s calculations.

In time series modeling, it is necessary to make a distributional assumption for model
residuals. Because the distribution of electricity prices described in Figure 1b is asymmetric
and has a peak higher than in the fitted normal distribution, we consider using skew
generalized error distribution (SGED). This distribution accommodates features such as
asymmetry, heavy tails, and a peak higher than in normal or Student’s t distributions.
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Modeling prices can allow us to understand the impact of reforms or other events such
as the COVID-19 pandemic. In order to hamper the spread of the COVID-19 pandemic,
many countries started to introduce restrictions in March 2020. For example, on 18 March
2020, the UK government announced the closure of schools, which was later followed by
the closure of public venues, such as pubs, restaurants, gyms, theatres, etc. The lifestyle,
work style, and various sectors of the economy were greatly affected by those restrictions.
The global pandemic is still ongoing, and the expected overall effect is generally hard
to evaluate.

This paper is structured as follows. First, we review literature on volatility modeling.
Then, we describe methodology for modeling volatility of electricity prices. In the next
section, the distributional assumptions and the correctness of the estimated volatility
model are verified and discussed in detail. Finally, we provide a discussion and draw
conclusions related to the methodology of volatility modeling and an analysis of COVID-19
on electricity prices.

2. Literature Review

Reference [2] is the seminal study introducing the autoregressive conditional het-
eroscedasticity (ARCH) model. The model is applied for estimating the means and vari-
ances of inflation in the UK. Later, Reference [3] extended this model to the generalized
ARCH (i.e., GARCH). Both of these papers assumed normal distribution for model resid-
uals. Reference [4] introduced the exponential ARCH model, which addresses the short-
comings of the GARCH model. In order to take into account the feature of heavy tails,
the author assumed that model residuals follow generalized error distribution (GED),
which includes normal distribution as a special case. Reference [4] suggested that replac-
ing normal or Student’s t distributions by generalized error distribution (GED) is more
encouraging. This suggestion is based on the fact that GED is heavy tailed compared to
normal distribution and does not have an issue of possible infinite unconditional moments,
as Student’s t distribution does.

Some research (e.g., [5–8]) however consider a normal or Student’s t distribution when
applying the volatility model of [4] that was based on GED. In order to take into account
the feature of heavy tails, Reference [9] assumed that model residuals follow Student’s t
distribution, even if the empirical distribution of residuals had a higher peak than in the
fitted normal distribution.

It is well-documented in the literature that heavy tails can be modeled using GED
or Student’s t distribution. In Figure 4, we illustrate that the choice between GED and
Student’s t distribution should depend on the peak of the empirical distribution when
compared with the fitted normal distribution. In the presence of heavy tails, if the peak of
the empirical distribution is higher than in the fitted normal distribution, then we suggest
applying GED. Otherwise, in the presence of heavy tails, if the peak of the empirical
distribution is lower than in the fitted normal distribution, then we suggest applying
Student’s t distribution.

Besides heavy tails and a peak higher than in the fitted normal distribution, data may
have an asymmetric empirical distribution. This is our case illustrated in Figure 1b, where
price data are right skewed. In such cases, we suggest assuming skew generalized error
distribution (SGED) for model residuals. This is discussed in detail in the following sections.

SGED however has not been used frequently in the literature. Reference [10] applies
SGED when analyzing return data and finds that forecasts obtained using SGED are more
accurate than when using normal and Student’s t distributions. Reference [11] similarly
finds that the forecast performance of the value at risk model based on SGED is the best
compared to models based on normal distribution and GED. Reference [12] applies SGED
in order to assess the impact of price-cap regulation and divestment series on price level
and volatility.
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3. Methodology

We model the day-ahead auction price from trading day t using the extended autore-
gressive and autoregressive conditional heteroscedasticity (AR–ARCH) volatility model
originally introduced in [2]:

Mean equation: pricet = a0 +
P

∑
i=1

ai pricet−i + w′t · b + εt (1)

Volatility equation: ht = α0 +
p

∑
i=1

αi ε2
t−i + w′t · δ (2)

Distributional assumption: νt =
εt√
ht

is i.i.d. and follows SGED(µ = 0, σ = 1, β, χ) (3)

In the mean equation, pricet is assumed to depend on its past values through the AR
process, which allows us to take into account partial adjustment effects and seasonality
features. The lags in the AR process are determined from the analysis of partial correlations
summarized in Figure 2a. Volatility denoted by ht is modeled using the ARCH process.
Vector wt includes the COVID-19 dummy (assumes 0 for the period before 18 March 2020
and 1 for the period from 18 March 2020), with sine and cosine periodic functions as ex-
planatory variables. The frequencies of 2π/7, 4π/7, and 6π/7 in the periodic functions for
seasonality modeling are identified from the Fourier transform summarized in Figure 2b.
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Figure 2. Analysis of partial correlations and periodogram for electricity prices. Source: Author’s cal-
culations.

In order to jointly estimate the mean and volatility equations, we assume that standard-
ized residuals νt defined in the third equation are independent and identically distributed
(i.i.d.) and follow skew generalized error distribution (SGED). The density of SGED is
defined based on [13] and depends on four parameters: mean µ, standard deviation σ,
shape parameter β reflecting the peak and heavy tails, and skewness parameter χ reflecting
the asymmetry. Its special cases are summarized in Figure 3.
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with free and fixed parameters. The fixed parameters define special cases of the SGED.Figure 3. All special cases of skew generalized error distribution SGED (µ, σ, β, χ). Source: Author’s
illustration.

Symmetric special cases of SGED are Laplace distribution when β = 1, normal
distribution when β = 2, and uniform distribution when β→ +∞. These are described in
Figure 4a.
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Figure 4. SGED (µ, σ, β, χ) and Student’s t distribution. Notes: In (a), we show three special
cases of SGED: Laplace distribution (black) when β = 1, standard normal distribution (red) when
β = 2, and uniform distribution (green) when β → +∞. Generally, if β < 2, then the distribution
is leptokurtic, with heavier tails and a peak more acute and higher than in normal distribution.
In (b), we compare normal distribution with Student’s t distribution. As the number of degrees of
freedom ν increases, Student’s t distribution approaches normal distribution. (a) Special cases of
SGED; (b) normal and Student’s t distributions. Source: Author’s illustration.

In Figure 4b, we compare normal distribution with Student’s t distribution, where
the latter has heavy tails and a lower peak. Based on the illustrations in Figure 4, we
suggest that using SGED may be preferred to Student’s t distribution when the data have
features such as asymmetry, heavy tails, and a peak higher than in normal distribution.
The distributional assumption is verified using Kullback–Leibler distance criterion.

4. Estimation Results

Most techniques in time series econometrics require stationarity of the data. Using
the Augmented Dickey–Fuller (ADF) test [14], we find that the electricity price data are
stationary, which allows for the application of correlograms and periodograms presented in
Figure 2. These techniques are important for determining the lag structure and frequencies
in the sine and cosine periodic functions. The estimation results of the AR–ARCH model
assuming SGED and GED for residuals are presented in Tables 1 and 2, respectively.
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Table 1. Estimation results when assuming SGED for standardized residuals.

Mean Equation Volatility Equation

pricet = a0 +
P
∑

i=1
ai pricet−i + w′t · b + εt ht = α0 +

p
∑

i=1
αi ε2

t−i + w′t · δ

Variable Coef Std Err Variable Coef Std Err

a0 0.3912 0.0203 α0 3.7922 0.2723
pricet−1 0.6296 0.0032 ε2

t−1 0.3519 0.0472
pricet−2 0.0802 0.0021 ε2

t−2 0.1500 0.0276
pricet−3 0.0438 0.0013 ε2

t−4 0.1014 0.0273
pricet−4 0.0528 0.0016 ε2

t−7 0.0919 0.0226
pricet−6 0.0479 0.0014 COVID-19 8.7538 2.1345
pricet−7 0.0703 0.0018 cos(2πt/7) 1.1638 0.3079
pricet−21 0.0402 0.0012
pricet−48 0.0257 0.0008

COVID-19 0.5812 0.0716
sin(2πt/7) 0.6188 0.0282
sin(4πt/7) 0.6017 0.0251
cos(2πt/7) −0.1656 0.0208 R2 0.7647
cos(4πt/7) −0.2567 0.0203 AIC 4.9555
cos(6πt/7) −0.4291 0.0230 MLE −7097
Notes: All coefficient estimates are statistically significant at the 1% level. Statistically insignificant lags and
periodic functions are not included.

Table 2. Estimation results when assuming GED for standardized residuals.

Mean Equation Volatility Equation

pricet = a0 +
P
∑

i=1
ai pricet−i + w′t · b + εt ht = α0 +

p
∑

i=1
αi ε2

t−i + w′t · δ

Variable Coef Std Err Variable Coef Std Err

a0 0.3290 0.0316 α0 3.7604 0.2974
pricet−1 0.6288 0.0036 ε2

t−1 0.3582 0.0483
pricet−2 0.0833 0.0007 ε2

t−2 0.1500 0.0312
pricet−3 0.0353 0.0007 ε2

t−4 0.1066 0.0289
pricet−4 0.0689 0.0008 ε2

t−7 0.0934 0.0268
pricet−6 0.0464 0.0008 COVID-19 8.3551 2.6245
pricet−7 0.0635 0.0009 cos(2πt/7) 1.1068 0.3229
pricet−21 0.0382 0.0007
pricet−48 0.0263 0.0006

COVID-19 0.4605 0.1727
sin(2πt/7) 0.6400 0.0314
sin(4πt/7) 0.6079 0.0389
cos(2πt/7) −0.2022 0.0297 R2 0.7659
cos(4πt/7) −0.2490 0.0276 AIC 4.9566
cos(6πt/7) −0.4247 0.0340 MLE −7099.7
Notes: All coefficient estimates are statistically significant at the 1% level. Statistically insignificant lags and
periodic functions are not included.

In order to be able to draw conclusions from the estimated volatility model, we must
verify whether the assumptions for model residuals are satisfied. We summarize all the
verification steps in Figure 5.



Mathematics 2021, 9, 750 6 of 11

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Correct 

 

 Correct 

Incorrect Correct 

Save standardized residuals
from the estimated volatility model

Verify the i.i.d assumption
for standardized residuals

Re-specify
the volatility model

Estimate
the re-specified
volatility model

Verify the volatility model

Verify the distributional assumption
for standardized residuals

Apply the estimated volatility model
for interpretation, forecast, etc.

Incorrect

Incorrect

Figure 5. Model selection scheme. Source: Author’s illustration.

We first verify the assumption that the standardized residuals are independent and
identically distributed (i.i.d.) using the Brock–Dechert–Scheinkman test (BDS test) further
developed in [15]. The test results are presented in Table 3. The null hypotheses are not
rejected because the p-values are greater than 10%. Not rejecting νt being i.i.d. suggests
that νt is not serially correlated. Similarly, not rejecting ν2

t being i.i.d. suggests that νt is not
heteroscedastic. Therefore, we conclude that the residuals do not contain any information
and are random.

Table 3. BDS test for standardized residuals when assuming SGED.

Dimension BDS Test p-Value BDS Test p-Value

2 0.0006 0.6900 0.0021 0.4183
3 −0.0015 0.5662 −0.0009 0.8317
4 −0.0005 0.8709 0.0004 0.9357
5 −0.0003 0.9200 0.0004 0.9470
6 0.0011 0.7215 0.0025 0.6251

H0 : νt is i.i.d. H0 : ν2
t is i.i.d.

The next verification step is related to the distributional assumption. We estimated
three volatility models, assuming that standardized residuals follow skew generalized
error distribution (SGED), generalized error distribution (GED), and normal distribution.
In Figure 6a–c, we compare the empirical distributions of model residuals with the fitted
SGED, GED, and normal distribution, respectively. The fitted SGED and GED in Figure 6a,b
provide a far better match for the empirical distribution of standardized residuals than the
fitted normal distribution in Figure 6c. That is why we presented only estimation results
assuming SGED and GED for model residuals.
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Figure 6. Empirical and fitted theoretical distributions of standardized residuals ν̂t. Notes: GED is
a special case of SGED when χ = 1. Similarly, normal distribution is a special case of SGED when
β = 2 and χ = 1. These details are summarized in Figure 3.

Comparing SGED and GED is more difficult. For assessment, we use the Kullback–
Leibler distance, which allows us to determine how close an empirical distribution is to
a theoretical probability distribution [16]. The results presented in Table 4 and Figure 7
indicate that the Kullback–Leibler distance between the empirical and fitted theoretical
distributions of the standardized residuals is smaller under the SGED assumption, which
suggests that the SGED assumption is the most appropriate.
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Figure 7. Illustration of the values of the Kullback–Leibler distance based on Table 4.
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Table 4. Kullback–Leibler distance for empirical and fitted theoretical distributions of standard-
ized residuals.

Assumed Distributions

k SGED GED Normal

1 0.0006 0.0177 0.1901
2 0.0071 0.0461 0.1244
3 0.0513 0.0652 0.1436
4 0.0409 0.1008 0.1223
5 0.0384 0.0944 0.1306
6 0.0408 0.0940 0.1265
7 0.0513 0.0701 0.1113
8 0.0428 0.0734 0.1067
9 0.0449 0.0661 0.0947
10 0.0423 0.0675 0.0933
11 0.0350 0.0628 0.0770
12 0.0331 0.0525 0.0859
13 0.0259 0.0535 0.0803
14 0.0233 0.0502 0.0822
15 0.0247 0.0496 0.0823
16 0.0180 0.0435 0.0850
17 0.0144 0.0438 0.0806
18 0.0160 0.0369 0.0840
19 0.0167 0.0401 0.0800
20 0.0210 0.0375 0.0841
Notes: k is the number of values in the nearest neighbor search algorithm. The default number of values is usually
set equal to 10.

As presented in Table 5, under the SGED assumption, the value of the Akaike in-
formation criterion (AIC) is lower and the value of the log-likelihood function is higher.
On the one hand, a lower value of the AIC suggests that less information is lost, hence
a higher quality of the chosen volatility model. On the other hand, a higher value of the
log-likelihood function suggests that the chosen volatility model is more likely to produce
prices that were actually observed. Therefore, we conclude that the SGED assumption
reflecting asymmetry, a higher peak, and heavy tails is correct for our volatility model.

Table 5. Akaike information criterion (AIC) and log-likelihood function from three volatility models
when assuming SGED, GED, and normal distribution for standardized residuals.

Assumed Distributions SGED GED Normal
SGED Parameters (µ, σ, β, χ) (µ, σ, β, χ = 1) (µ, σ, β = 2, χ = 1)

AIC 4.9555 4.9566 5.1409
Log-likelihood function −7097.0 −7099.7 −7365.5
Notes: GED is a special case of SGED when χ = 1. Similarly, normal distribution is a special case of SGED when
β = 2 and χ = 1. These details are summarized in Figure 3.

Even if both distributional assumptions are satisfied (the i.i.d. and SGED), the overall
volatility model may be incorrect due to possible remaining asymmetries. This is the last
third verification step presented in Figure 5. We verify if the overall conditional volatility
model is specified correctly using the sign-bias test presented in Table 6. Because all
p-values are above 10%, we conclude that the volatility model is correctly specified.
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Table 6. t-test values of the sign bias test for standardized residuals.

t-Test p-Value

Sign Bias 1.48 0.14
Negative Sign Bias 0.06 0.95
Positive Sign Bias 0.46 0.65

Joint Effect 2.76 0.43

5. Discussion

According to [17], understanding the volatility dynamics of electricity markets is im-
portant in evaluating the deregulation experience, in forecasting, and in pricing electricity
futures and other energy derivatives. Modelling price volatility is also needed to build
accurate pricing models; to forecast future price volatility; and to enrich our understanding
of the broader financial markets, the energy industry, and the overall economy [18]. There-
fore, modeling the dynamics of electricity prices and volatility is of a primary interest for
investors, producers, and policymakers.

We find that the empirical distribution of electricity prices is asymmetric, and has
heavy tails and a peak higher than in the fitted normal distribution. These observations
suggest that we can assume SGED for model residuals. We show the correctness of our
distributional assumptions and the volatility model using various tests and criteria.

Some papers however do not discuss the empirical distribution of model residuals
in order to verify the distributional assumptions (an i.i.d. and an assumed theoretical
distribution). For example, most of the GARCH-type estimated models presented in
Tables 3–6 from [7] violated no serial correlation assumption for standardized residuals or
standardized residuals squared.

Most frequently assumed distributions are normal, Student’s t, and GED. Refer-
ence [19] applied a GARCH model assuming those distributions in modeling crude oil
prices. The research finds that Student’s t distribution is superior due to the extremely
high kurtosis in oil return volatility. The peak of the empirical distribution of residuals
compared to the fitted normal distribution is however not discussed. Heavy tails and high
kurtosis can be modeled using GED or Student’s t distribution depending on the peak
being higher or lower than in the fitted normal distribution, as described in Figure 4.

Reference [20] suggests that replacing the normality assumption with a heavy-tailed
distribution might improve the forecast results. Indeed, when assuming SGED, we find
that the value of the log-likelihood function was the highest compared to GED and normal
distribution (Table 5). However, normal distribution is still used frequently (e.g., [21,22])
even when there is ample evidence that data or model residuals do not follow normal
distribution [23].

Correctly specified volatility models can be applied for forecast or interpretation of
changes due to reforms or other events. We proceed to the analysis of the possible effect of
the COVID-19 pandemic on price level and volatility. For this purpose, we consider the
COVID-19 dummy variable, which is equal to 0 for the period before 18 March 2020 and
is equal to 1 for the period from 18 March 2020. As presented in Table 1, the coefficient
estimates in front of the COVID-19 dummy variable in the mean and volatility equations
are positive and statistically significant. This suggests that, on average, the price level and
volatility increased during the pandemic.

6. Conclusions

Verifying all assumptions in volatility modeling is crucial for the later application of
models in forecasting, policy evaluation, or analysis of the impact of various events. When
an empirical distribution of data has features such as asymmetry, heavy tails, and a peak
higher than in the fitted normal distribution, then we suggest assuming SGED for model
residuals. This suggestion is supported by our findings of asymmetry (a positive skewness
coefficient and a skewness parameter above one) and excess kurtosis (kurtosis above three)
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presented in Figure 6. Moreover, when assuming SGED for model residuals, we obtain a
lower value of AIC and a higher value of the log-likelihood function (Table 5). Hence, we
conclude that considering SGED including GED or normal distribution as its special cases
can allow for more accurate modeling.

Given a correctly specified volatility model, it is possible to test various hypotheses.
In our case, we test if the COVID-19 pandemic affected price level and volatility. We find
that both price level and volatility increased after the start of the COVID-19 pandemic.

We had to limit our study to the period until 31 December 2020 because this is the
time when the Brexit transition period ended. Current changes in 2021 in the price level
and volatility could be related to Brexit, too. It may be necessary to analyze a longer time
horizon after the pandemic is over in order to decompose the change due to the pandemic
or Brexit. Then, it may be possible to evaluate the impact of Brexit on price level and
volatility after its transition period ended on 31 December 2020.

The suggested extension would however require an introduction of another dummy
variable for the Brexit analysis. This should not be an issue if seasonality of data is modeled
using periodic functions based on the Fourier transform presented in Figure 2b. Periodic
functions may allow us to specify a parsimonious model compared to when using day of
the week dummy variables in modeling weekly seasonality. Then, dummy variables could
be used for analysis of the effect of various events.
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Abbreviations

ADF test Augmented Dickey–Fuller test introduced in [14]
AIC Akaike Information Criterion
AR Autoregressive
ARCH Autoregressive Conditional Heteroscedasticity
BDS test Brock–Dechert–Scheinkman test of i.i.d. further developed in [15]
GARCH Generalized Autoregressive Conditional Heteroscedasticity
GED Generalized Error Distribution
i.i.d. independent and identically distributed
MLE Maximum Likelihood Estimation
Obs Number of Observations
PACF Partial Autocorrelation Function
SGED Skew Generalized Error Distribution
St Dev Standard Deviation
µ Mean parameter in SGED
σ Standard deviation parameter in SGED
β Shape parameter in SGED
χ Skewness parameter in SGED
εt Residuals from the mean equation (not standardized)
ht Volatility (based on notation in [2])
νt Standardized residuals
ν The number of degrees of freedom in Student’s t distribution (we use ν only for Figure 4b)
ωk Frequency in the Fourier Transform

p-value
Probability value of a test statistic (if the p-value is less than 0.10, then the null hypothesis
is rejected)

R2 Coefficient of determination
wt Vector including the COVID-19 dummy and periodic functions as explanatory variables
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