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Abstract: In this paper, we study the dissipative structure of first-order linear symmetric hyperbolic
system with general relaxation and provide the algebraic characterization for the uniform dissipativity
up to order 1. Our result extends the classical Shizuta–Kawashima condition for the case of symmetric
relaxation, with a full generality and optimality.
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1. Introduction

In this paper, we consider the first-order linear symmetric hyperbolic system with
relaxation:

∂tu +
n

∑
j=1

Aj∂xj u + Lu = 0 , t > 0 , x ∈ Rn ,

u|t=0 = f , x ∈ Rn .
(1)

Here, n ∈ N and u = u(t, x) = (u1(t, x), · · · , um(t, x))> is an unknown function
with valued in Cm, m ∈ N, and f = f (x) = ( f1(x), · · · , fm(x))> is a given function with
valued in Cm. We use the standard notations for derivatives; ∂t = ∂/∂t and ∂xj = ∂/∂xj
for x = (x1, · · · , xn). Each Aj and L is a given m × m constant matrix with complex
coefficients, and, in particular, each Aj is assumed to be an Hermitian matrix, Aj = A∗j ,

where M∗ = M> denotes the adjoint of a given matrix M. Here, M is the complex conjugate
of M, and M> is the transpose of M. We denote by M] and M[ the Hermitian part and the
skew-Hermitian part of M, respectively:

M] =
1
2
(M + M∗) , M[ =

1
2
(M−M∗) .

We also use the standard notations for the kernel and the range of M as

Ker (M) = {v ∈ Cm |Mv = 0} , Ran (M) = {Mv ∈ Cm | v ∈ Cm} .

We use similar notations if the matrix M is restricted in the invariant space X other
than Cm.

The system of the form (1) arises as the linearization of hyperbolic systems of balance
laws, and its study has a long history. One of the most active themes is the dissipation
mechanism underlying (1), as a result of the effective interaction between the partial
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damping from the Hermitian part L] and the other hyperbolic terms. To explain this in
details, let us consider the system (1) in the Fourier variables with respect to x:

∂tû +A(ξ)û = 0 , t > 0 , ξ ∈ Rn ,

û|t=0 = f̂ , ξ ∈ Rn ,
(2)

where A(ξ) is the m×m matrix given by A(ξ) = L for ξ = 0, while, for ξ 6= 0,

A(ξ) = i|ξ|A(
ξ

|ξ| ) + L , A(ω) =
n

∑
j=1

Ajωj , (3)

and ω = (ω1, · · · , ωn) ∈ Sn−1. The function û is the Fourier transform of u, i.e.,

û(t, ξ) =
1

(2π)n/2

∫
Rn

u(t, x)e−ix·ξ dx .

Since each Aj is Hermitian, so is A(ω) for each ω ∈ Sn−1:

A(ω) = A(ω)∗ . (4)

The one-parameter family {e−tA}t≥0 given by

e−tA f = F−1[e−tA(ξ) f̂ (ξ)] =
1

(2π)n/2

∫
Rn

e−tA(ξ) f̂ (ξ)eiξ·x dξ

defines a C0-semigroup acting on L2(Rn)m with the generator −A, whose domain contains
the Sobolev space H1(Rn)m and A f = ∑n

j=1 Aj∂xj f + L f for f ∈ H1(Rn)m. Thus, by the
Plancherel theorem, the estimate of the semigroup e−tA in L2 is reduced to the analysis of
e−tA(ξ) for ξ ∈ Rn \ {0}.

In order for the first order ODE system (2) to be dissipative (i.e., limt→∞ e−tA(ξ) = 0)
for each ξ ∈ Rn \ {0}, the necessary and sufficient condition is

{λ ∈ C | <λ ≥ 0} ⊂
⋂

ξ∈Rn\{0}
ρ(−A(ξ)) , (5)

where <λ is the real part of the complex number λ, and ρ(−A(ξ)) is the resolvent set of
the matrix−A(ξ). We note that the condition (5) always implies L] 6= O; otherwise, −A(ξ)
becomes a skew-Hermitian matrix and thus must possess the eigenvalues on the imaginary
axis. The key and common relaxation condition assumed in this study is the nonnegativity
of L], i.e.,

L] ≥ 0 , (6)

which automatically leads to the inclusion

{λ ∈ C | <λ > 0} ⊂
⋂

ξ∈Rn\{0}
ρ(−A(ξ)).

Thus, under the nonnegativity condition (6), the condition to ensure (5) is

iR ⊂
⋂

ξ∈Rn\{0}
ρ(−A(ξ)) , (7)

where iR = {λ ∈ C | <λ = 0}. We note that, since A(ω) is Hermitian, the identity
A(ξ)] = L] holds. Therefore, under the condition (6) and (7) the matrix A(ξ) is an
m-accretive operator for each ξ ∈ Rn. We come back to this important fact below. In
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general, if the matrix M satisfies M] ≥ 0, then it is not difficult to see Ker (iλI + M) =
Ker (λI − iM[) ∩ Ker (M]) for any λ ∈ R, where I is the identity matrix. Hence, by
recalling A(ξ) = irA(ω) + L with r = |ξ| and ω = ξ/|ξ| ∈ Sn−1 for ξ 6= 0, we find that
the condition (6) and (7) is equivalent with (6) and⋃

λ∈R, r>0, ω∈Sn−1

Ker
(
λI + rA(ω)− iL[

)
∩Ker (L]) = {0} . (8)

The class of symmetric hyperbolic systems satisfying (8) is wide, and we call (8) the
general stability condition.

For the systems satisfying (6) and (8), the elegant general theory was established under
the additional condition

Ker (L) = Ker (L]) (9)

by Shizuta and Kawashima [1] and Umeda, Kawashima, and Shizuta [2], which is now
classical in this research field, and we call (8) and (9) the classical condition. In this case,
we have Ker (L]) ⊂ Ker (L[) and thus the condition (8) is reduced to a simpler one:⋃

λ∈R, r>0, ω∈Sn−1

Ker
(
λI + rA(ω)

)
∩Ker (L]) = {0} . (10)

In [1], it is proved that the validity of (6), (9), and (10) implies the existence of a
suitable energy assumed in the work of Umeda, Kawashima, and Shizuta [2], resulting in
the pointwise decay estimate of e−tA(ξ) such as

‖e−tA(ξ)‖Cm→Cm ≤ Ce
−c |ξ|2

1+|ξ|2
t
, t > 0 , (11)

where C and c are positive constants independent of ξ and t. The semigroup estimate (11)
implies the condition (5), or, more strongly,

<λ(iξ) ≤ −c
|ξ|2

1 + |ξ|2 , ξ ∈ Rn \ {0} (12)

for any eigenvalue λ(iξ) of −A(ξ). The spectral bound (12) is called the uniformly dis-
sipative of type (1, 1) in [3]. As a further study from [1,2], Hanouzet and Natalini [4],
Yong [5], Kawashima and Yong [6,7], Ruggeri and Serre [8], and Bianchini, Hanouzet,
and Natalini [9] analyzed the nonlinear problems for the hyperbolic system with relax-
ation. Furthermore, in the case of (9), Beauchard and Zuazua [10] introduced the stability
condition called Kalman rank condition which is equivalent to (10). We remark that the
entropy condition and (10) guarantee the nonlinear stability of the equilibrium states for
the hyperbolic balance laws, while it should be emphasized that the concrete decay rate
such as (11) for the linearized system is important to achieve the nonlinear stability.

When (6) holds, in general, we only have

Ker (L) ⊂ Ker (L]) , (13)

rather than (9). There are also several important examples for which (9) is not satisfied.
For example, the dissipative Timoshenko system and the linearized compressible Euler–
Maxwell system do not satisfy (9), and these systems were analyzed for the dissipative
structure by the authors of [11–15]. The analysis for these physical models has revealed that,
the system with the condition (6) will possess fruitful and more complicated dissipative
structures. Several structural conditions have been proposed by to handle the important
examples, while most of them are built upon the assumption on the existence of the matrix
which provide an explicit source of the energy functional to achieve the dissipative estimate
with the desired rate (see [3,16,17]).
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Among others, a remarkable point of Shizuta–Kawashima theory [1] is that the condi-
tion (9) and (10) is purely algebraic; nevertheless, the quantitative estimate (11) is achieved
with a concrete dependence on ξ. This is highly nontrivial. Indeed, since A(ξ) is not a
normal operator, even the spectral bound (12) does not necessarily yield (11) from the
abstract semigroup theory, for the constant C in (11) must be uniform in ξ. Notice that the
abstract spectral mapping theorem does not give information on the prefactor constant C.
Inspired by the philosophy of Shizuta [1], Ueda [18,19] tried to extend Shizuta–Kawashima
theory, and partially succeeded for an extension under (13). Precisely, the author obtained
the uniform dissipativity for (1) under the general stability condition (8). However, this
result does not mention the optimality of the type of the uniform dissipativity, and, thus,
the application to the nonlinear problem is still out of reach in this general setting. For the
nonlinear problem of general hyperbolic systems, the entropy condition derived in [6,7]
is not enough to cover all physical models described by the balance laws, and, thus, the
theory still needs to be developed. In this context, Kawashima and Ueda [20] recently
refined the entropy condition which can be applied to the compressible Euler–Maxwell
system, where the key generalization is to allow the nonsymmetric relaxation. The reader
is also referred to the works of Zeng [21] and Lou and Ruggeri [22] for another direction of
generalization, where it is discussed even the case when the general stability condition (8)
is violated but in a specific way so that the formation of shocks is prevented. However, the
general theory to ensure the global existence of small smooth solutions for the nonlinear
problem seems to be still open.

In this paper, we study the linear system (1) for the case of general relaxation, and
our goal is to provide the algebraic characterization in achieving the uniform dissipative
estimate of order 1 (see the definition in front of Theorem 1 below) without assuming
(9). It is stressed here that, although the nonlinear problem is not discussed in this paper,
achieving the concrete decay rate for the linear problem (1), which is nontrivial if the
classical condition (9) does not hold, is a key step also for the global existence of small
smooth solutions to the nonlinear problem.

As described in Theorems 1–3 in the next section, our result is optimal in the sense
that the algebraic condition given in this paper is necessary for any n ≥ 1, and is sufficient
for n = 1, as well as for n ≥ 2 under additional but rather mild assumptions. In particular,
some important examples such as the dissipative Timoshenko system and the compressible
Euler–Maxwell system are within the range of our result. We note that the finite dimen-
sional nature of the problem (2) is the key that enables us obtaining the concrete decay rate
of the semigroup only from the algebraic condition; in the infinite dimensional problem,
one needs to introduce a quantitative condition at some point to achieve a concrete decay
rate, as seen in the systematic work by Villani [23] in this direction.

This paper is organized as follows. In Section 2, we collect some notations and state
the main results. In Section 3, we briefly refer to the idea of the proof in connection with
the key general assumptions (4) and (6). In Sections 4 and 5, the dissipative structure is
analyzed in detail for the low frequency part and high frequency part, respectively. The
proofs of the main results are stated in Section 6. In Section 7, we show how our result is
applied to the well-known examples such as the dissipative Timoshenko system and the
compressible Euler–Maxwell system. In Appendix A we recall the Gearhart-Prüss type
theorem for the semigroup generated by the m-accretive operator on the Hilbert space,
and in Appendix B we state the elementary fact about the nonnegative matrices with the
spectral parameters on the imaginary axis. These results are the key in our argument.

2. Nondegenerate Condition and Main Results

Let Xω be a nontrivial subspace of Cm and Pω be the orthogonal projection to Xω,
which depend on ω ∈ Sn−1. Then, we also introduce a family of nontrivial subspaces
{Xω,r}r>0 such that Xω,r ⊂ Xω, and Pω,r denotes the orthogonal projection from Cm to
Xω,r. The spaces Xω and Xω,r, rather than Cm, are introduced in order for the application to
the system with the constraint condition such as the compressible Euler–Maxwell system.
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To keep the generality, let us also allow the dependence of L on ω ∈ Sn−1 and write L(ω)
instead of L. We assume the following invariance and continuity:

(i) A(ω)Xω ⊂ Xω , L(ω)]Xω ⊂ Xω , L(ω)[Xω ⊂ Xω for all ω ∈ Sn−1 ;

(ii)
(
irA(ω) + L(ω)

)
Xω,r ⊂ Xω,r for all ω ∈ Sn−1 , r > 0 ;

(iii) the map Sn−1 × (0, ∞) 3 (ω, r) 7→ (A(ω), L(ω),Pω,Pω,r) ∈ (Cm×m)4 is continuous; and

(iv) the limits Pω,0 = lim
r→0
Pω,r and Pω,∞ = lim

r→∞
Pω,r exist in the topology of Cm×m .

(Inv)

It should be stressed that the invariant property about Xω,r is not necessarily imposed
on each matrix A(ω), L(ω)], or L(ω)[. We recall the general stability condition stated as
follows:

A(ω) = A(ω)] and L(ω)] ≥ 0 for any ω ∈ Sn−1 , and⋃
λ∈R, r>0, ω∈Sn−1

Ker
(
λI + rA(ω)− iL(ω)[

)
∩Ker (L(ω)]) ∩ Xω,r = {0} .

(SC)

In particular, A(ω) is Hermitian. To state our result, we collect the notations of some
orthogonal projections.

Definition 1 (Orthogonal projections). Below the notation F : Y → Z denotes that F is the
orthogonal projection from the subspace Y of Cm to the subspace Z of Y. We also denote by F⊥ the
orthogonal projection I|Y − F, where I|Y is the identity map on Y. Each sj is a given real number
and ω ∈ Sn−1.

(0) D],ω : Xω → Ker
(

L(ω)]|Xω

)
(1) Ps0,ω : Xω → Ker

(
(is0 I + L(ω))|Xω

)
(2) Ps1,s0,ω : Ps0,ωXω → Ker

(
(s1 I + Ps0,ω A(ω))|Ps0,ω Xω

)
(3) Ps2,s1,s0,ω : Ps1,s0,ωXω → Ker

((
is2 I + Ps1,s0,ω L(1)

low(s0, ω)
)
|Ps1,s0,ω Xω

)
,

where
L(1)

low(s0, ω) = Ps0,ω A(ω)
(
is0 I + L(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)|Ps0,ω Xω

(4) Qs0,ω : Xω → Ker
(
(s0 I + A(ω))|Xω

)
(5) Qs1,s0,ω : Qs0,ωXω → Ker

(
(is1 I +Qs0,ω L(ω))|Qs0,ω Xω

)
(6) Qs2,s1,s0,ω : Qs1,s0,ωXω → Ker

((
s2 I +Qs1,s0,ω A(1)(s0, ω)

)
|Qs1,s0,ω Xω

)
,

where

A(1)(s0, ω) := Qs0,ω L(ω)K(s0, ω)L(ω)∗|Qs0,ω Xω
, K(s0, ω) := −

(
s0 I + A(ω)

)
|−1
Q⊥s0,ω Xω

Q⊥s0,ω

(7) Qs3,s2,s1,s0,ω : Qs2,s1,s0,ωXω → Ker
((

is3 I +Qs2,s1,s0,ω L(1)
high(s1, s0, ω)

)
|Qs2,s1,s0,ω Xω

)
,

where
L(1)

high(s1, s0, ω) = is1Qs1,s0,ω F(s0, ω)|Qs1,s0,ω Xω
+Qs1,s0,ωG(s1, s0, ω)|Qs1,s0,ω Xω
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with

F(s0, ω) := L(ω∗)K(s0, ω)2L(ω∗)∗ ,

G(s1, s0, ω) := A(1)(s0, ω)
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω Xω

Q⊥s1,s0,ω A(1)(s0, ω)

− L(ω)K(s0, ω)L(ω)∗K(s0, ω)L(ω)∗ .

Remark 1. (1) The projections Psj ,··· ,s0,ω are used in the analysis for the low frequency part, while
Qsj ,··· ,s0,ω are used for the high frequency part. From the definitions, we have

Psj+1,sj ,··· ,s0,ωPsj ,··· ,s0,ω = Psj+1,sj ,··· ,s0,ω , Qsj+1,sj ,··· ,s0,ωQsj ,··· ,s0,ω = Qsj+1,sj ,··· ,s0,ω .

(2) When L(ω)] ≥ 0 holds, the space Ker ((is0 I + L(ω))|Xω ) is equal to Ker ((s0 I− iL(ω)[)|Xω )∩
Ker (L(ω)]); see Lemma A1.

(3) The symmetric part of −Qs2,s1,s0,ω L(1)
high(s1, s0, ω)|Qs2,s1,s0,ω Xω

is, in fact, nonnegative (see
Remark 7).

Next, we define the singular sets, which consist of the parameters such that the
resolvent can be singular at the limit of low/high frequencies.

Definition 2 (Singular sets in the limit).
(1) Let s0, s1, s2 ∈ R and ω ∈ Sn−1. The spaces V low,0(s0, ω) and V low,1(s2, s1, s0, ω) are defined
by

V low,0(s0, ω) = Ran (Ps0,ω) ∩ Ran (Pω,0) ,

V low,1(s2, s1, s0, ω) = Ran (Ps2,s1,s0,ω) ∩ Ran (Pω,0) ,

and the singular sets Slow,0 and Slow,1 are defined as

Slow,0 =
{
(s0, ω) ∈ R× Sn−1 |V low,0(s0, ω) 6= {0}

}
,

Slow,1 =
{
(s2, s1, s0, ω) ∈ R3 × Sn−1 |V low,1(s2, s1, s0, ω) 6= {0}

}
.

We also set

Ṽ low,1(s1, s0, ω)

= Ran (Ps1,s0,ω) ∩Ker
(

L(ω)]
(
is0 I + L(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)|Xω

)
∩ Ran (Pω,0) ,

S̃low,1 =
{
(s1, s0, ω) ∈ R2 × Sn−1 | Ṽ low,1(s1, s0, ω) 6= {0}

}
,

(2) Let s0, s1 ∈ R and ω ∈ Sn−1. The spaces Vhigh,0(s1, s0, ω) and Vhigh,1(s1, s0, ω) are defined
by

Vhigh,0(s1, s0, ω) = Ran (Qs1,s0,ω) ∩ Ran (Pω,∞) ,

Vhigh,1(s3, s2, s1, s0, ω) = Ran (Qs3,s2,s1,s0,ω) ∩ Ran (Pω,∞) ,

and the singular sets Shigh,0 and Shigh,1 are defined as

Shigh,0 =
{
(s1, s0, ω) ∈ R2 × Sn−1 |Vhigh,0(s1, s0, ω) 6= {0}

}
,

Shigh,1 =
{
(s3, s2, s1, s0, ω) ∈ R4 × Sn−1 |Vhigh,1(s3, s2, s1, s0, ω) 6= {0}

}
.
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We also set

Ṽhigh,0(s0, ω) = Ran (Qs0,ω) ∩Ker (L(ω)]|Xω ) ∩ Ran (Pω,∞) ,

Vhigh,1,(1)(s1, s0, ω) = Ker
(

L(ω)]K(s0, ω)L(ω)∗|Xω

)
∩Vhigh,0(s1, s0, ω) ,

Vhigh,1,(2)(s2, s1, s0, ω)

= Ran (Qs2,s1,s0,ω) ∩ Ran (Pω,∞)

∩Ker
(

L(ω)]
{
(is1 I +Qs0,ω L(ω))|−1

Q⊥s1,s0,ω Xω
Q⊥s1,s0,ω A(1)(s0, ω)− K(s0, ω)L(ω)∗

})
,

and

S̃high,0 =
{
(s0, ω) ∈ R× Sn−1 | Ṽhigh,0(s0, ω) 6= {0}

}
,

S (1)high,1 =
{
(s1, s0, ω) ∈ R2 × Sn−1 |Vhigh,1,(1)(s1, s0, ω) 6= {0}

}
,

S (2)high,1 =
{
(s2, s1, s0, ω) ∈ R3 × Sn−1 |Vhigh,1,(2)(s2, s1, s0, ω) 6= {0}

}
.

Remark 2. The singular sets can be empty. The following statements are verified in virtue of
L(ω)] ≥ 0 and Lemma A1.

(1) Ṽ low,1(s1, s0, ω) ⊂ V low,0(s0, ω).
(2) V low,1(s2, s1, s0, ω) ⊂ Ṽ low,1(s1, s0, ω).
(3) Vhigh,1,(1)(s1, s0, ω) ⊂ Vhigh,0(s1, s0, ω) ⊂ Ṽhigh,0(s0, ω).
(4) Vhigh,1(s3, s2, s1, s0, ω) ⊂ Vhigh,1,(2)(s1, s0, ω) ⊂ Vhigh,0(s1, s0, ω).
(5) If L(ω)]K(s0, ω)L(ω)[Qs0,ωXω ⊂ Q⊥s0,ωXω holds for any s0 ∈ R and ω ∈ Sn−1, then
Vhigh,1,(2)(s2, s1, s0, ω) ⊂ Vhigh,1,(1)(s1, s0, ω).

The first inclusion in Assertion (4) above is apparently nontrivial, but it follows from the
formula given in Remark 7. The above inclusions imply that

(I) π0S̃low,1 ⊂ Slow,0.
(II) π1Slow,1 ⊂ S̃low,1.

(III) S (1)high,1 ⊂ Shigh,0 and π0Shigh,0 ⊂ S̃high,0.

(IV) π2Shigh,1 ⊂ S
(2)
high,1 ⊂ Shigh,0.

(V) If L(ω)]K(s0, ω)L(ω)[Qs0,ωXω ⊂ Q⊥s0,ωXω holds for any s0 ∈ R and ω ∈ Sn−1 then

π1S
(2)
high,1 ⊂ S

(1)
high,1.

Here, πj(sk, · · · , s0, ω) = (sj, · · · , s0, ω) for 0 ≤ j ≤ k. The introduction of the spaces
Ṽ low,1, Ṽhigh,0, Vhigh,1,(1), and Vhigh,1,(2), which appear in connection with L(ω)] ≥ 0, are
important for actual applications, as these spaces enable us to reduce the computation of the singular
sets.

The singular sets defined above characterize the dissipation rate for the semigroup.
To give a precise statement, let us introduce some terminology about the semigroup bound.
Set

A(ξ) = i|ξ|A(
ξ

|ξ| ) + L(
ξ

|ξ| ). (14)

Let α, β ≥ 0. We say that {e−tA(ξ)}t≥0 has the uniform dissipative bound of order
α at low frequency if there exist C, c > 0 such that ‖e−tA(rω)‖Xω,r→Xω,r ≤ Ce−cr2αt holds
for any t > 0, ω ∈ Sn−1, and 0 < r ≤ 1. Similarly, we say that {e−tA(rω)}t≥0 has the
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uniform dissipative bound of order β at high frequency if there exist C, c > 0 such that
‖e−tA(rω)‖Xω,r→Xω,r ≤ Ce−cr−2βt holds for any t > 0, ω ∈ Sn−1, and r ≥ 1.

When n = 1, we have the complete characterization of these dissipative structures in
terms of the singular sets, as follows.

Theorem 1. Let α, β ∈ {0, 1}. Assume that (SC) and (Inv) hold. Let n = 1. Assume in addition
thatA(rω)P⊥ω,rXω ⊂ P⊥ω,rXω holds for any r > 0 and ω ∈ Sn−1. Then, the following statements
hold.
(1) {e−tA(rω)}t≥0 has the uniform dissipative bound of order α at low frequency if and only if
Slow,α = ∅.
(2) {e−tA(rω)}t≥0 has the uniform dissipative bound of order β at high frequency if and only if
Shigh,β = ∅.

For the higher dimensional case n ≥ 2, the following necessary condition holds.

Theorem 2. Let α, β ∈ {0, 1}. Assume that (SC) and (Inv) hold. Assume in addition that
A(rω)P⊥ω,rXω ⊂ P⊥ω,rXω holds for any r > 0 and ω ∈ Sn−1. Then, the following statements
hold.
(1) If Slow,α 6= ∅, then {e−tA(rω)}t≥0 does not have the uniform dissipative bound of order α at
low frequency.
(2) If Shigh,β 6= ∅, then {e−tA(rω)}t≥0 does not have the uniform dissipative bound of order β at
high frequency.

Even when n ≥ 2, the absence of the singular sets is almost sufficient to achieve the
uniform dissipative estimate, but we need a technical assumption to get rid of the difficulty
related to a spectral bifurcation coming from the dependence on ω ∈ Sn−1. This situation
is very similar to the result in [19]. To this end, we introduce the following condition.

Definition 3 (no-splitting condition on real eigenvalues). Let {Zω}ω∈Sn−1 be a family of
the subspaces of Cm, and let {Mω}ω∈Sn−1 , Mω : Zω → Zω, be a family of linear operators.
We say that {(Mω, Zω)}ω∈Sn−1 has no-splitting real eigenvalues if the following two conditions
are satisfied. (i) The map ω 7→ (MωPZω ,PZω ) ∈ (Cm×m)2 is continuous, where PZω is the
orthogonal projection from Cm to Zω. (ii) The numbers #σ(Mω) and #

(
σ(Mω) ∩ R

)
, where

σ(Mω) is the set of the eigenvalues of Mω, are independent of ω ∈ Sn−1.

Remark 3. (1) Assume that {(Mω , Zω)}ω∈Sn−1 has no-splitting real eigenvalues. Then, we have
from the continuity of the eigenvalues about ω and, from Condition (ii),

inf
ω∈Sn−1

dist
(

σ(Mω) ∩R, σ(Mω) \R
)
> 0 .

Moreover, when k := #(σ(Mω) ∩R) ≥ 1, there exist k continuous maps µj : Sn−1 → R
such that {µj(ω)}k

j=1 = σ(Mω) ∩R and also

min
ω∈Sn−1,1≤j≤k

dist
(
µj(ω), σ(Mω) \ {µj(ω)}

)
> 0 .

We also have the continuity of the spectral projection

Tµj(ω) =
1

2πi

∫
γ
(λI|Zω −Mω)

−1 dλ ,

where γ is a small circle centered at µj(ω) oriented counter clockwise, in the sense that Tµj(ω)PZω :
Cm → Cm is continuous about ω. These facts, which are valid from (i) and (ii) in the definitions,
are frequently used in this paper.
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(2) If n = 1, then Sn−1 = {±1}, which is a finite set. Thus, the concept of the no-splitting condition
on real eigenvalues is needed only when n ≥ 2.

With these notations, let us give the nondegenerate conditions

(NDC)low,0 , (NDC)low,1 , (NDC)high,0 , (NDC)high,1

as follows.

Definition 4. The condition (NDC)low,0 consists of (0) and (i) stated below.
(0) (SC) and (Inv) hold.
(i) Slow,0 = ∅.

Definition 5. The condition (NDC)low,1 consists of (0) and (i) stated below.
(0) (SC) and (Inv) hold and {(iL(ω)|Xω , Xω)}ω∈Sn−1 has no-splitting real eigenvalues.
(i) If S̃low,1 6= ∅, then both (i-a) and (i-b) hold for any (s1, s0, ω) ∈ S̃low,1:

(i-a) {
(
Ps0(ω′),ω′A(ω′)|Ps0(ω

′),ω′Xω′
,Ps0(ω′),ω′Xω′

)
}ω′∈Sn−1 has no-splitting real eigenvalues, where

s0(·) : Sn−1 → R is the continuous map such that s0(ω) = s0 and each s0(ω) is an eigenvalue of
iL(ω)|Xω .

(i-b) V low,1(s2, s1, s0, ω) = {0} for any s2 ∈ R, that is, Slow,1 = ∅.

Definition 6. The condition (NDC)high,0 consists of (0) and (i) stated below.
(0) (SC) and (Inv) hold.
(i) If S̃high,0 6= ∅, then both (i-a) and (i-b) hold:
(i-a) {(A(ω′)|Xω′

, Xω′)}ω′∈Sn−1 has no-splitting real eigenvalues.
(i-b) Shigh,0 = ∅.

Definition 7. The condition (NDC)high,1 consists of (0), (i), and (ii) stated below.
(0) (SC) and (Inv) hold.
(i) {(A(ω′)|Xω′

, Xω′)}ω′∈Sn−1 has no-splitting real eigenvalues.
(ii) If Shigh,0 6= ∅, then either (iii’) or (iii) holds.

(iii’) Both (iii’-a) and (iii’-b) hold for any (s1, s0, ω) ∈ Shigh,0:

(iii’-a) For any ω′ ∈ Sn−1,

L(ω′)]K(s0(ω
′), ω′)L(ω′)[Qs0(ω′),ω′Xω′ ⊂ Q⊥s0(ω′),ω′

Xω′ ,

where s0(·) : Sn−1 → R is the continuous map such that s0(ω) = s0 and that each s0(ω
′) is an

eigenvalue of −A(ω′)|Xω′
.

(iii’-b) Vhigh,1,(1)(s1, s0, ω) = ∅ for any s1 ∈ C, that is, S (1)high,1 = ∅.

(iii) Both (iii-1) and (iii-2) hold for any (s1, s0, ω) ∈ Shigh,0:
(iii-1) {(Qs0(ω′),ω′ iL(ω

′)|Qs0(ω
′),ω′Xω′

,Qs0(ω′),ω′Xω′)}ω′∈Sn−1 has no-splitting real eigenvalues,

where s0(·) : Sn−1 → R is the continuous map such that s0(ω) = s0 and each s0(ω) is an
eigenvalue of −A(ω)|Xω .
(iii-2) If S (2)high,1 6= ∅, then both (iii-2-a) and (iii-2-b) hold for any (s2, s1, s0, ω) ∈ S (2)high,1:

(iii-2-a)

{(Qs1(ω′),s0(ω′),ω′A
(1)(s0(ω

′), ω′)|Qs1(ω
′),s0(ω

′),ω′Xω′
,Qs1(ω′),s0(ω′),ω′Xω′)}ω′∈Sn−1
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has no-splitting real eigenvalues, where s1(·) : Sn−1 → R is the continuous map such that
s1(ω) = s1 and that each s1(ω) is an eigenvalue of Qs0(ω′),ω′ iL(ω

′)|Qs0(ω
′),ω′Xω′

.

(iii-2-b) Vhigh,1(s3, s2, s1, s0, ω) = {0} for any s3 ∈ R, that is, Shigh,1 = ∅.

Remark 4. (1) As we see in the main theorem below, the nondegenerate condition (NDC)low,α

provides the decay e−c|ξ|2αt of the semigroup e−tA(ξ) for the low frequency part |ξ| ≤ 1, while the
nondegenerate condition (NDC)high,β provides the decay e−c|ξ|−2βt of e−tA(ξ) for the high frequency
part |ξ| ≥ 1.

(2) If S̃low,1 = ∅, then Condition (i) in Definition 5 holds. Similarly, if S̃high,0 = ∅, then Condition

(i) in Definition 6 holds, while if S (2)high,1 = ∅, then Condition (iii-2) in Definition 7 holds. Condition

(iii’) with S (1)high,1 is important in actual applications, as, if Condition (iii’) holds, then one can skip
checking Condition (iii), that would need lengthy computation. For the (linearized) dissipative
Timoshenko system and the compressible Euler–Maxwell equations, which are well known examples
for the nonclassical case, we can indeed show that (iii’) holds. We note that the classical stability
condition, in which Ker (L) = Ker (L]) holds, implies S̃low,1 = S̃high,0 = ∅ (see, e.g., Remark 6
for S̃low,1 = ∅; the condition S̃high,0 = ∅ is trivial in the classical case), resulting in (NDC)low,1
and (NDC)high,0. Thus, our result covers the classical theory by Shizuta and Kawashima [1] and
Umeda, Kawashima, and Shizuta [2].

(3) Note that Sn−1 = {±1} when n = 1. Thus, if n = 1, then the condition of the no-splitting
real eigenvalues is automatically satisfied. Even when n ≥ 2, for actual applications, the condition
of the no-splitting real eigenvalues is widely satisfied and is not a ‘real’ obstacle for the range of
applications.

The nondegenerate conditions stated above are sufficient to obtain the uniform dissi-
pative estimate, as follows.

Theorem 3. Let α, β ∈ {0, 1}. Assume that (NDC)low,α and (NDC)high,β hold. Then, it follows
that, for any ξ 6= 0, t > 0, and f̂ (ξ) ∈ Xξ/|ξ|,|ξ|,

|e−tA(ξ) f̂ (ξ)| ≤ Ce−cηα,β(ξ)t| f̂ (ξ)| , ηα,β(ξ) =
|ξ|2α

1 + |ξ|2(α+β)
.

Here, C and c are independent of ξ, t, and f̂ (ξ).

Note that, if (NDC)high,β holds with β = 0, then the solution decays exponentially in
the high frequency region. From Theorem 3 combined with the Plancherel theorem and the
Hausdorff–Young inequality for the Fourier transform, we have the following corollary. For
s ≥ 0, we denote byHs the closed subspace of the usual Sobolev space Hs(Rn)m defined as

Hs = { f ∈ Hs(Rn)m | f̂ (ξ) ∈ Xξ/|ξ|,|ξ| a.e. ξ ∈ Rn} .

To simplify the notation, we also write Lq instead of the Lebesgue space Lq(Rn)m, 1 ≤ q ≤
∞.

Corollary 1. Assume that (NDC)low,α and (NDC)high,β hold. Then, it follows that, for any t > 0
and f ∈ Hs ∩ L1 with k, l ≥ 0 and 0 ≤ k + l ≤ s,

‖∂k
xe−tA f ‖L2 ≤ C(1 + t)−n/4−k/2e−c(1−α)t‖ f ‖L1 + C(1 + t)−l/2e−c(1−β)t‖∂k+l

x f ‖L2 .

Here, C and c are independent of t and f .
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Remark 5. In the classical case, i.e., L is independent of ξ/|ξ| and Ker (L) = Ker (L]), the
nondegenerate conditions (NDC)low,1 and (NDC)high,0 hold, as commented in Remark 4 (2).

The proof of Corollary 1 is omitted in this paper, as the derivation from the pointwise
estimate in Theorem 3 is rather standard. We refer readers to [3,19] for the details.

3. Remark on the General Strategy and the Role of L(ω)] ≥ 0

Before going into the details of the proof for our main result, let us give some comments
on the general strategy. Our proof for the semigroup estimate relies on the resolvent
analysis studying the quantity called the pseudospectral bound. In the technical level,
the argument is closely related to the reduction argument, systematically described by
Kato [24] in the case of perturbations with one parameter. In essence, it is applied to
investigate the asymptotic expansion of the eigenvalues or the resolvent for the operator
A(rω) = irA(ω) + L(ω), in both the low frequency limit r = |ξ| → 0 and the high
frequency limit r = |ξ| → ∞. One difficulty here is the additional parameter ω in the
higher dimensional case n ≥ 2, as the general theory is not available for perturbations with
multi-parameters. This is the reason we have to introduce the condition of the no-splitting
real eigenvalues, which enables us to avoid the unpleasant complexity coming from the
possible bifurcation due to the continuous dependence on ω for n ≥ 2.

In principle, under the suitable assumption on the no-splitting of the eigenvalues
about ω, the reduction argument works for general couple (A(ω), L(ω)) without even
symmetry of A(ω) or the nonnegativity L(ω)] ≥ 0. The problem here is that, however,
if such structures of A(ω) and L(ω) are absent, the reduction argument becomes rather
complicated in general, even under the assumption of the no-splitting eigenvalues about
ω. This is indeed a serious problem for actual applications with concrete operators.

One important observation of this paper is that the symmetry of A(ω) and the non-
negativity of L(ω)] drastically simplify the reduction process, which would not be possible
without these structures. To clarify this point, let us give a list of benefits brought by the
conditions A(ω) = A(ω)] and L(ω)] ≥ 0.

1. The operatorA(rω) = irA(ω)+ L(ω) becomes m-accretive, which enables us to obtain
the semigroup bound directly from the pseudospectral bound, the resolvent estimate
with resolvent parameters only along the imaginary axis, in virtue of the Gearhart–
Püss type theorem by Wei [25] (see also [26]) (see Theorem A1). The pseudospectral
bound was discussed by Gallagher, Gallay, and Nier [27], who studied the harmonic
oscillator with some class of large skew-symmetric perturbations, which was also
discussed, for example, by Li, Wei, and Zhang [28] and and Ibrahim, Maekawa, and
Masmoudi [29] in order to study the semigroup estimate for the linearization around
the stationary flows for the Navier–Stokes equations such as the Burgers vortex and
the Kolmogorov flow.

2. In each reduction process for the uniform dissipativity, the leading operator M is
either the skew-Hermitian (i.e., iM is Hermitian) or M] ≥ 0. As a result, when
is ∈ iR, which is compatible with Statement 1 above, the orthogonal projection to
Ker (isI + M) coincides with the spectral projection to −M. That is, any eigenvalue
of −M located on the imaginary axis must be semisimple, and furthermore, the
associated eigenprojection is the orthogonal projection; see Lemma A1. This makes
the reduction process much simpler, as the eigennilpotent (which would yield a
serious complexity of the reduction formula) does not appear in the reduction process,
and the orthogonal projection is easier to compute. This is also the reason we can
describe the nondegenerate condition only through the orthogonal projections listed in
Definition 1. It should be stressed that this remarkable feature is available only from
the conditions A(ω) = A(ω)] and L(ω)] ≥ 0.

3. We can derive the sufficient condition by making use of Ker (L(ω)]), which gives a
chance to stop the reduction process before making the full reduction. To be precise,
as in the classical case of Sizuta and Kawashima [1], there are fruitful examples such
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that the investigation of S̃low,1 and S̃high,0 is enough to achieve a uniform dissipation
estimate, and the study of the full singular sets such as Sloiw,1 and Shigh,0 is not always
required. This is a great advantage in actual applications, which is why we introduce
S̃low,1, S̃high,0, S (1)high,1, and S (2)high,1.

4. Analysis of Low Frequency

In this section, we study the case for 0 < |ξ| ≤ 1.

4.1. Resolvent Analysis

In this subsection, our interest is the quantitative estimate of the resolvent (iλI +
irA(ω) + L(ω))|−1

Xω,r
with λ ∈ R and 0 < r ≤ 1; in particular, we aim to obtain the estimate

with the concrete dependence on the parameter r uniformly in λ and ω. Let Ψ(r, ω) be the
pseudospectral bound of the matrix irA(ω)+ L(ω) in Xω,r defined by Ψ(r, ω) = 1/Φ(r, ω),
where

Φ(r, ω) = sup
λ∈R
‖
(
iλI + irA(ω) + L(ω)

)
|−1
Xω,r
‖Xω,r→Xω,r . (15)

The main result of this section is as follows.

Theorem 4. Let α ∈ {0, 1}. Assume that (NDC)low,α holds. Then, there exists C > 0 such that

sup
ω∈Sn−1

Φ(r, ω) ≤ C
r2α

, 0 < r ≤ 1 . (16)

Before going into the details of the proof, let us state a useful consequence of Theorem 4.

Corollary 2. Assume that Xω,r = Xω for all r > 0 and that (SC) and (Inv) hold, as well as that
{(iL(ω)|Xω , Xω)}ω∈Sn−1 satisfies the no-splitting real eigenvalues. If there exists s0 ∈ R such
that Ker (L(ω)]|Xω ) ⊂ Ran (Ps0,ω) for all ω ∈ Sn−1, then S̃low,1 = ∅. As a consequence, we
have (16) with α = 1.

In particular, if rank (D],ω) ≤ 1 for any ω ∈ Sn−1, which is always valid when m = 2, then
(16) with α = 1 holds true.

Remark 6. Let us consider the case of the classical stability condition, where Xω = Xω,r = Cm, L
is independent of ω, and Ker (L) = Ker (L]). In this case, we have Ker (L]) = Ran (Ps0,ω) with
s0 = 0, and, hence, Corollary 2 is applied.

Proof of Corollary 2. Suppose that Ker (L(ω)]|Xω ) ⊂ Ran (Ps0,ω). Let u ∈ Xω be any
vector in

Ker
(

L(ω)]
(
is0 I + L(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)|Xω

)
∩ Ran (Ps1,s0,ω)

= Ker
(

L(ω)]
(
is0 I + L(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)|Xω

)
∩Ker

(
(s1 I + Ps0,ω A(ω))|Ps0,ω Xω

)
.

Then, since Ran
(
(is0 I + L(ω))|−1

P⊥s0,ω Xω
P⊥s0,ω

)
⊂ Ran (P⊥s0,ω), we have from the assump-

tion Ker
(

L(ω)|]Xω

)
⊂ Ran (Ps0,ω) and from u ∈ Ker

(
L(ω)](is0 + L(ω))|−1

P⊥s0 Xω
P⊥s0

A(ω)|Xω

)
that (is0 + L(ω))|−1

P⊥s0 Xω
P⊥s0

A(ω)u = 0, i.e., P⊥s0,ω A(ω)u = 0. Hence, it follows from
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u ∈ Ker
(
(s1 I + Ps0,ω A(ω))|Ps0,ω Xω

)
that (s1 I + A(ω))u = 0. On the other hand, since

u ∈ Ran (Ps0,ω), we have (is0 I + L(ω))u = 0. Hence, we have

u ∈ Ker
(
i(s1 + s0)I + iA(ω) + L(ω)

)
∩ Xω

= Ker
(
(s1 + s0)I + A(ω)− iL(ω)[

)
∩Ker (L(ω)]) ∩ Xω .

Here, we use Lemma A1 in the last line. Then, (SC) together with the assumption
Xω,r = Xω implies u = 0. Thus, we have S̃low,1 = ∅, which gives (16) with α = 1 by
Theorem 4. We note that, if rank (D],ω) = 1 and Ran (Ps0,ω) 6= {0}, then Ran (Ps0,ω) =

Ker (L(ω)]|Xω ) by Lemma A1, while, if either rank (D],ω) = 0 or Ran (Ps0,ω) = {0}, then
Ran (Ps0,ω) = Ker (L(ω)]|Xω ) = {0}. Hence, the last statement of Corollary 2 holds. The
proof is complete.

Proof of Theorem 4. Set M = 2 supω∈Sn−1(1 + ‖A(ω)‖+ ‖L(ω)‖). It is easy to see from
the Neumann series argument that

sup
0<r≤1,ω∈Sn−1,|λ|≥M

‖(iλI + irA(ω) + L(ω))|−1
Xω,r
‖Xω,r→Xω,r ≤ C .

Thus, it suffices to consider the case |λ| ≤ M. The proof is based on the contradiction
argument. Suppose that (16) does not hold. Then, there exist a sequence {rN , λN , ωN , uN}
with rN ∈ (0, 1], ωN ∈ Sn−1, λN ∈ R with |λN | ≤ M, and uN ∈ XωN ,rN such that |uN | = 1
and

lim
N→∞

r−2α
N (iλN I + irN A(ωN) + L(ωN))uN = 0 . (17)

By taking a suitable subsequence if necessary, we may also assume

lim
N→∞

(rN , λN , ωN , uN) = (r∗, λ∗, ω∗, u∗)

for some r∗ ∈ [0, 1], λ∗ ∈ [−M, M], ω∗ ∈ Sn−1, u∗ ∈ Xω∗ ,r∗ with |u∗| = 1. Then, the limit
u∗ ∈ Xω∗ \ {0} satisfies (iλ∗ I + ir∗A(ω∗) + L(ω∗))u∗ = 0. If r∗ > 0, then u∗ belongs to
Xω∗ ,r∗ and this gives u∗ = 0 due to (SC), which is a contradiction. Thus, it is enough to
treat the case for r∗ = 0. If r∗ = 0, then u∗ ∈ Ker ((iλ∗ I + L(ω∗))|Xω∗ ) = Ran (Pλ∗ ,ω∗), that
is, λ∗ must be an eigenvalue of iL(ω∗)|Xω∗ and u∗ ∈ Xω∗ ,0 := Pω∗ ,0Xω∗ . In the rest of this
proof, we consider the two cases as follows.

Case α = 0: Assume that (NDC)low,0 holds. Then, u∗ must be zero, which is a
contradiction. The proof is complete in this case.

Case α = 1: Assume that (NDC)low,1 holds. Set fN = (iλN I + irN A(ωN) + L(ωN))uN .
Then, we have 〈L(ωN)

]uN , uN〉 = <〈 fN , uN〉. Furthermore, since L(ωN)
] ≥ 0 and

L(ωN)
]uN = L(ωN)

]D⊥],ωN
uN , we also have

〈L(ωN)
]uN , uN〉 = |(L(ωN)

]|D⊥],ωN
XωN

)1/2D⊥],ωN
uN |2. (18)

Then, these lead to

|L(ωN)
]uN |2 = |L(ωN)

]|D⊥],ωN
XωN

D⊥],ωN
uN |2

≤ ‖L(ωN)
]|D⊥],ωN

XωN
‖|(L(ωN)

]|D⊥],ωN
XωN

)1/2D⊥],ωN
uN |2

≤ C| fN | |uN | .

Therefore, employing |uN | = 1 and | fN | = o(r2
N), which comes from (17), we obtain

lim
N→∞

r−1
N |L(ωN)

]uN | = 0 . (19)
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Since {
(
iL(ω)|Xω , Xω

)
}ω∈Sn−1 has the no-splitting real eigenvalues and since λ∗ ∈ R

is the eigenvalue of iL(ω∗), there is a continuous curve {s0(ω)}ω∈Sn−1 ⊂ R such that
each s0(ω) is an eigenvalue of iL(ω)|Xω and s0(ω∗) = λ∗. Moreover, by the no-splitting
property, we have

inf
ω∈Sn−1

inf
µ∈σ(iL(ω)|Xω )\{s0(ω)}

|µ− s0(ω)| > 0

(see also Remark 3). Let us decompose uN as uN = wN + w⊥N with

wN := P0,NuN , w⊥N := P⊥0,NuN , P0,N := Ps0(ωN),ωN
.

Then, it is easy to check that wN , w⊥N ∈ XωN by the invariance (Inv). Moreover, (ii) in
Lemma A1 implies

P0,N(iλN I + L(ωN))uN = i(λN − s0(ωN))wN ,

P⊥0,N(iλN I + L(ωN))uN = (iλN I + L(ωN))|YN w⊥N ,

where YN := P⊥0,N XωN . Thus, fN is also decomposed by

fN = P0,N fN + P⊥0,N fN

= (λN − s0(ωN))wN + rNP0,N A(ωN)uN + (iλN I + L(ωN))|YN w⊥N + irNP⊥0,N A(ωN)uN .

Then, since fN = o(r2
N), this decomposition leads to

(λN − s0(ωN))wN + rNP0,N A(ωN)uN = o(r2
N) , (20)

(iλN I + L(ωN))|YN w⊥N + irNP⊥0,N A(ωN)uN = o(r2
N) . (21)

Here, we note that(
iλN I + L(ωN) + irNP⊥s0(ωN),ωN

A(ωN)
)
|YN : YN → YN

is invertible for large N by the Neumann series and the condition of the no-splitting real
eigenvalues, and

sup
N
‖
(
iλN I + L(ωN) + irNP⊥0,N A(ωN)

)
|−1
YN
‖YN→YN ≤ C .

Therefore, employing (21), we have

w⊥N = −irN
(
iλN I + L(ωN) + irNP⊥0,N A(ωN)

)
|−1
YN

P⊥0,N A(ωN)wN + o(r2
N) , (22)

Hence, since (20) and (22) with limN→∞ wN = u∗ 6= 0 and limN→∞ λN = λ∗, we
find that |λN − s0(ωN)| ≤ CrN and |w⊥N | ≤ CrN are satisfied for large N, where C is
independent of N. Then, we set

λ̃N =
λN − s0(ωN)

rN
, w̃⊥N =

w⊥N
rN
∈ XωN ,

which are bounded uniformly in N. Thus, by taking a subsequence if necessary, we may
assume that limN→∞ λ̃N = λ̃∗ and limN→∞ w̃⊥N = w̃⊥∗ . Since w̃⊥N ∈ Ran (P⊥0,N) we have
w̃⊥∗ ∈ Ran (P⊥λ∗ ,ω∗), and we obtain

λ̃∗u∗ + Pλ∗ ,ω∗A(ω∗)u∗ = 0 , (iλ∗ + L(ω∗))|P⊥λ∗ ,ω∗Xω∗
w̃⊥∗ + iP⊥λ∗ ,ω∗A(ω∗)u∗ = 0 ,
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that is,

u∗ ∈ Ker
(
(λ̃∗ I + Pλ∗ ,ω∗A(ω∗))|Pλ∗ ,ω∗Xω∗

)
,

w̃⊥∗ = −i(iλ∗ I + L(ω∗))|−1
P⊥λ∗ ,ω∗Xω∗

P⊥λ∗ ,ω∗A(ω∗)u∗ .

Moreover, by using L(ω∗)|]Xω∗
Pλ∗ ,ω∗ = O which follows from Lemma A1, we see

L(ω∗)]w̃⊥∗ = lim
N→∞

L(ωN)
] w⊥N

rN
= lim

N→∞
L(ωN)

] uN
rN

= 0 .

Here, we use (19) in the last equality. Thus, we get u∗ ∈ Ker (L(ω∗)](iλ∗ I + L(ω∗))
|−1
P⊥λ∗ ,ω∗

P⊥λ∗ ,ω∗A(ω∗)|Xω∗ ). As a summary, we arrive at

u∗ 6= 0 , u∗ ∈ Ṽ low,1(λ̃∗, λ∗, ω∗) .

In particular, Ṽ low,1(λ̃∗, λ∗, ω∗) must be nontrivial, and thus we can use Conditions
(i-a) and (i-b) in (NDC)low,1. From (20) and (22) with rN λ̃N = λN − s0(ωN), we have

λ̃NwN + P0,N A(ωN)wN

− irNP0,N A(ωN)
(
iλN I + L(ωN) + irNP⊥0,N A(ωN)

)
|−1
YN

P⊥s0(ωN),ωN
A(ωN)wN = o(rN) .

Thus, from the Neumann series with λN = s0(ωN) + rN λ̃N ,

λ̃NwN + P0,N A(ωN)wN − irNP0,N A(ωN)
(
is0(ωN)I + L(ωN)

)
|−1
YN

P⊥0,N A(ωN)wN = o(rN) . (23)

In virtue of Condition (i-a), there exists a continuous curve s1(·) : Sn−1 → R such that
s1(ω∗) = λ̃∗ and each s1(ω) is the eigenvalue of the Hermitian Ps0(ω),ω A(ω)|Ps0(ω),ω Xω

. We
recall that Pτ1,τ0,ω is the orthogonal projection from Pτ0,ωXω to Ker ((τ1 I + Pτ0,ω
A(ω))|Pτ0,ω Xω

). Thus, each Ps1(ω),s0(ω),ω is the eigenprojection to the eigenvalue s1(ω) of
−Ps0(ω),ω A(ω)|Ps0(ω),ω Xω

. Then, by setting P1,0,N = Ps1(ωN),s0(ωN),ωN
we have P1,0,NP0,N =

P1,0,N , and we have from (23),

(λ̃N − s1(ωN))P1,0,NwN − irNP1,0,N A(ωN)
(
is0(ωN)I + L(ωN)

)
|−1
YN

P⊥0,N A(ωN)wN = o(rN) . (24)

Note that both s1(ω) and Ps1(ω),s0(ω),ω are continuous in ω, in virtue of the no-splitting
property. Since Ps1(ω∗),s0(ω∗),ω∗u∗ = u∗ 6= 0 and limN→∞ wN = u∗ we have

lim
N→∞

P1,0,NwN = u∗ .

Thus, |P1,0,NwN |must be positive uniformly in N � 1, which implies from (24) that
λ̃′N = (λ̃N − s1(ωN))/rN is uniformly bounded in N, and, then, we may assume that λ̃

′
N

converges to λ̃
′
∗ by taking a subsequence if necessary. Then, (24) with s1(ω∗) = λ̃∗ and

s0(ω∗) = λ∗ imply

iλ̃
′
∗u∗ + Pλ̃∗ ,λ∗ ,ω∗A(ω∗)

(
iλ∗ I + L(ω∗)

)
|−1
P⊥λ∗ ,ω∗Xω∗

P⊥λ∗ ,ω∗A(ω∗)u∗ = 0 .

Thus, we have u∗ ∈ Ran (Pλ̃′∗ ,λ̃∗ ,λ∗ ,ω∗
), and, then, u∗ = 0 by Condition (i-b) of

(NDC)low,1, which is a contradiction. The proof is complete.

4.2. Semigroup Estimate

The estimate of the semigroup is a consequence of the pseudospectral bound obtained
in the previous subsection and the Gearhard-Prüss type theorem by Wei [25], stated in
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Theorem A1. Let us recall that the semigroup considered here is {e−tA(ξ)}t≥0 in Xξ/|ξ|,|ξ|,
where A(ξ) is defined by (14). The main result of this subsection is stated as follows.

Theorem 5. There exist positive constants C and c such that the following statements hold. Let
α ∈ {0, 1} and assume that (NDC)low,α holds. Then, for any ξ ∈ Rn with 0 < |ξ| ≤ 1,

|e−tA(ξ)y| ≤ Ce−c|ξ|2αt|y| , y ∈ Xξ/|ξ|,|ξ| . (25)

Proof. Theorem 4 implies the pseudospectral bound Ψ(r, ω) ≥ r2α/C, where the positive
constant C is independent of r ∈ (0, 1] and ω ∈ Sn−1. Then, the estimate (25) follows from
Theorem A1. The proof is complete.

4.3. Optimality

In this subsection, we show the optimality stated in Theorem 2 for the low frequency.

Theorem 6. Assume that (SC) and (Inv) hold. Assume in addition that A(rω)P⊥ω,rXω ⊂
P⊥ω,rXω holds for any r > 0 and ω ∈ Sn−1. Then, the following statement holds. Let α ∈ {0, 1}.
If Slow,α 6= ∅, then {e−tA(rω)}t≥0 does not have the uniform dissipative bound of order α at low
frequency.

Proof. We give the proof only for the case α = 1; the case α = 0 is proved in a similar
manner and is much simpler. Assume that Slow,1 6= ∅. Suppose that {e−tA(ξ)}t≥0 has the
uniform dissipative bound of order 1 at low frequency. Then, there exist positive constants
C and c such that ‖e−tA(rω)‖Xω,r→Xω,r ≤ Ce−cr2t for t > 0, ω ∈ Sn−1, and 0 < r ≤ 1. Then,
the Laplace transform for the resolvent,

(iλI +A(rω))|−1
Xω,r

=
∫ ∞

0
e−iλt−tA(rω)|Xω,r dt ,

implies

sup
ω∈Sn−1

Φ(r, ω) = sup
λ∈R,ω∈Sn−1

‖(iλI +A(rω))|−1
Xω,r
‖Xω,r→Xω,r

≤
∫ ∞

0
Ce−cr2t dt =

C
cr2 , 0 < r ≤ 1 .

(26)

Hence, it suffices to reach the contradiction to the uniform resolvent estimate (26). Let
(s2, s1, s0, ω) ∈ Slow,1. Then, there exists y0 ∈ V low,1(s2, s1, s0, ω) with |y0| = 1. We set

y1 = −i
(
i(s0 + rs1 + r2s2)I + L(ω) + irP⊥s0,ω A(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)y0 ,

ỹ1 = −
(
(s1 + rs2)I + Ps0,ω A(ω)

)
|−1
P⊥s1,s0,ω Xω

P⊥s1,s0,ωPs0,ω A(ω)y1 ,

y2 = −i
(
i(s0 + rs1 + r2s2)I + L(ω) + irP⊥s0,ω A(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)ỹ1 .

We note that the operator
(
i(s0 + rs1 + r2s2)I + L(ω) + irP⊥s0,ω A(ω)

)
|−1
P⊥s0,ω

and
(
(s1 +

rs2)I + Ps0,ω A(ω)
)
|−1
P⊥s1,s0,ω

are well defined for small enough r > 0, and we have the

uniform estimate for small enough r > 0 such that

|y1|+ |ỹ1|+ |y2| ≤ Cs1,s0,ω , (27)
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where Cs1,s0,ω is a certain positive constant depends on s1, s0, and ω. Now, let us set
x(r) = y0 + r(y1 + ỹ1) + r2y2, which satisfies 1/2 ≤ |x(r)| ≤ 2 for any sufficiently small
r > 0 in virtue of (27) and |y0| = 1. However, we have from ỹ1 ∈ Ran (Ps0,ω),(
i(s0 + rs1 + r2s2)I + irA(ω) + L(ω)

)
x(r)

= ir
(
(s1 + rs2)I + A(ω)

)
y0 − irP⊥s0,ω A(ω)y0 + ir2 A(ω)y1

− ir2P⊥s1,s0,ωPs0,ω A(ω)y1 + ir2P⊥s0,ω A(ω)ỹ1 − ir2P⊥s0,ω A(ω)y1 − ir2P⊥s0,ω A(ω)ỹ1 + O(r3)

= ir
(
s1 I + Ps0,ω A(ω)

)
y0 + ir2(s2y0 + Ps1,s0,ω A(ω)y1

)
+ O(r3)

= ir2(s2y0 + Ps1,s0,ω A(ω)y1
)
+ O(r3) .

Since y1 = −i
(
is0 I + L(ω)

)
|−1
P⊥s0,ω Xω

P⊥s0,ω A(ω)y0 + O(r), we conclude from y0 ∈
Ran (Ps2,s1,s0,ω) that(

i(s0 + rs1 + r2s2)I + irA(ω) + L(ω)
)
x(r) = O(r3) .

By acting the projection Pω,r on both sides above and by using the invariant con-
dition A(rω)Pω,rXω ⊂ Pω,rXω and A(rω)P⊥ω,rXω ⊂ P⊥ω,rXω, if the resolvent estimate
(26) holds, then we must have |Pω,rx(r)| ≤ O(r) for 0 < r � 1, which contradicts with
limr→0 Pω,rx(r) = y0 and |y0| = 1. The proof is complete.

5. Analysis of High Frequency

In this section, we study the case for |ξ| ≥ 1.

5.1. Resolvent Analysis

The key result of this section is as follows, which is the resolvent bound for the high
frequency. Let us recall Φ(r, ω) defined by (15). Then, the following theorem is obtained.

Theorem 7. Let β ∈ {0, 1}. Assume that (NDC)high,β holds. Then, there exists C > 0 such that

sup
λ∈R,ω∈Sn−1

Φ(r, ω) ≤ Cr2β , r ≥ 1 .

Proof. The assertion is equivalent to

sup
µ∈R,ω∈Sn−1

‖(iµI + iA(ω) + τL(ω))|−1
Xω,1/τ

‖Xω,1/τ→Xω,1/τ
≤ C

τ1+2β
, τ ∈ (0, 1]. (28)

We prove (28) by contradiction argument. It suffices to consider the case that |µ| ≤ M,
where M := 2 supω∈Sn−1(1+ ‖A(ω)‖+ ‖L(ω)‖), otherwise the uniform resolvent estimate
is obtained by the Neumann series argument. Namely, we can apply the same argument
proposed in Section 4.1. If the assertion (28) (but with |µ| ≤ M) does not hold, then there
exist a sequence {τN , µN , ωN , uN} with µN ∈ R, |µN | ≤ M, τN ∈ (0, 1], ωN ∈ Sn−1, and
uN ∈ XωN ,1/τN such that |uN | = 1 and

lim
N→∞

τ
−1−2β
N |(iµN + iA(ωN) + τN L(ωN))uN | = 0 .

By taking a suitable subsequence if necessary, we may assume that there exist µ∗ ∈ R
with |µ∗| ≤ 2M, τ∗ ∈ [0, 1], ω∗ ∈ Sn−1, and u∗ ∈ Xω∗ ,1/τ∗ such that

lim
N→∞

(µN , τN , ωN , uN) = (µ∗, τ∗, ω∗, u∗) .

We have |u∗| = 1 and (iµ∗ + iA(ω∗) + τ∗L(ω∗))u∗ = 0, and the problem is reduced
to the case τ∗ = 0; if τ∗ > 0, then it is easy to reach the contradiction to (SC). Hence, we
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obtain u∗ ∈ Ker ((µ∗ I + A(ω∗))|Xω∗ ) ∩ Xω∗ ,∞. Set gN = (iµN + iA(ωN) + τN L(ωN))uN ,
and we have τN〈L(ωN)

]uN , uN〉 = <〈gN , uN〉. Here, we recall (18) and this gives

|L(ωN)
]uN |2 = |L(ωN)

]|D⊥],ωN
XωN

D⊥],ωN
uN |2 ≤ Cτ−1

N |gN | |uN | .

Thus, employing |uN | = 1 and gN = o(τ1+2β
N ), we obtain

lim
N→∞

τ
−β
N |L(ωN)

]uN | = 0 . (29)

This gives u∗ ∈ Ker (L(ω∗)]|Xω∗ ). Since {(A(ω′)|Xω′
, Xω′)}ω′∈Sn−1 satisfies the condi-

tion of the no-splitting real eigenvalues, we can take a continuous map ω 7→ s0(ω) ∈ R
such that s0(ω∗) = µ∗ and that each s0(ω) is the eigenvalue of A(ω)|Xω .

Next, we decompose uN as uN = wN + w⊥N , where wN := Q0,NuN , w⊥N := Q⊥0,NuN ,
and Q0,N := Qs0(ωN),ωN

. Then, we have wN , w⊥N ∈ XωN by the invariance (Inv). Further-
more, gN is also decomposed by

gN = Q0,N gN +Q⊥0,N gN

= i(µN − s0(ωN))wN + τNQ0,N L(ωN)uN

+ i(µN + A(ωN))|Q⊥0,N XωN
w⊥N + τNQ⊥0,N L(ωN)uN .

Then, since gN = o(τ1+2β
N ), this decomposition yields

i(µN − s0(ωN))wN + τNQ0,N L(ωN)uN = o(τ1+2β
N ), (30)

i(µN + A(ωN))|Q⊥0,N XωN
w⊥N + τNQ⊥0,N L(ωN)uN = o(τ1+2β

N ) . (31)

We notice that, for large N, the operator(
iµN I + iA(ωN) + τNQ⊥0,N L(ωN)

)
|Q⊥0,N XωN

: Q⊥0,N XωN → Q⊥0,N XωN

is invertible on Q⊥0,N XωN with the uniform bound in N for its inverse. Thus, using (31), we
get

w⊥N = −τN
(
iµN I + iA(ωN) + τNQ⊥0,N L(ωN)

)
|−1
Q⊥0,N XωN

Q⊥0,N L(ωN)wN + o(τ1+2β
N ) . (32)

Furthermore, since (30) and (32) with limN→∞ wN = u∗ and limN→∞ µN = µ∗ =
s0(ω∗), we obtain |µN − s0(ωN)| ≤ CτN and |w⊥N | ≤ CτN , where C is independent of N.
Then, we set

µ̃N =
µN − s0(ωN)

τN
, w̃⊥N =

w⊥N
τN
∈ XωN , (33)

which are bounded uniformly in N. Thus, by taking a subsequence if necessary, we may
assume that limN→∞ µ̃N = µ̃∗ and limN→∞ w̃⊥N = w̃⊥∗ . Then, we have u∗ ∈ Ker(iµ̃∗ I +
Qµ∗ ,ω∗L(ω∗)) and

w̃⊥∗ = i(µ∗ + A(ω∗))|−1
Q⊥µ∗ ,ω∗Xω∗

Q⊥µ∗ ,ω∗L(ω∗)u∗ .

As a summary, we have u∗ 6= 0 and u∗ ∈ Vhigh,0(µ̃∗, µ∗, ω∗). In particular, Vhigh,0(µ̃∗,
µ∗, ω∗) must be nontrivial.

Case β = 0: Assume that (NDC)high,0 holds. Then, we reach the contradiction to
Shigh,0 = ∅ in (NDC)high,0, and the proof is complete in this case.
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Case β = 1: Assume that (NDC)high,1 holds. Firstly we rewrite (30). By setting
KN = −

(
s0(ωN)I + A(ωN)

)
|−1
Q⊥0,N XωN

Q⊥0,N , which is self-adjoint in Q⊥0,N XωN , the Neumann

series imply that(
iµN I + iA(ωN) + τNQ⊥0,N L(ωN)

)
|−1
Q⊥0,N XωN

= −i
(
s0(ωN)I + A(ωN) + τN(µ̃N − iQ⊥0,N L(ωN))

)
|−1
Q⊥0,N XωN

= iKN + τN
(
iµ̃NK2

N + KN L(ωN)KN
)
+ O(τ2

N) .

(34)

Then, substituting (33) with (32) and (34) into (30), we obtain

iµ̃NwN − iτNQ0,N L(ωN)(KN + τN µ̃NK2
N)L(ωN)wN

+Q0,N L(ωN)wN − τ2
NQ0,N L(ωN)KN L(ωN)KN L(ωN)wN = o(τ2

N) .
(35)

Furthermore, thanks to the relation L(ωN)wN = −L(ωN)
∗wN + 2L(ωN)

]wN and
L(ωN)

]wN = L(ωN)
]uN − τN L(ωN)

]w̃⊥N = O(τN) derived by (29), Equation (35) is rewrit-
ten as

iµ̃NwN + iτN A(1)
N wN + L(1)

N wN = o(τ2
N) , (36)

where A(1)
N = A(1)

N (τN , ωN) and L(1)
N = L(1)

N (τN , ωN) are defined by

A(1)
N (τN , ωN) := Q0,N L(ωN)(KN + τN µ̃NK2

N)L(ωN)
∗ ,

L(1)
N (τN , ωN) := Q0,N L(ωN)− 2iτNQ0,N L(ωN)KN L(ωN)

]

+ τ2
NQ0,N L(ωN)KN L(ωN)KN L(ωN)

∗ .

Note that A(1)
N is a Hermitian and L(1)

N is a nonnegative definite. Indeed, we compute

<〈L(1)
N (τN , ωN)wN , wN〉 = 〈L(ωN)

]wN , wN〉+ 2<〈L(ωN)
]wN , iτNKN L(ωN)

∗wN〉
+ τ2

N〈L(ωN)
]KN L(ωN)

∗wN , KN L(ωN)
∗wN〉

= |wN + iτNKN L(ωN)
∗wN |2],ωN

≥ 0 .

(37)

Here, | · |],ωN is the weighted seminorm defined by | f |2],ωN
:= 〈L(ωN)

] f , f 〉. Thus,

the operator iµ̃N I|Q0,N XωN
+ iτN A(1)

N + L(1)
N has a similar structure as the one discussed in

Theorem 4 for the analysis of the low frequency. The only difference is that the operators
A(1)

N and L(1)
N depend on not only ωN but also τN . The argument in the proof of Theorem 4

for the case α = 1 but with (36) and (37) imply that

lim
N→∞

τ−1
N |wN + iτNKN L(ωN)

∗wN |],ωN = 0 . (38)

Furthermore, (38) also leads to

L(ωN)
]wN = −iτN L(ωN)

]KN L(ωN)
∗wN + o(τN) , (39)

and these facts together with L(ωN)
∗wN = −L(ωN)

[wN + O(τN) give

lim
N→∞

τ−1
N |wN − iτNKN L(ωN)

[wN |],ωN = 0 . (40)

In the rest of the proof, we consider two cases and derive the contradiction in each
case.
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Case 1: Suppose that

L(ωN)
]KN L(ωN)

[Q0,N XωN ⊂ Q⊥0,N XωN (41)

for any N. Then, using (40) and

|wN − iτNKN L(ωN)
[wN |2],ωN

= |wN |2],ωN
+ τ2

N |KN L(ωN)
[wN |2],ωN

given by the orthogonality, we obtain limN→∞ |KN L(ωN)
[wN |],ωN = 0. Hence, we have

L(ω∗)]K∞L(ω∗)[u∗ = 0 , (42)

where K∞ := −
(
µ∗ I + A(ω∗)

)
|−1
Q⊥µ∗ ,ω∗Xω∗

Q⊥µ∗ ,ω∗ . Hence, if (iii’) of (NDC)high,1 holds, then

we reach the contradiction.
Case 2: Next, we consider the case (iii) of (NDC)high,1 holds. If (41) is not neces-

sary satisfied, then one cannot derive (42). Thus, we should analyze (36) in more detail.
Substituting (39) into L(1)

N (τN , ωN)wN , we have

L(1)
N (τN , ωN)wN = Q0,N L(ωN)wN − τ2

NQ0,N L(ωN)KN L(ωN)
∗KN L(ωN)

∗wN + o(τ2
N) ,

and (36) is written as

iµ̃NwN + iτN A(1)
N wN +Q0,N L(ωN)wN − τ2

NQ0,N L(ωN)KN L(ωN)
∗KN L(ωN)

∗wN = o(τ2
N) . (43)

Then, we just follow the argument in the proof of Theorem 4 for the case α = 1; below,
only a sketch of the proof is given. Firstly, we decompose wN as wN = yN + y⊥N , where
yN := Q1,NwN , y⊥N := Q⊥1,NwN , and Q1,N := Qs1(ωN),s0(ωN),ωN

. Here, s1(·) : Sn−1 → R is
a continuous map associated with the no-splitting real eigenvalues and thus satisfying
s1(ω∗) = µ̃∗. Similar to above, yN and y⊥N satisfy

i(µ̃N − s1(ωN))yN + iτNQ1,N A(1)
N wN − τ2

NQ1,N L(ωN)KN L(ωN)
∗KN L(ωN)

∗wN = o(τ2
N) ,

y⊥N = −iτN
(
iµ̃N I +Q0,N L(ωN)

)
|−1
Q⊥1,N XωN

Q⊥1,N A(1)
N yN + O(τ2

N) ,

which comes from (43). Then, we set

σN =
µ̃N − s1(ωN)

τN
, ỹ⊥N =

y⊥N
τN
∈ XωN ,

and this gives from A(1)
N = Q0,N L(ωN)(KN + τN µ̃NK2

N)L(ωN)
∗,

i
(
σN I +Q1,N L(ωN)KN L(ωN)

∗)yN + iτN µ̃NQ1,N L(ωN)K2
N L(ωN)

∗yN

+ τNQ1,N L(ωN)KN L(ωN)
∗A(2)

N yN = o(τN)
(44)

and

ỹ⊥N = −i
(
iµ̃N I +Q0,N L(ωN)

)
|−1
Q⊥1,N XωN

Q⊥1,N A(1)
N yN + O(τN) ,

where A(2)
N :=

(
iµ̃N I +Q0,N L(ωN)

)
|−1
Q⊥1,N XωN

Q⊥1,N A(1)
N − KN L(ωN)

∗. Thus, letting N → ∞

and setting limN→∞ σN = σ∗, limN→∞ ỹ⊥N = ỹ⊥∗ , and

A(1)
∞ := Qµ∗ ,ω∗L(ω∗)K∞L(ω∗)∗|Qµ∗ ,ω∗Xω∗ ,
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we obtain u∗ ∈ Ker(σ∗ I +Qµ̃∗ ,µ∗ ,ω∗A(1)
∞ ) (i.e. u∗ ∈ Ran (Qσ∗ ,µ̃∗ ,µ∗ ,ω∗)) and

ỹ⊥∗ = −i
(
iµ̃∗ I +Qµ∗ ,ω∗L(ω∗)

)
|−1
Q⊥µ̃∗ ,µ∗ ,ω∗Xω∗

Q⊥µ̃∗ ,µ∗ ,ω∗A(1)
∞ u∗ . (45)

Since (38) and Ran (Q1,0,N) ⊂ Ker(L(ωN)
]), we get

L(ω∗)]ỹ⊥∗ + iL(ω∗)]K∞L(ω∗)∗u∗ = 0 .

Thus, this fact and (45) give

A(2)
∞ u∗ ∈ Ker

(
L(ω∗)]

)
,

where

A(2)
∞ :=

(
iµ̃∗ I +Qµ∗ ,ω∗L(ω∗)

)
|−1
Q⊥µ̃∗ ,µ∗ ,ω∗Xω∗

Q⊥µ̃∗ ,µ∗ ,ω∗A(1)
∞ − K∞L(ω∗)∗|Qµ∗ ,ω∗Xω∗ .

Finally, we also decompose yN as yN = zN + z⊥N , where zN := Q2,NyN , z⊥N := Q⊥2,NyN ,
and Q2,N := Qs2(ωN),s1(ωN),s0(ωN),ωN

. Here, s2(·) : Sn−1 → R is a continuous map associ-
ated with the no-splitting real eigenvalues and thus satisfying s2(ω∗) = σ∗. Then, (44)
leads to

i(σN − s2(ωN))zN + iτN µ̃NQ2,N L(ωN)K2
N L(ωN)

∗yN

+ τNQ2,N L(ωN)KN L(ωN)
∗A(2)

N yN = o(τN) ,

and we arrive at, by recalling K∞ = −
(
µ∗ I + A(ω∗)

)
|−1
Q⊥µ∗ ,ω∗Xω∗

Q⊥µ∗ ,ω∗ ,

iσ̃∗u∗ + iµ̃∗Qσ∗ ,µ̃∗ ,µ∗ ,ω∗L(ω∗)K
2
∞L(ω∗)∗u∗ +Qσ∗ ,µ̃∗ ,µ∗ ,ω∗L(ω∗)K∞L(ω∗)∗A(2)

∞ u∗ = 0 , (46)

where σ̃N := (σN − s2(ωN))/τN and limN→∞ σ̃N = σ̃∗. Consequently, we achieve u∗ ∈
Vhigh,1(σ̃∗, σ∗, µ̃∗, µ∗, ω∗) and it must be zero by the condition (NDC)high,1, which is a
contradiction. The proof is complete.

Remark 7. The matrix in (46) has a similar structure to the original one “irA(ω)+ L(ω)”. Indeed,
it is straightforward to see that L(ω)K(s0, ω)2L(ω)∗ with K(s0, ω) = −

(
s0 I + A(ω)

)
|−1
Q⊥s0,ω Xω

Q⊥s0,ω

is Hermitian. On the other hand, we set an operator

Ã(1)(s1, s0, ω) :=
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω Xω

Q⊥s1,s0,ω A(1)(s0, ω) : Qs0,ωXω → Qs0,ωXω

with A(1)(s0, ω) = Qs0,ω L(ω)K(s0, ω)L(ω)∗|Qs0,ω Xω
, and define

L(2)(s1, s0, ω)

:= −A(1)(s0, ω)Ã(1)(s1, s0, ω) +Qs0,ω L(ω)K(s0, ω)L(ω)∗K(s0, ω)L(ω)∗|Qs0,ω Xω
.

Then, we find −L(2)(µ̃∗, µ∗, ω∗) = Qµ∗ ,ω∗L(ω∗)K∞L(ω∗)∗A(2)
∞ , which appears in (46).

We study the property of L(2)(s1, s0, ω). The Hermitian part of L(2)(s1, s0, ω) is given by

L(2)(s1, s0, ω)]

=
(

Ã(1)(s1, s0, ω)∗ −Qs0,ω L(ω)K(s0, ω)
)

L(ω)]
(

Ã(1)(s1, s0, ω)− K(s0, ω)L(ω)∗|Qs0,ω Xω

)
,

(47)
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which implies that L(2)(s1, s0, ω)] is nonnegative definite on Qs0,ωXω, while the skew-Hermitian
part of L(2)(s1, s0, ω) is given by

L(2)(s1, s0, ω)[ = −Ã(1)(s1, s0, ω)∗(is1 I + L(ω)[)Ã(1)(s1, s0, ω)

+ Ã(1)(s1, s0, ω)∗
(

A(1)(s0, ω)− L(ω)[K(s0, ω)L(ω)∗|Qs0,ω Xω

)
−
(

A(1)(s0, ω) +Qs0,ω L(ω)K(s0, ω)L(ω)[
)

Ã(1)(s1, s0, ω)

−Qs0,ω L(ω)K(s0, ω)L(ω)[K(s0, ω)L(ω)∗|Qs0,ω Xω
.

To check these identities, we start from (47) and then observe that

L(2)(s1, s0, ω)]

= A(1)(s0, ω)Ã(1)(s1, s0, ω) + Ã(1)(s1, s0, ω)∗(is1 I + L(ω)[)Ã(1)(s1, s0, ω)

− A(1)(s0, ω)Ã(1)(s1, s0, ω)−Qs0,ω L(ω)K(s0, ω)L(ω)[ Ã(1)(s1, s0, ω)

− Ã(1)(s1, s0, ω)∗A(1)(s0, ω) + Ã(1)(s1, s0, ω)∗L(ω)[K(s0, ω)L(ω)∗|Qs0,ω Xω

+Qs0,ω L(ω)K(s0, ω)L(ω)∗K(s0, ω)L(ω)∗|Qs0,ω Xω

+Qs0,ω L(ω)K(s0, ω)L(ω)[K(s0, ω)L(ω)∗|Qs0,ω Xω

= −A(1)(s0, ω)Ã(1)(s1, s0, ω) +Qs0,ω L(ω)K(s0, ω)L(ω)∗K(s0, ω)L(ω)∗|Qs0,ω Xω
− L(2),[

s1,s0,ω ,

where we use that L(ω)] = L(ω)∗ + L(ω)[ = L(ω)− L(ω)[. It is not difficult to check that
L(2)(s1, s0, ω)] is Hermitian and L(2)(s1, s0, ω)[ is skew-Hermitian on Qs0,ωXω. Moreover, if
u ∈ Ran (Qs3,s2,s1,ω), then u ∈ Ker (L(2)(s1, s0, ω)]), i.e.,

L(ω)]
(

Ã(1)(s1, s0, ω)− K(s0, ω)L(ω)∗|Qs0,ω Xω

)
u = 0 (48)

is satisfied.

5.2. Semigroup Estimate

As in Theorem 5, by applying the result of Wei [25], we obtain from Theorem 7 the
following semigroup estimate for the high frequency.

Theorem 8. There exist positive constants C and c such that the following statements hold. Let
β ∈ {0, 1} and assume that (NDC)high,β holds. Then, for any ξ ∈ Rn with |ξ| ≥ 1,

|e−tA(ξ)y| ≤ Ce−c|ξ|−2βt|y| , y ∈ Xξ/|ξ|,|ξ| . (49)

Proof. Theorem 7 implies the pseudospectral bound Ψ(r, ω) ≥ r−2β/C, where the positive
constant C is independent of r ≥ 1 and ω ∈ Sn−1. Then, the estimate (49) follows from
Theorem A1. The proof is complete.

5.3. Optimality

The optimality for the high frequency is stated as follows.

Theorem 9. Assume that (SC) and (Inv) hold. Assume in addition that A(rω)P⊥ω,rXω ⊂
P⊥ω,rXω holds for any r > 0 and ω ∈ Sn−1. Then, the following statement holds. Let β ∈ {0, 1}.
If Shigh,β 6= ∅, then {e−tA(rω)}t≥0 does not have the uniform dissipative bound of order β at high
frequency.

Proof. The proof is similar to the one in Section 4.3. Assume that Shigh,0 6= ∅. Suppose that
{e−tA(ξ)}t≥0 has the uniform dissipative bound of order 0 at high frequency. Then, there
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exist positive constants C and c such that ‖e−tA(rω)‖Xω,r→Xω,r ≤ Ce−ct for t > 0, ω ∈ Sn−1,
and r ≥ 1. Then, the Laplace transform for the resolvent implies

sup
ω∈Sn−1

Φ(r, ω) = sup
λ∈R,ω∈Sn−1

‖(iλI +A(rω))|−1
Xω,r
‖Xω,r→Xω,r ≤

∫ ∞

0
Ce−ct dt =

C
c

, r ≥ 1,

which is equivalent with

sup
s∈R,ω∈Sn−1

‖
(
isI + iA(ω) + τL(ω)

)
|−1
Xω,1/τ

‖Xω,1/τ→Xω,1/τ
≤ C

cτ
, 0 < τ ≤ 1 , (50)

Hence, it suffices to reach the contradiction to the uniform resolvent estimate (50). Let
(s1, s0, ω) ∈ Shigh,0. Then, there exists y0 ∈ Vhigh,0(s1, s0, ω) with |y0| = 1. We set

y1 = −
(
i(s0 + τs1)I + iA(ω) + τQ⊥s0,ω L(ω)

)∣∣−1
Q⊥s0,ω Xω

Q⊥s0,ω L(ω)y0 .

Note that the operator (i(s0 + τs1)I + A(ω) +Q⊥s0,ω L(ω))|−1
Q⊥s0,ω Xω

is well defined for

small enough τ > 0, and we have the uniform estimate for small enough τ > 0 such that

|y1| ≤ Cs0,ω . (51)

Now, let us set x(τ) = y0 + τy1, which satisfies 1/2 ≤ |x(τ)| ≤ 2 for any sufficiently
small τ > 0 in virtue of (51) and |y0| = 1. However, we have(

i(s0 + τs1)I + iA(ω) + τL(ω)
)
x(τ) = iτs1y0 + τQs0,ω L(ω)y0 + O(τ2) = O(τ2) .

Here, we use y0 ∈ Ran (Qs1,s0,ω) in the last line. By acting the projection Pω,1/τ

on both sides above and by using the invariant condition A(rω)Pω,rXω ⊂ Pω,rXω

and A(rω)P⊥ω,rXω ⊂ P⊥ω,rXω, if the resolvent estimate (50) holds, then we must have
|Pω,1/τx(τ)| ≤ O(τ) for 0 < τ � 1, which contradicts with limτ→0 Pω,1/τx(τ) = y0 and
|y0| = 1.

Next, we assume that Shigh,1 6= ∅. In this case, it suffices to reach the contradiction to
the estimate

sup
s∈R,ω∈Sn−1

‖(isI + iA(ω) + τL(ω))|−1
Xω,1/τ

‖Xω,1/τ→Xω,1/τ
≤ C

cτ3 , 0 < τ ≤ 1 , (52)

Let us take y0 ∈ Vhigh,1(s3, s2, s1, s0, ω) with |y0| = 1. Set

y1 = −
(
i(s0 + τs1 + τ2s2 + τ3s3)I + iA(ω) + τQ⊥s0,ω L(ω)

)
|−1
Q⊥s0,ω

Q⊥s0,ω L(ω)y0 ,

ỹ1 = −
(
i(s1 + τs2 + τ2s3)I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ωQs0,ω L(ω)y1 ,

y2 = −
(
i(s0 + τs1 + τ2s2 + τ3s3)I + iA(ω) + τQ⊥s0,ω L(ω)

)
|−1
Q⊥s0,ω

Q⊥s0,ω L(ω)ỹ1 ,

ỹ2 = −
(
i(s1 + τs2 + τ2s3)I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ωQs0,ω L(ω)y2 ,

y3 = −
(
i(s0 + τs1 + τ2s2 + τ3s3)I + iA(ω)

)
|−1
Q⊥s0,ω

Q⊥s0,ω L(ω)ỹ2 ,

and x(τ) = y0 + τ(y1 + ỹ1) + τ2(y2 + ỹ2) + τ3y3. Then, we find that(
i(s0 + τs1 + τ2s2 + τ3s3)I + iA(ω) + L(ω)

)
x(τ)

= τ2(is2y0 +Qs1,s0,ω L(ω)y1) + τ3(is3y0 +Qs1,s0,ω L(ω)y2) + O(τ4) ,
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while

y1 = −iK(s0, ω)L(ω)y0 − iτK(s0, ω)(s1 I − iQ⊥s0,ω L(ω))K(s0, ω)L(ω)y0 + O(τ2)

and

y2 = −iK(s0, ω)L(ω)ỹ1 + O(τ)

= iK(s0, ω)L(ω)
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ωQs0,ω L(ω)y1 + O(τ)

= K(s0, ω)L(ω)
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ωQs0,ω L(ω)K(s0, ω)L(ω)y0 + O(τ) .

We recall here that L(ω) f = −L(ω)∗ f + 2L(ω)] f in general. Since y0 ∈ Ker (L(ω)]),
we see

y1 = iK(s0, ω)L(ω)∗y0 + iτK(s0, ω)(s1 I − iQ⊥s0,ω L(ω))K(s0, ω)L(ω)∗y0 + O(τ2)

= iK(s0, ω)L(ω)∗y0 + iτs1K(s0, ω)2L(ω)∗y0

− τK(s0, ω)L(ω))∗K(s0, ω)L(ω)∗y0 + 2τK(s0, ω)L(ω))]K(s0, ω)L(ω)∗y0 + O(τ2)

and

y2 = −K(s0, ω)L(ω)
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ωQs0,ω L(ω)K(s0, ω)L(ω)∗y0 + O(τ)

= −K(s0, ω)L(ω)
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ω A(1)(s0, ω)y0 + O(τ)

= K(s0, ω)L(ω)∗
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ω A(1)(s0, ω)y0

− 2K(s0, ω)L(ω)]
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ω A(1)(s0, ω)y0 + O(τ)

= K(s0, ω)L(ω)∗
(
is1 I +Qs0,ω L(ω)

)
|−1
Q⊥s1,s0,ω

Q⊥s1,s0,ω A(1)(s0, ω)y0

− 2K(s0, ω)L(ω)]K(s0, ω)L(ω)∗y0 + O(τ) .

Here, we use (48) on the last line. Then, τ2(is2y0 + Qs1,s0,ω L(ω)y1) + τ3(is3y0 +
Qs1,s0,ω L(ω)y2) = O(τ4), and, therefore,(

i(s0 + τs1 + τ2s2 + τ3s3)I + iA(ω) + L(ω)
)
x(τ) = O(τ4) ,

which leads to a contradiction with (52), by discussing as in the case β = 0. The proof is
complete.

6. Proof of Main Theorems

The results of the previous sections imply the theorems stated in Section 2. Indeed,
Theorem 1 follows from Theorems 4, 6, 7, and 9; Theorem 2 follows from Theorems 6 and 9;
and Theorem 3 follows from Theorems 4 and 7. The proof is complete.

7. Application

In this section, we apply our main theorems to some models.

7.1. Classical Case

We recall the known results obtained by Shizuta and Kawashima [1] and Umeda,
Kawashima, and Shizuta [2].
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Proposition 1 (Classical case). Let Xξ/|ξ|,|ξ| = Cm. Assume that L(ω) = L, Ker (L) =

Ker (L]), and (SC). Then, for any f̂ ∈ Cm and ξ ∈ Rn\{0}, the solution operator to the system
(2) satisfies

|e−tA(ξ) f̂ | ≤ Ce
−c |ξ|2

1+|ξ|2
t| f̂ | , t > 0 . (53)

Since (NDC)low,1 and (NDC)high,0 hold in this classical case, the assertion follows by
Theorem 3. Furthermore, Theorems 1 and 2 lead to the optimality for the estimate (53).

7.2. Dissipative Timoshenko System

We consider the linear dissipative Timoshenko system described as{
∂2

t φ− ∂x(∂xφ− ψ) = 0,

∂2
t ψ− a2∂2

xψ− (∂xφ− ψ) + γ∂tψ = 0.
(54)

Here, a and γ are positive constants and φ = φ(t, x) and ψ = ψ(t, x) are unknown
scalar functions of t > 0 and x ∈ R. The Timoshenko system is a model system describing
the vibration of the beam called the Timoshenko beam, and φ and ψ denote the transversal
displacement and the rotation angle of the beam, respectively.

We introduce the vector function u = (∂xφ − ψ, ∂tφ, a∂xψ, ∂tψ)>. Then, the Tim-
oshenko system (54) is written in the form of the first equation in (1) with coefficient
matrices

A1 = −


0 1 0 0
1 0 0 0
0 0 0 a
0 0 a 0

 , L] =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ

 , L[ =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

. (55)

Here, we have A(ω) = Aω for ω ∈ S1−1 = {±1} in (3). Then, Ide, Haramoto, and
Kawashima [12] considered the system (2) with (55) and derived the pointwise estimate
of solutions in Fourier space by the energy method. In this section, we employ our main
theorems and derive the same pointwise estimate derived by [12]. We remark that the
optimality of the obtained pointwise estimate is guaranteed by Theorem 1.

Proposition 2 (Linear dissipative Timoshenko system). For any f̂ ∈ C4 and ξ ∈ R\{0}, the
solution operator to the system (2) with (55) satisfies

|e−tA(ξ) f̂ | ≤

 Ce
− c|ξ|2

1+|ξ|4
t| f̂ | (a 6= 1) ,

Ce
− c|ξ|2

1+|ξ|2
t| f̂ | (a = 1) .

Proof. (Low frequency part) The eigenvalues of iL[ are 0,±1 and the dimensions of each
eigenspace are 2 (for the eigenvalue 0) and 1 (for the eigenvalue±1), respectively. Moreover,
we have Ran (Pµ,ω) = {0} for any µ 6= 0, and

D],ωy =


y1
y2
y3
0

 , P0,ωy =


0
y2
y3
0

 .

where y = (y1, y2, y3, y4)
> ∈ C4. Here, let us recall that Pµ,ω is the orthogonal projection to

Ker (iµI + L) = Ker (µI − iL[) ∩Ker (L]) with ω ∈ Sn−1 = {±1} (see Lemma A1). Hence,
we have Slow,0 = {(0, ω) |ω = ±1} 6= ∅. This means that (NDC)low,0 is not satisfied.
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It is not difficult to find that P0,ω A(ω)|P0,ωC4 = O|P0,ωC4 for all ω ∈ {±1}. Hence,
the associated eigenprojection of the eigenvalue 0 to P0,ω A(ω)|P0,ωC4 is the identity map
I|P0,ωC4 . The direct computation shows that, for

Ṽ low,1(µ, 0, ω) = Ker
(

L]L|−1
P⊥0,ωC4P

⊥
0,ω A(ω)

)
∩Ker

(
(µI + P0,ω A(ω))|P0,ωC4

)
,

we have

Ṽ low,1(µ, 0, ω) =


{


0
0
y3

0

 | y3 ∈ C
}

for µ = 0 ,

{0} for µ 6= 0 .

Hence, we obtain S̃low,1 = {(0, 0,±1)} 6= ∅, and, thus, it suffices to consider the set
V low,1(s2, 0, 0,±1) in checking (i-b) of (NDC)low,1. For y = (0, 0, y3, 0)> and s2 ∈ R, we
have

is2y + P0 A(ω)L|−1
P⊥0 C4P

⊥
0 A(ω)y =


0
−ay3
is2y3

0

 .

Thus, this gives

Ker
((

is2 I + P0 A(ω)L|−1
P⊥0 C4P

⊥
0 A(ω)

)
|P0,0,ωC4

)
∩ Ṽ low,1(0, 0, ω) = {0}

for all s2 ∈ R and ω ∈ {±1}. This implies Slow,1 = ∅ and therefore Condition (i-b) of
(NDC)low,1 is satisfied. Hence, the proof is complete for the low frequency part.

(High frequency part) Let us recall that a > 0. The eigenvalues of −A(ω) are ±1 and
±a, where the dimensions of each eigenspace are 1 (if a 6= 1) and 2 (if a = 1).
Case a 6= 1: Set

e1 =
1√
2


1
1
0
0

 , e−1 =
1√
2


1
−1
0
0

 , ea =
1√
2


0
0
1
1

 , e−a =
1√
2


0
0
1
−1

 . (56)

Then, we have Qµ,ω = 〈·, eµ〉eµ for µ ∈ {±1,±a} and Qµ,ω = O otherwise. Therefore,
we also obtain

Ṽhigh,0(±1, ω) = {ce±1 | c ∈ R} , Ṽhigh,0(s0, ω) = {0} for s0 6= ±1 .

Namely, we arrive at S̃high,0 = {(±1, ω) |ω = ±1}. Next, we observe that

Q±1,ω Le±1 = Q±1,ω
1√
2


0
0
0
−1

 = 0 ,
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which gives Q±1,ω L|Q±1,ωC4 = O|Q±1,ωC4 . Therefore,

Vhigh,0(0,±1, ω) = Ṽhigh,0(±1, ω), Q0,±1,ω = I|Q±1,ωC4 ,

Vhigh,0(s1,±1, ω) = {0} (s1 6= 0) ,

which implies Shigh,0 = {(0,±1, ω) |ω = ±1}. Let us check Condition (ii) in (NDC)high,1

for Q±1,ω and K(±1, ω) = −((±I + A(ω))|Q⊥±,ωC4)−1Q⊥±1,ω. The direct calculation shows

that, for any y ∈ Q±1,ωC4, the vector K(±1, ω)L[y is of the form (0, 0, x3, x4)
>, and,

thus, L]K(±1, ω)L[y is of the form (0, 0, 0, γx4)
>, Hence, the definition of Q±1,ω implies

Q±1,ω L]K(±1, ω)L[y = 0, as desired. Finally, we show S (1)high,1 = ∅. It suffices to consider
the set

Vhigh,1,(1)(0,±1, ω) = Ker
(

L](±I + A(ω))|−1
Q⊥±1,ωC4Q

⊥
±1,ω L∗

)
∩Vhigh,0(0,±1, ω) .

To this end, suppose that ce±1 satisfies

L](±I + A(ω))|−1
Q⊥±1,ωC4Q

⊥
±1,ω L∗ce±1 = 0 .

The direct computation shows that

(±I + A(ω))|−1
Q⊥±1,ωC4Q

⊥
±1,ω L∗ce±1 =

cc̃
1− a2


0
0
a
±1


for some nonzero real number c̃. Hence, the condition

L] cc̃
1− a2


0
0
a
±1

 = 0

yields c = 0, which implies Vhigh,1,(1)(0,±1, ω) = {0}. Thus, we prove S (1)high,1 = ∅, and
the condition (NDC)high,1 is proved for the case a 6= 1.

Case a = 1: In this case, we have Q±1,ω = 〈·, e±1〉e±1 + 〈·, e±a〉e±a, where e±a is
defined as (56). As in the case a 6= 1, we have

Ṽhigh,0(±1, ω) = {ce±1 | c ∈ R} , Ṽhigh,0(s0, ω) = {0} (s0 6= ±1) ,

and, thus, S̃high,0 = {(±1, ω) |ω = ±1}. Suppose that ce±1 satisfies (is1 +Q±1,ω L)ce±1 =
0 for some s1 ∈ R. Since

Q±1,ω Le±1 = Q±1,ω
1√
2


0
0
0
−1

 = ∓1
2

e±a ,

we must have ics1e±1∓ ce±a/2 = 0, which is possible only when c = 0. Thus, we conclude
that Shigh,0 = ∅ when a = 1, and the condition (NDC)high,0 is proved for the case a = 1.
The proof is complete.
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7.3. Compressible Euler–Maxwell System

As an application of our theorems, we deal with the compressible Euler–Maxwell
system 

ρt + div(ρv) = 0,

(ρv)t + div(ρv⊗ v) +∇p(ρ) = −ρ(E + v× B)− ρv,

Et − rot B = ρv,

Bt + rot E = 0,

(57)

div E = ρ∞ − ρ, div B = 0. (58)

Here, the density ρ > 0, the velocity v ∈ R3, the electric field E ∈ R3, and the magnetic
induction B ∈ R3 are unknown functions of t > 0 and x ∈ R3. Assume that the pressure
p(ρ) is a given smooth function of ρ satisfying p′(ρ) > 0 for ρ > 0, and ρ∞ is a positive
constant.

From the analysis in [14,15], we know that the system (57) can be written in the form
of a symmetric hyperbolic system. The reader is also referred to the works of Ruggeri and
Strumia [30] and Boillat [31] for the general result about the symmetrization and the convex
entropy of balance laws. Let us introduce that w = (ρ, v, E, B)>, w∞ = (ρ∞, 0, 0, B∞)>,
which are regarded as column vectors in R10, where B∞ ∈ R3 is an arbitrarily fixed constant.
Then, the Euler–Maxwell system (57) is rewritten as

Ã0(w)∂tw +
3

∑
j=1

Ãj(w)∂xj w + L̃(w)w = 0, (59)

where the coefficient matrices are given explicitly as

Ã0(w) =


p′(ρ)/ρ 0 0 0

0> ρI3 O3 O3
0> O3 I3 O3
0> O3 O3 I3

, L̃(w) =


0 0 0 0

0> ρ(I −ΩB) ρI3 O3
0> −ρI3 O3 O3
0> O3 O3 O3

,

3

∑
j=1

Ãj(w)ξ j =


(p′(ρ)/ρ)(v · ξ) p′(ρ)ξ 0 0

p′(ρ)ξ> ρ(v · ξ)I3 O3 O3
0> O3 O3 −Ωξ

0> O3 Ωξ O3

.

Here, 0 = (0, 0, 0), ξ = (ξ1, ξ2, ξ3), B = (B1, B2, B3) ∈ R3, I3 denotes the 3× 3 identity
matrix, O3 denotes the 3× 3 zero matrix, and Ωξ is the skew-symmetric matrix defined by

Ωξ =

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0


for ξ = (ξ1, ξ2, ξ3) ∈ R3.

To consider the linearization of (59) around the equilibrium state w∞, we regard
w− w∞ by w again. Then, the linearization of the system (59) can be written as

Ã0∂tw +
3

∑
j=1

Ãj∂xj w + L̃w = 0, (60)
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where Ã0 = Ã0(w∞), Ãj = Ãj(w∞) and L̃ = L̃(w∞). More precisely, the coefficient
matrices are written as

Ã0 =


a∞ 0 0 0
0> ρ∞ I3 O3 O3
0> O3 I3 O3
0> O3 O3 I3

,
3

∑
j=1

Ãjξ j =


0 b∞ξ 0 0

b∞ξ> O3 O3 O3
0> O3 O3 −Ωξ

0> O3 Ωξ O3

,

L̃] =


0 0 0 0

0> ρ∞ I3 O3 O3
0> O3 O3 O3
0> O3 O3 O3

, L̃[ =


0 0 0 0

0> −ρ∞ΩB∞ ρ∞ I3 O3
0> −ρ∞ I3 O3 O3
0> O3 O3 O3

,

where a∞ = p′(ρ∞)/ρ∞ and b∞ = p′(ρ∞) are positive constants. Furthermore, because Ã0

is a positive definite, we introduce the new function u = Ã−1/2
0 w and (60) is rewritten as

the first equation in (1) with

3

∑
j=1

Ajξ j =


0

√
b∞ξ 0 0√

b∞ξ> O3 O3 O3
0> O3 O3 −Ωξ

0> O3 Ωξ O3

,

L] =


0 0 0 0

0> I3 O3 O3
0> O3 O3 O3
0> O3 O3 O3

, L[ =


0 0 0 0

0> −ΩB∞

√
ρ∞ I3 O3

0> −√ρ∞ I3 O3 O3
0> O3 O3 O3

.

(61)

Next, we consider the constraint condition which comes from (58). Since (58), the
solution to the linearized system (60) is considered under

3

∑
j=1

Qj∂xj w + R̃w = 0,

where
3

∑
j=1

Qjξ j =

(
0 0 ξ 0
0 0 0 ξ

)
, R̃ =

(
1 0 0 0
0 0 0 0

)
.

Thus, this gives
3

∑
j=1

Qj∂xj u + Ru = 0, (62)

with

R =

(
1/
√

a∞ 0 0 0
0 0 0 0

)
.

Inspired by the condition (62), we introduce the closed subspace of C10, for ω ∈ S2,
that

Xω = {y = (y1, y2, y3, y4) ∈ C10 | y4 ·ω = 0, y1 ∈ C, y2, y3, y4 ∈ C3} ,

Xω,r = {y ∈ Xω | y1/
√

a∞ − iry3 ·ω = 0} .

The limit spaces are given as

Xω,0 = {y ∈ Xω |y1 = 0} , Xω,∞ = {y ∈ Xω |y3 ·ω = 0} .
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In this situation, we consider the system (2) under the constraint

û(t, ξ) ∈ Xξ/|ξ|,|ξ| , t ≥ 0 .

It is easy to see that the invariant condition (Inv) and the general stability condition
(SC) hold true. Therefore, we can apply our theorems to the linearized Euler–Maxwell
system and derive the pointwise estimate of solutions and optimality of its estimate as
follows.

Proposition 3 (Linearized compressible Euler–Maxwell system). For any f̂ ∈ Xξ/|ξ|,|ξ| and
ξ ∈ R3\{0}, the solution operator to the system (2) with (61) satisfies

|e−tA(ξ) f̂ | ≤ Ce
− c|ξ|2

1+|ξ|4
t| f̂ | .

Proof. (Low frequency part) The eigenvalues of iL[ are 0,±µ∗ with some µ∗ > 0. Moreover,
we have Ran(Pµ,ω) = {0} for any µ 6= 0, and

D],ωy =


y1

0>

y>3
y>4

 , P0,ωy =


y1

0>

0>

y>4

 . (63)

Therefore, we obtain V low,0(0, ω) 6= {0} and V low,0(µ, ω) = {0} for µ 6= 0. Fur-
thermore, (63) gives P0,ω A(ω)|P0,ω Xω

= O. Thus, the associated eigenprojection of the
eigenvalue 0 is the identity map, i.e.,

Ran (Ps1,0,ω) =

{
{0} (s1 6= 0) ,
P0,ωXω (s1 = 0) .

Hence, Ṽ low,1(µ, 0, ω) = {0} for µ 6= 0, and the direct computation shows

Ṽ low,1(0, 0, ω) = Ran (P0,0,ω) ∩Ker
(

L(ω)]
(

L(ω)
)
|−1
P⊥0,ω Xω

P⊥0,ω A(ω)|Xω

)
∩ Xω,0

=
{


0

0>

0>

y>4

 ∈ C10 |ω> × y>4 = 0
}
= {0} .

Here, we use ω ∈ S2 and y4 ·ω = 0 for y ∈ Xω,0. Hence, S̃low,1 = ∅, and Condition
(i) of (NDC)low,1 holds. The proof is complete for the low frequency part.
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(High frequency part) The eigenvalues of −A(ω)|Xω are 0,±1,±
√

b∞. By taking
h1, h2 = ω> × h1 ∈ R3 (column vectors) as the orthonormal basis of the plane {x> ∈
R3 | x ·ω = 0}, we have for

√
b∞ 6= 1,

Q0,ωy = (y2 · h1)


0
h1
0>

0>

+ (y2 · h2)


0
h2
0>

0>

+ (y3 ·ω)


0

0>

ω>

0>

 ,

Q√b∞ ,ωy =
y1 − (y2 ·ω)

2


1
−ω>

0>

0>

 , Q−√b∞ ,ωy =
y1 + (y2 ·ω)

2


1

ω>

0>

0>

 ,

Q1,ωy = 〈y, g1,1〉g1,1 + 〈y, g1,2〉g1,2 , Q−1,ωy = 〈y, g−1,1〉g−1,1 + 〈y, g−1,2〉g−1,2 .

Here,

g1,j =
1√
2


0

0>

ω> × hj
hj

 , g−1,j =
1√
2


0

0>

−ω> × hj
hj

 .

When
√

b∞ = 1, the orthogonal eigenprojection to the eigenvalue ±1 is Q̃±1,ω :=
Q±1,ω +Q±√b∞ ,ω by keeping the same notation as above. Then, we can check that for
s1 ∈ R,

Ker
(
(is1 I +Q0,ω L)|Q0,ω Xω

)
∩Ker (L]|Xω ) = Ker

(
(s1 I −Q0,ωiL[)|Q0,ω Xω

)
∩Ker

(
L]|Xω

)

=


{c


0

0>

ω>

0>

 | c ∈ C} (s1 = 0) ,

{0} (s1 6= 0) .

Hence, Ker
(
(is1 I +Q0,ω L)|Q0,ω Xω

)
∩Ker (L]|Xω ) ∩ Xω,∞ = {0} for any s1 ∈ R. It is

also easy to see that Ker
(
(is1 I +Q±a1,ω L)|Q±a1,ω Xω

)
∩Ker (L]|Xω ) ∩ Xω,∞ = {0} for any

s1 ∈ R. Next, we observe that Q±1,ω L|Q±1,ω Xω
= O and Q±1,ωXω ⊂ Xω,∞, and, therefore,

for s1 ∈ R and
√

b∞ 6= 1,

Vhigh,0(s1,±1, ω) = Ker
(
(is1 I +Q±1,ω L)|Q±1,ω Xω

)
∩Ker (L]|Xω ) ∩ Xω,∞

= Ker
(
(s1 −Q±1,ωiL[)|Q±1,ω Xω

)
∩Ker

(
L]|Xω

)
=

{
Q±1,ωXω (s1 = 0) ,
{0} (s1 6= 0) .

A similar result is valid when
√

b∞ = 1: in this case, we have

Vhigh,0(s1,±1, ω) = Ker
(
(is1 I + Q̃±1,ω L)|Q̃±1,ω Xω

)
∩Ker (L]|Xω ) ∩ Xω,∞

=

{
Q±1,ωXω (s1 = 0) ,
{0} (s1 6= 0) .
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Notice that, even in the case
√

b∞ = 1, the projection in the right-hand side is Q±1,ω
defined as above, rather than Q̃±1,ω, due to the presence of Ker (L]|Xω ) in the left-hand
side. This implies Shigh,0 = {(0,±1, ω)|ω ∈ Sn−1} for any

√
b∞ > 0. Next, we find

Q±1,ω′L(ω
′)]K(±1, ω′)L(ω′)[|Q±1,ω′Xω′

= O ,

where K(±1, ω′) = −
(
(±I + A(ω′))|Q⊥±1,ω′Xω′

)−1Q⊥±1,ω′ . Indeed, this follows from the

stronger cancellation property

Q±1,ω′L(ω
′)]Q⊥±1,ω′ = O , (64)

which is straightforward to check from the definition of the projections (including the
case a1 = 1, where Q±1,ω′ in (64) is replaced by Q̃±1,ω = Q±1,ω′ +Q±a1,ω′ ). Suppose that
y ∈ Vhigh,0(0,±1, ω) = Q±1,ωXω satisfies L(ω)](±I + A(ω))|−1

Q⊥±1,ω Xω
Q⊥±1,ω L(ω)∗y = 0.

Set
x = (±I + A(ω))|−1

Q⊥±1,ω Xω
Q⊥±1,ω L(ω)∗y ∈ Q⊥±1,ωXω .

Then, (64) implies Q⊥±1,ω L]x = 0, and one can check that for
√

b∞ 6= 1,

Ker (Q⊥±1,ω L]|Q⊥±1,ω Xω
) = {c


0

0>

ω>

0>

 | c ∈ C} ⊕Q∓1,ωXω .

When a1 = 1, the equality is valid as well by replacing only the left-hand side by

Ker (Q̃⊥±1,ω L]|Q̃⊥±1,ω Xω
) .

On the other hand, when y = c1g±1,1 + c2g±1,2, the vector x is of the form

cc1


0

ω> × h1
0>

0>

+ c′c2


0

ω> × h2
0>

0>


with some nonzero constants c, c′, and, thus, in order for x to belong to Ker (Q⊥±1,ω L]|Q⊥±1,ω Xω

)

we must have c1 = c2 = 0 since h2 = ω> × h1. Thus, we have Vhigh,1,(1)(0,±1, ω) = {0},
that is, S (1)high,1 = ∅. Hence, the condition (NDC)high,1 holds. The proof is complete for the
high frequency part.
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Appendix A. Gearhart-Prüss Type Theorem

Let X be a Hilbert space and let A : D(A)→ X be a densely defined closed operator
in X with the domain D(A) ⊂ X. The operator A is called m-accretive if the left open
half-plane is contained in the resolvent set ρ(A) with ‖(λI + A)−1‖X→X ≤ 1/<λ for λ ∈ C
with <λ > 0. We denote by Ψ(A) the pseudospectral bound of A:

Ψ(A) =
(

sup
λ∈R
‖(iλI + A)−1‖X→X

)−1
.

Theorem A1 (Wei [25]). Let A be an m-accretive operator in a Hilbert space X. Then

‖e−tA‖X→X ≤ e−tΨ(A)+π/2 , t > 0 .

Appendix B. Basic Lemma for Matrix with Nonnegative Definite

Lemma A1. Let X be a subspace of Cm and let PX : Cm → X be the orthogonal projection.
Assume that the m×m matrix M satisfies M] ≥ 0 on Cm. Let µ ∈ R.
(i) It follows that

Ker
(
(iµI + PX M)|X

)
= Ker

(
(µI − iPX M[)|X

)
∩Ker (M]) .

(ii) Let Pµ : X → Ker
(
(iµI + PX M)|X

)
be the orthogonal projection from X to Ker

(
(iµI +

PX M)|X
)

. Then, Pµ(iµI +PX M)|X = O. As a consequence, the restriction (iµI +PX M)|P⊥µ X :

P⊥µ X → P⊥µ X, where P⊥µ = I|X − Pµ, is well-defined and invertible.

Proof. (i) Let u ∈ Ker ((iµI + PX M)|X). Then, 〈(iµ + PX M)u, u〉 = 0. Taking the real
part and using PXu = u, we have 〈M]u, u〉 = 0, and, thus, 〈M]|D⊥],MD

⊥
],Mu,D⊥],Mu〉 = 0,

where D],M : Cm → Ker (M]) is the orthogonal projection and D⊥],M = I − D],M. Since
M] ≥ 0 and M]|D⊥],MCm : D⊥],MCm → D⊥],MCm is invertible, we have M]|D⊥],MCm > 0 in

D⊥],MCm. Thus, D⊥],Mu = 0, which yields M]u = M](D⊥],Mu +D],Mu) = 0. Then, we have

(µ− iPX M[)u = −i(iµ + PX M[)u = −i(iµ + PX M[ + PX M])u = 0. Hence, Ker ((iµI +
PX M)|X) ⊂ Ker ((µI − iPX M[)|X) ∩Ker (M]). The converse inclusion is trivial.
(ii) For any u, v ∈ X we have

〈Pµ(iµI + M)u, v〉 = 〈(iµI + M)u,Pµv〉

= i〈(µI − iM[)u,Pµv〉+ 〈M]u,Pµv〉

= i〈u, (µI − iM[)Pµv〉+ 〈u, M]Pµv〉 = 0 .

Here, we use (i). The proof is complete.

Remark A1. From Lemma A1 we have the following important result: if M] ≥ 0 then each eigen-
value of M located in iR (i.e., purely imaginary eigenvalue) must be semisimple, and furthermore,
the associated eigenprojection is orthogonal.
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