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Abstract: The Exeter point of a given triangle ABC is the center of perspective of the tangential
triangle and the circummedial triangle of the given triangle. The process of the Exeter point from
the centroid serves as a base for defining the Exeter transformation with respect to the triangle ABC,
which maps all points of the plane. We show that a point, its image, the symmedian, and three
exsymmedian points of the triangle are on the same conic. The Exeter transformation of a general
line is a fourth-order curve passing through the exsymmedian points. We show that each image point
can be the Exeter transformation of four different points. We aim to determine the invariant lines and
points and some other properties of the transformation.
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1. Introduction

The Exeter point is one of the well-known triangle centers among the over 35,000
centers in the online Encyclopedia of Triangle Centers [1]. The Exeter point of a given
triangle is defined from the centroid of the triangle by a drawing process. In this article,
as a generalization of the definition of the Exeter point to the whole plane of the triangle,
we define a so-called Exeter transformation with respect to a given triangle ABC. We show
some properties of this transformation, we give the invariant figures, and we show that
certain important points during the transformation lie on a conic.

Minevich and Morton [2] defined a similar, so-called “TCC-perspector”, transfor-
mation with respect to 4ABC, and they gave a nice connection between the isogonal
transformation and the “TCC-perspector”. For more details and the history of the Exeter
point see, ex., in [1–6].

For verifying our statements we use an analytical way with barycentric coordinates.
The base triples of this barycentric coordinate system we use the vertices of a given triangle.
There are many interesting articles dealing with the use of barycentric coordinates, and
among them the works in [7–9] may be useful.

2. Exeter Transformation

Let ABC be a triangle and AtBtCt its tangential triangle.

Definition 1 (Exeter point). Let G be the centroid of a triangle ABC. Define A′ to be the point
(other than the polygon vertex A), where the triangle median through A meets the circumcircle of
ABC, and define B′ and C′ similarly. Three lines—A′At, B′Bt, and C′Ct—intersect at a point Ex
called the Exeter point of triangle ABC.

Therefore, Exeter point is the perspector of the circum-medial triangle A′B′C′, and the
tangential triangle AtBtCt.

In Figure 1, the centroid of the triangle ABC is signed as G and the Exeter point as
point Ex.
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Figure 1. The Exeter point Ex.

The cevian properties of medians and its intersection (centroid) in the previous def-
inition enable us to generalize the point construction process and obtain a new point
transformation in connection to a triangle and its tangential triangle AtBtCt:

Definition 2 (Exeter transformation). Let P be an arbitrary point in the plane of the triangle
ABC. Define A′ to be the point (other than the polygon vertex A) where the line AP meets the
circumcircle of ABC, and define B′ and C′ similarly. Three lines—A′At, B′Bt, and C′Ct—intersect
at a point Pe.

The transformation by which every point P is mapped onto the point Pe by this process is called
the Exeter transformation of the plane with respect to the triangle ABC (see Figure 2).

The first question naturally arises: are such three lines concurrent and we have a
unique point Pe for each P? For verifying our statements, we use an analytical way with
barycentric coordinates.

Let 4ABC be the fundamental non-degenerate triangle with sidelengths a = |BC|,
b = |CA|, c = |AB|, where the barycentric coordinates of A, B and C are (1, 0, 0), (0, 1, 0),
and (0, 0, 1), respectively. Let the angle C be its largest (not smaller than the others) angle.
Let C be the circumcircle of4ABC with equation

a2yz + b2zx + c2xy = 0, (1)

and let the triangle AtBtCt be the tangential triangle of4ABC. Now, the sides of4AtBtCt
are on the tangent lines to C at the vertices of4ABC. Thus, if4ABC is an acute triangle,
then the incircle of4AtBtCt coincides with C (the triangle ABC is known as the Gergonne
triangle of 4AtBtCt). If 4ABC is an obtuse triangle, then C is one of the excircles of
4AtBtCt. If4ABC is right angled, then Ct is an ideal point. In all cases, the segment AtBt
touches the circle C at point C. In the projective sense, the lines of the sides of 4AtBtCt
divide the plane into four subsets. One is bounded, the others are unbounded in the affine
sense. LetR denote the subset which contains C.

The homogeneous barycentric coordinates of the vertices of4AtBtCt are

At(−a2 : b2 : c2), Bt(a2 : −b2 : c2), Ct(a2 : b2 : −c2).
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Points At, Bt and Ct are also known as exsymmedian points with respect to4ABC.
As usual, we denote the homogeneous barycentric coordinates by ( : : ) and the normalized
(or absolute) barycentric coordinates by ( , , ).

We consider an arbitrary point in the plane of triangle ABC

P(u : v : w) =
(u

s
,

v
s

,
w
s

)
,

where s = u + v + w 6= 0, P 6= A, P 6= B and P 6= C, so at least two coordinates are not
zero (uv 6= 0, uw 6= 0 or vw 6= 0). Let the lines AP, BP, and CP meet C at A′, B′, and C′,
respectively.

Figure 2. The Exeter transformation.

Lemma 1. The lines At A′, BtB′ and CtC′ from Definition 2 are concurrent for all arbitrary point P.

Proof. The equation of the line AP is

∣∣∣∣∣∣
x y z
1 0 0
u v w

∣∣∣∣∣∣ = wy− vz = 0. Similarly, the equations of

lines BP and CP are wx− uz = 0 and vx− uy = 0, respectively. Their intersection points
with the circumcircle C are A′(−a2vw : v(b2w + c2v) : w(b2w + c2v)), B′(u(a2w + c2u) :
−b2uw : w(a2w + c2u)), and C′(u(a2v + b2u) : v(a2v + b2u) : −c2vu).

The equation of line At A′ is

∣∣∣∣∣∣
x y z
−a2 b2 c2

−a2vw v(b2w + c2v) w(b2w + c2v)

∣∣∣∣∣∣ = (b4w2 − c4v2)x +

a2b2w2y − a2c2v2z = 0. Similarly, the equations of lines BtB′ and CtC′ are −a2b2w2x +
(c4u2 − a4w2)y + b2c2u2z = 0 and a2c2v2x − b2c2u2y + (a4v2 − b4u2)z = 0, respectively.
We then have from their coefficients that∣∣∣∣∣∣∣∣

b4w2 − c4v2 a2b2w2 −a2c2v2

−a2b2w2 −a4w2 + c4u2 b2c2u2

a2c2v2 −b2c2u2 a4v2 − b4u2

∣∣∣∣∣∣∣∣ = 0,

which implies the concurrency.
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Let the point of concurrence of lines At A′, BtB′, and CtC′ be Pe (Figure 2). The image
of a point P under the Exeter transformation with respect to triangle ABC is the point
Pe. We denote it by ExTr(P) = Pe. Let G(1 : 1 : 1) be the centroid of 4ABC (X2 in [1]).
Then ExTr(G) is the Exeter point (X22 in [1]) of triangle ABC. That is why we call this
transformation the Exeter transformation.

In the following, we examine the Exeter transformation and give some of its properties:

Theorem 1. The barycentric coordinates of Pe = ExTr(P), which is the image of P(u : v : w)
(P 6= A, P 6= B, P 6= C) over the Exeter transformation with respect to the triangle ABC, are(

a2(−p+ q+ r) : b2(p− q+ r) : c2(p+ q− r)
)

, (2)

where p = a4v2w2, q = b4w2u2 and r = c4u2v2.

Proof. As the lines At A′, BtB′, and CtC′ are concurrent according to Lemma 1, in order to
determine the intersection point of lines At A′, BtB′ we solve the system of their equations,
and we obtain the concurrence point Pe with barycentric coordinates (2).

Remark 1. If uvw 6= 0 (P is not on any sideline of 4ABC), then from (2) we have Pe =
ExTr(P) =(

a2
(
− a4

u2 +
b4

v2 +
c4

w2

)
: b2

(
a4

u2 −
b4

v2 +
c4

w2

)
: c2
(

a4

u2 +
b4

v2 −
c4

w2

))
.

Remark 2. If a triangle ABC is equilateral, so a = b = c = 1, then the barycentric coordinates of
Pe are (u2v2 + w2u2 − v2w2 : u2v2 − w2u2 + v2w2 : −u2v2 + u2v2 + v2w2), and if uvw 6= 0,
then the normalized barycentric coordinates of Pe are

(1− K

u2 , 1− K

v2 , 1− K

w2 ),

where

K =
2u2v2w2

u2v2 + u2v2 + v2w2 =
2

1
u2 +

1
v2 +

1
w2

.

If we used the planar by projective coordinates (obtained from a projective base given by the
points A, B, C, G where A, B, and C are triangle vertices and the centroid G is the “unit” point),
instead of the barycentric with respect to the triangle ABC, we would notice that the projective
coordinates are the same as barycentric in case a = b = c = 1, but this way we would lose the
Euclidean metrical properties of the Exeter transformation. However, we could extend Theorem 1 to
the projective plane. Thus, the Exeter transformation works if we consider any circumconic C of a
triangle A, B, C and its tangential triangle AtBtCt.

Corollary 1. The range of the Exeter transformation isR.

Proof. We have to prove that Pe is inR. For this, we project the point Pe from the vertices of
R to the sidelines ofR, namely, from the vertices At, Bt and Ct to the sidelines of4AtBtCt.
We show that these projected points are on the sides ofR.

For example, the barycentric coordinates of each point of the line AtBt are (qa2 :
−qb2 : c2), where the parameter q ∈ R. If q = ±1, then we have At or Bt, and in the
case of q = 0 the point coincides with C, which is one of the points of the circle C. Thus,
the parameters q ∈ [−1, 1] describe one of the segments AtBt, which is the side ofR. Now,
we consider the equation a2c2v2x− b2c2u2y + (a4v2 − b4u2)z = 0 of the line CtPe (in the
proof of Lemma 1, it is the line CtC′) and substitute (qa2 : −qb2 : c2) into the equation.
After a short calculation, we express t = −(a4v2 − b4u2)/(a4v4 + b4u2), where |t| ≤ 1.
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With similar calculation, we can prove that the other two projected points are on the sides
ofR as well.

Corollary 2. If P = (u : v : w) and Pi = (±u : ±v : ±w), then ExTr(P) = ExTr(Pi),
because (2) contains only even powers of the coordinates of P (recall (−u : v : w) = (u : −v :
−w)). Thus, generally, there are four points which have the same image with respect to the Exeter
transformation. Let P0 = P, P1 = (−u : v : w), P2 = (u : −v : w), and P3 = (u : v : −w).

Figure 3 shows the constructions of points Pi. For example, line B′Bt intersects C in
point B as well, and the intersection point of lines BB and AA′ is P1. Follow the construction
of the image of P1 with respect to the Exeter transformation, then the result is Pe. Similarly,
using A and C we obtain points P2 and P3.

Figure 3. Four points (P, P1, P2, and P3) have the same image Pe.

Corollary 3. If we consider the centroid of 4ABC and the vertices of the anticomplementary
triangle A1B1C1 of4ABC with coordinates (1 : 1 : 1), (−1 : 1 : 1), (1 : −1 : 1) and (1 : 1 : −1),
respectively, then their common image is the point (a2(−a4 + b4 + c4) : b2(a4 − b4 + c4) :
c2(a4 + b4 − c4)), which is the Exeter point (X22) of4ABC.

Theorem 2. The Exeter transformations of the lines AB, BC, and CA (except points A, B, C) are
the points Ct, At and Bt, respectively.

Proof. The equation of line AB is z = 0, so if P is on line AB then the coordinates are
(u, v, 0). Therefore, from (2), as p = q = 0, we have ExTr(P) = (a2r : b2r : −c2r) = (a2 :
b2 : −c2) = Ct, where r = c4u2v2 6= 0. The proof is similar for the other lines.

Corollary 4. If P is on one of the lines AB, BC or CA, then some points from among Pi for
i = 0, 1, 2, 3 coincide.

Corollary 5. If P, P1, P2, and P3 are not on lines AB, BC, or CA, then they form a complete
quadrangle with diagonal points A, B, and C.
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Theorem 3. The Exeter transformation of a line passing through neither points A, B, and C is a
fourth-order curve incident with points At, Bt, and Ct.

Proof. Without lost of generalization to give a general line g we take the points Ta, Tb
and Tc on lines BC, CA and AB, respectively, with baricentric coordinates Ta(0 : 1 : ta),
Tb(tb : 0 : 1) and Tc(1 : tc : 0), where ta, tb, tc ∈ R and tatbtc 6= 0 (Figure 4). As∣∣∣∣∣∣
0 1 ta
tb 0 1
1 tc 0

∣∣∣∣∣∣ = 1 + tatbtc, then Ta, Tb, and Tc are collinear if and only if tatbtc = −1.

Now, the equation of the line g given by the points Ta, Tb, and Tc is, ex.,

∣∣∣∣∣∣
x y z
0 1 ta
tb 0 1

∣∣∣∣∣∣ =
x + tatby− tbz = 0. Because the point T(t + 1 : tct : tatb), t ∈ R is incident with g, then
the parametric system of equations of the line g with parameter t can be considered as
x(t) = t + 1, y(t) = tct, z(t) = tatb, and the coordinates of the Exeter transformation of the
point T give the parametric system of equations of the Exeter transformation of the line g.
Thus, using for T the Equation (2) of the Exeter transformation, we have

Te =
(

a2(−p+ q+ r) : b2(p− q+ r) : c2(p+ q− r)
)

, (3)

where p = a4t2
at2

bt2
c t2, q = b4t2

at2
c (t + 1)2, and r = c4t2

c t2(t + 1)2. As the degree of the poly-
nomial r in variable t is four (p and q are second degree polynomials), then all coordinates
of Te are polynomials in t having degree four. Thus, ge = ExTr(g) with points Te, where
t ∈ R is a fourth-order curve. Moreover, according to Theorem 2 the images of Ta, Tb and
Tc are At, Bt, and Ct, respectively (Figure 4).

Figure 4. Exeter transformation of the line g.

2.1. Invariant Elements

Let D be the symmedian point of4ABC (X6 in [1]). (The point of concurrence of lines
AAt, BBt and CCt. Thus,4ABC is perspective with4AtBtCt at the point D. Furthermore,
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if4ABC is acute, then D is the Gergonne point of4AtBtCt, the point X7 in [1].) It is well
known that

D(a2 : b2 : c2).

Theorem 4. D is a fixed point of the Exeter transformation with respect to triangle ABC; moreover,
ExTr(D) = ExTr(At) = ExTr(Bt) = ExTr(Ct) = D.

Proof. It follows directly from Corollary 2.

Theorem 5. The lines AD, BD, and CD are invariant lines with respect to the Exeter transforma-
tions. Their images are parts ofR. Moreover, if4ABC is acute, then the Exeter transformations of
lines AD, BD, and CD are the segments AAt ⊆ R, BBt ⊆ R, and CCt ⊆ R, respectively.

Proof. For example, let P be on the line AD. As lines AD and AAt are the same, then
A′ and Pe are on that line. Analytically, the equation of line AD is c2y− b2z = 0 and the
coordinates of its arbitrary point P is (t : b2 : c2), t ∈ R and its image with respect to (2) is
(a2 − 2t2/a2 : b2 : c2), which is also on line AD.

The proof is similar for the case of the other lines.

Theorem 6. The circumcircle of triangle ABC is fixed (all of its points are fixed, except A, B, and
C) over the Exeter transformation, so ExTr(C) = C.

Proof. The barycentric equation of C is a2yz + b2zx + c2xy = 0. If P(u : v : w) is a point of
C, then from a2vw + b2wu + c2uv = 0 we have

P(u :
−b2uw

a2w + c2u
: w) = P(a2uw + c2u2 : −b2uw : a2w2 + c2uw).

Using (2) we obtain ExTr(P) = P. Recall P 6= B, thus a2w + c2u 6= 0.

The points At, Bt, Ct, and D determine a pencil of conic Q. Let Q(P) denote the
element of the pencil Q on which the point P lies. If4ABC is acute, then D is inside of the
triangle AtBtCt, and the conics of the pencil Q are hyperbolas.

Theorem 7. The point and its image under the Exeter transformation with respect to triangle
ABC lie on the same conic of the pencil Q, so Q(P) = Q(ExTr(P)), and the equation of Q(P) is

αx2 + βy2 + γz2 = 0, (4)

where
α = b4w2 − c4v2, β = −a4w2 + c4u2, γ = a4v2 − b4u2 (5)

and (u : v : w) are the barycentric coordinates of P.

Proof. The equation of a conic is

(
x y z

)α ν µ
ν β λ
µ λ γ

x
y
z

 = 0. (6)

Let γ = 1, without loss of generality. Substituting points D, At, Bt, Ct, and P into (6)
we have a system of five linear equations and after a homogenization the solution gives
the Equation (4) of Q(P). Moreover, the coordinates of ExTr(P) satisfy the Equation (4), so
the image of P is on Q(P).

Remark 3. If P is not on any sideline of 4AtBtCt, so αβγ 6= 0, then the conic Q(P) is non-
degenerate.
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Corollary 6. All conics (or degenerate conics-crossing lines at points A, B, or C) lying through the
points At, Bt, Ct and D are invariant. Furthermore, their fixed points are D and the intersection
points with the circumcircle of4ABC.

Corollary 7. The images of lines AtBt, BtCt, and Ct At are parts of the lines CCt, AAt, and BBt,
respectively. Moreover, in the case of an acute4ABC they are the segments CCt, AAt, and BBt,
respectively.

Theorem 8. The image of the pencil of a line through A is a pencil of a line through At and the
corresponding lines intersect each other at the points of C.

Proof. It is a simple corollary of the definition of the Exeter transformation.

Let the point sequence Pi (i ≥ 0) be the ith image of P. Thus, Pi = (ExTr)i(P) and
P0 = P.

Corollary 8. All elements of the point sequence Pi (i ≥ 0) are on the same conicQ(P) (see Figure 5).

Proof. Every conic is clearly defined by five points. The conic Q(P) is given by At, Bt, Ct,
D, and P = P0. From Theorem 7, we have that the point P1, the image of the point P0 under
the Exeter transformation, lies on the conic Q(P). Thus, At, Bt, Ct, D, and P1 also define
Q(P). Recursively—using Theorem 7—we can prove that the point P2 (and so P3, P4, . . .)
lies on the conic Q(P) as well.

From Theorem 7 and Corollaries 2 and 8 we gain

Corollary 9. The points P0 = P, P1, P2 and P3 are on the same conic Q(P).

Proof. If P = (u : v : w) and Pi = (±u : ±v : ±w), i = 0, 1, 2, 3, then not only P satisfies
the Equation (4) of the conic Q(P), but also each Pi does.

Figure 5. Points on conic Q(P).

Corollary 10. P1 = AP ∩Q(P), P2 = BP ∩Q(P), P3 = CP ∩Q(P) (See Figure 5).
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Proof. From Corollary 9, we know that, for example, the points P0 = P and P1 are on
the same conic Q(P). The point P1(−u : v : w) lies on the line AP with the equation
wy− vz = 0. Thus, they are concurrent. As a line has maximum two intersection points
with a non-degenerate conic, the other intersection point of the line AP with Q(P) must
be P1.

Corollary 11. The vertices of any complete quadrangle with diagonal points A, B, and C are on
the same conic Q.

Proof. According to Corollary 10 and Corollary 5 we know that Pi, i = 0, 1, 2, 3 lie on the
same conic and (clearly) define a complete quadrangle with diagonal points A, B and C.
Moreover, it is also well known that a complete quadrangle is clearly defined by three
diagonal points and a vertex, i.e., A, B, C, and any point P, where P does not lie on the
sidelines of the triangle ABC. The corollary summarizes these statements.

2.2. Tangent Lines

Let Q(P) be a non-degenerate conic of the pencil Q. Let us denote by tX the tangent
line to Q(P) at a point X ∈ Q(P).

Theorem 9. If the points Pi, i = 0, 1, 2, 3 are mapped onto the same point by the Exeter transfor-
mation with respect to triangle ABC, then the intersection points of the tangent lines tP0 , tP1 , tP2 ,
and tP3 are on the lines of the sides of triangle ABC.

Proof. Let us consider an arbitrary line with barycentric equation px + qy + rz = 0. If it
is passing through the point P = P0, then −pu = qv + rw. Moreover, the equation of the
pencil of lines at P0 is

(−qv− rw)x + uqy + urz = 0, (7)

where q and r are the barycentric coordinates of the lines from the pencil. To derive
the tangent line among them, we consider the system of Equations (4) and (7). If its
discriminant is zero and we put x = 1, then using (5) we have q = (vβ/wγ)r. Finally,
the equation of tP0 is

−
(

v2β + w2γ
)

x + uvβ y + uwγ z = 0.

Similarly, the equations of the pencil of lines at P1, P2 and P3, respectively, are (qv +
rw)x + uqy + urz = 0, (qv − rw)x + uqy + urz = 0 and (−qv + rw)x + uqy + urz = 0.
Moreover, the equations of lines tP1 , tP2 , and tP3 , respectively, are

(
v2β + w2γ

)
x + uvβ y +

uwγ z = 0,
(
v2β + w2γ

)
x + uvβ y− uwγ z = 0 and

(
v2β + w2γ

)
x− uvβ y + uwγ z = 0.

Let the point R01 be the intersection of tP0 and tP1 . From the equations of lines we
have that R01 = (0 : wγ : −vβ), which is on the line BC (Figure 6).

The proof is similar in the case of the other intersection points. Moreover, the in-
tersection points are R02 =

(
uwγ : 0 : v2β + w2γ

)
, R03 =

(
uvβ : v2β + w2γ : 0

)
, R12 =(

−uvβ : v2β + w2γ : 0
)
, R13 =

(
−uwγ : 0 : v2β + w2γ

)
, and R23 = (0 : wγ : vβ).

Remark 4. The points Rij and A, B, and C define a complete quadrilateral with diagonal points
and projective harmonic conjugate point pairs with respect to the diagonal points. For example, in
Figure 6, the points R12, R03, R02, and R13 form a complete quadrilateral with diagonal points A,
R23, R01; B which is the projective harmonic conjugate of A with respect to R03 and R12; and C is
the projective harmonic conjugate of A with respect to R02 and R13. Their cross-ratio is −1.
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Figure 6. Tangent lines at points Pi.

Corollary 12. The intersection of any two lines tAt , tBt , tCt , and tD are on one of the sidelines of
triangle ABC.

Proof. Considering Theorem 4, we obtain the statement from Theorem 9 (see
Figure 7). Moreover, the equations of tAt , tBt , tCt , and tD, respectively, are

(
b4β + c4γ

)
x +

a2b2βy + a2c2γz = 0,
(
b4β + c4γ

)
x + a2b2βy − a2c2γz = 0,

(
b4β + c4γ

)
x − a2b2βy +

a2c2γz = 0, and −
(
b4β + c4γ

)
x + a2b2βy + a2c2γz = 0. Their intersection points are

TAB =
(
−a2b2β : b4β + c4γ : 0

)
, TAC =

(
−a2c2γ : 0 : b4β + c4γ

)
, TAD =

(
0 : c2γ : −b2β

)
,

TBC =
(
0 : c2γ : b2β

)
, TAD =

(
a2c2γ : 0 : b4β + c4γ

)
, TCD =

(
a2b2β : b4β + c4γ : 0

)
.

Figure 7. Tangent lines at points At, Bt, Ct, and D.
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Let MAB1 and MAB2 be the intersection points of line AB and the non-degenerate
Q(P). Let us define similarly the points MAC1, MAC2, MBC1, and MBC2. Their coordinates

from Equation (4) are MAB1(
√
− β

α : 1 : 0), MAB2(
√
− β

α : −1 : 0), MAC1(1 : 0 :
√
− α

γ ),

MAC2(−1 : 0 :
√
− α

γ ), MBC1(0 :
√
−γ

β : 1), and MBC2(0 :
√
−γ

β : −1). (Recall αβγ 6=
0.) Naturally, Q(P) does not intersect the lines of the sides of 4ABC at the same time,
for example, α could not be positive and negative at the same time. Thus, at most four
points exist at the same time among the above points. See Figure 8, when Q(P) intersects
the lines AC and AB, so α

γ < 0, γ
β < 0 and then β

α < 0.

Theorem 10. The tangent lines to Q(P) at points MAB1 and MAB2 are passing through the
point C. Similarly, the tangent lines to Q(P) at points MAC1, MAC2 or MBC1, MBC2 are passing
through the points B or A, respectively.

Proof. The equations of the tangent lines at points MAB1 and MAB2 are −x +
√
− β

α y = 0

and x +
√
− β

α y = 0, respectively. Point C coincides with them.

Let M1, M2, M3, and M4 be the intersection points different from A, B, and C of the
tangent lines at MAB1, MAB2, MAC1, MAC2, MBC1, and MBC2.

Figure 8. Tangent lines at intersection points.

Theorem 11. The points M1, M2, M3 and M4 are on the same conicQ(M) with one of the equations

α
(

b4β− c4γ
)

x2 − β
(

a4α + c4γ
)

y2 + γ
(

a4α + b4β
)

z2 = 0, (8)

− α
(

b4β + c4γ
)

x2 + β
(

a4α + c4γ
)

y2 + z2γ
(

a4α− b4β
)
= 0, (9)

α
(

b4β + c4γ
)

x2 + β
(
−a4α + c4γ

)
y2 − z2γ

(
a4α + b4β

)
= 0, (10)

when Q(M) does not intersect lines BC, AB, or AC, respectively.
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Proof. First, we consider the case of Figure 8. The points M1, M2, M3, and M4 define a
complete quadrangle with diagonal points A, B, and C and according to Corollary 11 they

are on the same conic of Q. The barycentric coordinates of Mi are
(
±
√
−γ

α : ±
√

γ
β : 1

)
.

The Equation (8) is determined similarly to the equation of Q(P) in Theorem 7.
Second, when Q(M) does not intersect the lines AB or AC, respectively, the coor-

dinates of Mi are
(
±
√
−γ

α : ±
√
−γ

β : 1
)

or
(
±
√

γ
α : ±

√
−γ

β : 1
)

. They yield the Equa-

tions (9) and (10).

Theorem 12. The Exeter transformations of M1, M2, M3, and M4 are the same point T lying on
one of the lines of 4ABC. Moreover, T coincides with TAB, TAC, or TBC, when Q(P) does not
intersect the lines BC, AB, or AC, respectively.

Proof. We use Corollaries 2 and 5. Analytically, for example, in case of Figure 8, ExTr(M1) =
ExTr(M2) = ExTr(M3) = ExTr(M4) =

(
0 : c2γ : b2β

)
= TBC = T.

Let N be the nine-point conic determined by points At, Bt, Ct, and D [10]. Conic N is
passing through the points A, B, C, and the midpoints of all segments of points At, Bt, Ct,
and D. Moreover, it also well known that the center of a conic passing through points At,
Bt, Ct, and D is on the nine-point conic N [10]. This proves the following theorem.

Theorem 13. The center of the conic Q(P) is lying on the conic N (Figure 9).

With a short calculation, we have a4yz + b4xz + c4xy = 0 for the equation of N and
the coordinates of the center of Q(P) are

(βγ : αγ : αβ).

Figure 9. Nine-point conic.

3. Conclusions

With the help of the barycentric coordinates, we showed that the extension of the well-
known process of the Exeter point from the centroid of a given triangle ABC provides a so-
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called Exeter transformation for the whole plane. Each point P, its image Pe, the symmedian,
and three exsymmedian points of the triangle are on the same conic Q(P). Moreover, three
other points (P1, P2, and P3) of this conic Q(P) have the common image point Pe as well.
The Exeter transformation is nonlinear, as the image of a general line is a fourth-order
curve passing through the exsymmedian points of the triangle. We presented the images of
some special lines, points, and we determined the invariant points and lines of the Exeter
transformation. We particularly examined the intersection points of the tangent lines of the
conic Q(P) at some special points. We think that this nonlinear transformation will reveal
several interesting and useful properties during future investigations.
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