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Abstract: A marked interest has recently emerged regarding the analysis of the wall shear stress (WSS)
vector field topological skeleton in cardiovascular flows. Based on dynamical system theory, the WSS
topological skeleton is composed of fixed points, i.e., focal points where WSS locally vanishes, and
unstable/stable manifolds, consisting of contraction/expansion regions linking fixed points. Such an
interest arises from its ability to reflect the presence of near-wall hemodynamic features associated
with the onset and progression of vascular diseases. Over the years, Lagrangian-based and Eulerian-
based post-processing techniques have been proposed aiming at identifying the topological skeleton
features of the WSS. Here, the theoretical and methodological bases supporting the Lagrangian- and
Eulerian-based methods currently used in the literature are reported and discussed, highlighting their
application to cardiovascular flows. The final aim is to promote the use of WSS topological skeleton
analysis in hemodynamic applications and to encourage its application in future mechanobiology
studies in order to increase the chance of elucidating the mechanistic links between blood flow
disturbances, vascular disease, and clinical observations.

Keywords: fixed points; manifolds; divergence; hemodynamics; computational fluid dynamics

1. Introduction

Recent advances in medical imaging, modeling, and computational fluid dynamics
(CFD) have allowed the modeling of local hemodynamics in realistic, personalized cardio-
vascular models, fostering understanding of the association between local hemodynamics
and the initiation and progression of vascular disease, and in a wider perspective, con-
tributing to the translation of computational methods in real-world clinical settings to
complement clinical information.

It has long been recognized that hemodynamic factors regulate several aspects of
vascular pathophysiology [1,2]. Wall shear stress (WSS), the frictional force per unit area
exerted by streaming blood on the endothelium, has been identified as a major biomechani-
cal factor involved in vascular homeostasis. In fact, WSS is sensed through several vascular
mechanosensors and biochemical machineries that regulate the expression of genes coding
for extra- and intra-cellular proteins, playing a relevant role in the development, growth,
remodeling, and maintenance of the vascular system [3,4]. In this scenario, a multitude
of WSS-based descriptors of the near-wall hemodynamics has been proposed over the
years to provide potential indicators of flow disturbances associated with aggravating
biological events. In particular, regions at the luminal surface presenting with low [5]
and oscillatory [6] WSS have been identified as localizing factors of vascular disease [3,6].
However, the complex hemodynamic milieu the endothelium is exposed to can be only
partially characterized by low and oscillatory WSS [7,8], as confirmed by a large body of
literature reporting poor-to-moderate (and sometimes, contradictory) associations between
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low and oscillatory WSS with respect to vascular disease, e.g., [7–13]. This indicates a
limited current understanding of the mechanistic link between WSS and vascular disease
that hampers the use of WSS not only as a biomarker of vascular disease but also as a
predictor of its progression within a clinical context [14].

Stimulated by the need to improve the understanding of the link between altered
hemodynamics and clinical observations, the topological skeleton of the WSS vector field at
the luminal surface of an artery is receiving increasing interest [15–20]. Based on dynamical
system theory, the WSS topological skeleton is composed of a collection of fixed points,
i.e., focal points where WSS locally vanishes, and unstable/stable manifolds, consisting
of contraction/expansion regions linking fixed points. Such an interest arises from the
ability of WSS topological skeleton features to reflect cardiovascular flow features like
flow stagnation, separation and recirculation that are known to be promoting factors for
vascular disease [2,17]. Very recent studies have demonstrated that the WSS topological
skeleton governs the near-wall biochemical transport in arteries [15,16,18,21], which plays
a fundamental role in, e.g., the initiation of atherosclerosis and thrombogenesis [22,23]. In
addition, evidence of a direct association between WSS topological skeleton features and
markers of vascular diseases from real-world clinical data have recently emerged [20,24].

In the present study, we report and discuss the theoretical background of Lagrangian-
and Eulerian-based methods currently applied to the analysis of the WSS topological skele-
ton. Based on the recent promising findings highlighting a link between WSS topological
skeleton features and markers of vascular disease [17–21,24], the aim of this study is to
encourage the application of WSS topological skeleton analysis to cardiovascular flows
as an ad hoc instrument that is potentially able to further elucidate the mechanistic link
between WSS and vascular pathophysiology.

2. Topological Skeleton of a Vector Field

Topological features of a vector field have been largely studied in the context of
dynamical systems theory. A dynamical system is defined as a set of n differential equations:

.
x(t) = u(x, t);x(t0) = x0, (1)

where t ∈ R+ is the time, x0 ∈ Rn the initial position at time point t0, i.e., x0 = x(t0), and
u(x, t) the velocity field. Given the initial condition x0 ∈ Rn, a unique solution of Equation
(1) exists, called trajectory, given by:

x(t) = x(t0) +
∫ t

t0

u(x(s), s) ds. (2)

Associated with the dynamical system defined in Equation (1), the so-called flow map
can be defined as follows:

Φt
t0

: x0 → x(t), (3)

providing the expression of all the system trajectories at time t. In general, the topological
skeleton of the vector field u is recognized to provide the organizing structures of the
system itself.

In steady-state conditions (i.e., when vector field u(x, t) in Equation (1) does not
explicitly depend on time), the topological skeleton of a vector field consists of a collection
of fixed points (Figure 1A) and the associated stable and unstable manifolds connecting
them (Figure 1B). A fixed point (or critical point) is a point x f p ∈ Rn where the vector field
locally vanishes. The nature of fixed points can be stable or unstable. A stable fixed point
is characterized by a sink configuration, and it attracts the nearby trajectories, while an
unstable fixed point is characterized by a source configuration, and it repels the nearby
trajectories (Figure 1A).
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ized by spiraling trajectories, and it can be attracting or repelling. 

Technically, the exact location of fixed points in a domain of interest can be identified 
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Figure 1. (A) Possible configurations for a fixed point of a vector field. (B) Explanatory sketch of the
stable/unstable manifolds connecting fixed points.

A fixed point can be classified as a saddle point, node, or focus (Figure 1A): (1) a
saddle point is a point attracting and repelling nearby trajectories along different directions
(i.e., where the streamlines of the vector field intersect themselves); (2) a stable/unstable
node is characterized by converging/diverging streamlines; (3) a focus is characterized by
spiraling trajectories, and it can be attracting or repelling.

Technically, the exact location of fixed points in a domain of interest can be identified
by computing the Poincaré index [25], a topological invariant index quantifying how many
times a vector field rotates in the neighborhood of a point. For the sake of simplicity, we
consider the dynamical system in Equation (1) under steady-state conditions and lying
in a 2D space, i.e., u(x) = (X(x), Y(x)), with x ∈ R2. An explanatory example of how to
calculate the Poincaré index can then be provided. Let x f p ∈ R2 be an isolated fixed point
of u with a neighborhood N such that there are no other fixed points in N than x f p, and let
γ be a closed curve inscribing N. Then, the Poincaré index I(γ, u) of the curve γ relative to
u is the number of the positive field rotations while traveling along γ in a positive direction:

I(γ, u) =
1

2 π

∫
Γ

dθ =
1

2 π

∫
Γ

d arctan
(

Y
X

)
, (4)

where θ is the vector field rotation angle. The Poincaré index is equal to −1 at saddle
point locations (Figure 1A), 1 at node or focus locations (Figure 1A), and 0 otherwise. The
algorithm for computing the Poincaré index for a 3D vector field defined on unstructured
triangle meshes is extensively described elsewhere [19].

The Poincaré index allows identifying fixed point locations, but it does not provide
information about the fixed points nature. Therefore, a criterion to distinguish between a
node or a focus and between the attractive or repelling nature of a fixed point is needed. In
light of this, the vector field u around the fixed point x f p can be expressed by linearization
as:

u(x) = u
(

x f p

)
+ J
(

x f p

)(
x− x f p

)
, (5)

where J is the Jacobian matrix of u. The classification of fixed points can be thus performed
by computing the eigenvalues of the Jacobian matrix J, as summarized in Table 1. In detail,
two real eigenvalues with different signs identify a saddle point. Two real eigenvalues
with the same sign identify nodes characterized as attracting or repelling (i.e., stable or
unstable, respectively) according to their sign (negative or positive, respectively). Complex
conjugate eigenvalues identify a stable or unstable focus according to the sign of the real
part (negative or positive, respectively).
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Table 1. Classification of fixed points based on the eigenvalues of the Jacobian matrix.

λ Fixed Point

λ1 < 0 < λ2 Saddle point
λ1, λ2 > 0 Unstable node
λ1, λ2 < 0 Stable node

λ1,2 = α± βi Unstable focus
λ1,2 = −α± βi Stable focus

The stable and unstable manifolds (or critical lines) associated with a fixed point x f p
are composed of all initial conditions x0 ∈ Rn such that the trajectories initiated at these
points x0 approach the fixed point x f p asymptotically. By construction, stable and unstable
manifolds act as separatrices of the vector field, portioning regions of different behavior
and dynamics. In detail, an unstable manifold attracts nearby trajectories, as opposed to
the stable manifold, which repels nearby trajectories (Figure 1B). In mathematical terms, an
unstable manifold Wu associated with the generic fixed point x f p is defined as follows:

Wu
(

x f p

)
=
{

x0 ∈ Rn : Φt
t0
(x0)→ x f p as t→ +∞

}
, (6)

while a stable manifold Ws can be expressed as:

Ws
(

x f p

)
=
{

x0 ∈ Rn : Φt
t0
(x0)→ x f p as t→ − ∞

}
. (7)

In general, two different perspectives have been proposed to identify manifolds of a
vector field, namely the Lagrangian and Eulerian perspectives. The Lagrangian perspective
considers individual particles, tracking their motion along their paths as they are advected
by the flow field. By contrast, the Eulerian perspective considers the properties of the vector
field under analysis at each fixed location in space and time. In the following sections, a
brief theoretical background is reported for a better understanding of the theory supporting
the Lagrangian and Eulerian approaches for the analysis of vector field topology, with
particular emphasis on their application to cardiovascular flows.

3. Lagrangian Approach
3.1. Lagrangian Coherent Structures

When the vector field u(x, t) in Equation (1) is time-dependent, solutions can be com-
plex and chaotic, making the interpretation of the topological skeleton made of Wu, Ws and
x f p difficult. The need to robustly define intrinsic structures governing fluid/mass trans-
port under unsteady-state conditions has led to the development of the concept of coherent
structures (CS). Technically, CS are defined as emergent patterns, influencing the transport
of tracers/mass in time-dependent flows [26]. In this context, Lagrangian Coherent Struc-
tures (LCS) are coherent structures identified by applying methods based on a Lagrangian
approach. The theoretical bases of LCS lie in methods of nonlinear dynamics, chaos theory,
and fluid dynamics.

From a mathematical perspective and in relation to fluid mechanics, LCS can be
defined as material surfaces in the flow field that are dominant in attracting or repelling
neighboring fluid elements over a defined time interval [27,28]. These material surfaces are
able to localize where the flow field experiences the largest and the smallest stretching [29].
In detail, material surfaces in the flow field attracting trajectories more strongly than any
other nearby material surface are referred to as attracting LCS. Oppositely, material surfaces
repelling trajectories more strongly than any other nearby material surface are referred to
as repelling LCS.

The detection and visualization of LCS is usually performed by applying two different
Lagrangian-based approaches, namely (1) Lagrangian particle tracking and (2) the compu-
tation of the finite-time Lyapunov exponent (FTLE). Both approaches are based on particle
path information derived from the post-processing of velocity data obtained by CFD simu-
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lation or by in vivo (e.g., phase contrast magnetic resonance imaging (MRI)) and in vitro
(e.g., particle image velocimetry) measurements. The workflow of the Lagrangian-based
approaches to visualize LCS is sketched in Figure 2.
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Figure 2. Workflow of the Lagrangian-based approaches to visualize attracting Lagrangian coherent
structures (LCS) starting from a cluster of particles at time t0 over the domain of interest. The same
procedure applies to repelling LCS by considering reversing time. FTLE: finite time Lyapunov
exponent.

The Lagrangian particle tracking is performed by seeding the domain of interest with
tracer particles and by visualizing their motion (Figure 2). The aim of this approach is
to reveal coherent features revealing how the flow under analysis is organized. From a
mathematical perspective, the position of a tracer particle is governed by the differential
equation reported in Equation (1). To obtain the position of such a particle at a desired
time t, Equation (1) is numerically integrated from t0 to t. The direct integration of tracer
particles allows for an in-depth understanding of how tracers are transported through the
domain of interest. In detail, attracting LCS will be generally distinguishable, since tracer
particles are attracted to and along these surfaces (Figure 3). Analogously, repelling LCS
will be distinguishable from the advection of tracer particles by reversing time (Figure 3).
Attracting LCS are traced out with forward time integration of particles, while repelling
LCS are traced out with backward time integration of particles.
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Figure 3. Explanatory sketch of attracting and repelling LCS over time interval [t0, t]. A sphere of
tracer particles released at time t0 will spread out along the attracting LCS (time t ). The opposite
occurs for a repelling LCS.

Lagrangian particle tracking represents a Lagrangian-based technique aiming at
overcoming issues related to standard approaches used for topological skeleton extraction
of vector fields with unsteady-state conditions. However, the resulting tracer particle
motion complexity could obscure the interpretation of the vector field topology. For this
motivation, the second approach consists of the computation of the FTLE (Figure 2). Based
on theory, a LCS can be defined as the material surface locally maximizing the FTLE [27,30],
the Lyapunov exponent being a measure of the sensitivity to the initial position of a
dynamical system. Technically, the finite time Lyapunov exponent σ(x0, t0, t) [27,28,31–35]
is defined as:

σ(x0, t0, t) =
1

|t− t0|
ln
√

λmax(C(x0, t0, t)), (8)

where λmax(C(x0, t0, t)) is the maximum eigenvalue of the right Cauchy–Green strain
tensor C(x0, t0, t):

C(x0, t0, t) = ∇Φt
t0
(x0)

T∇Φt
t0
(x0), (9)

where ∇Φt
t0
(x0)

T denotes the transpose of the gradient of the flow map in Equation (3).
From a physical point of view, C(x0, t0, t) in Equation (9) represents the material deforma-
tion of infinitesimal volume elements of fluid, and it is a symmetric and positive-definite
matrix. Roughly speaking, the FTLE σ defined in Equation (8) measures the rate of sep-
aration of initially close vector field trajectories. Let δ0 be a small distance between two
material points at time t0, as depicted in Figure 4 (Panel A). It can be demonstrated [26]
that the separation δt after the time interval |t− t0| satisfies the inequality:

||δt|| ≤ eσ(x0,t0,t)|t−t0|||δ0||, (10)

where equality holds if the initial distance δ0 is aligned with the eigenvector of C(x0, t0, t)
associated with λmax.

The algorithm for LCS identification based on FTLE computation starts with the
initialization of a cluster of massless elemental particles at time t0 over the domain of
interest (Figure 2). Then, particles are numerically integrated by the field in Equation (1)
from t0 to t, and their trajectories are calculated. The flow map Φt

t0
(Equation (3)) is

obtained from the final position of each particle trajectory at time t in the domain, and
subsequently its gradient ∇Φt

t0
(x0) can be computed. For a structured grid like the one

shown in Figure 4 (panel B), ∇Φt
t0
(x0) can be calculated by finite differencing, e.g., using

central differencing as follows:
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∇Φt
t0
(x0) ≈


x(i+1)jk(t)−x(i−1)jk(t)

x(i+1)jk(t0)−x(i−1)jk(t0)

xi(j+1)k(t)−xi(j−1)k(t)
yi(j+1)k(t0)−yi(j−1)k(t0)

xij(k+1)(t)−xij(k−1)(t)
zij(k+1)(t0)−zij(k−1)(t0)

y(i+1)jk(t)−y(i−1)jk(t)
x(i+1)jk(t0)−x(i−1)jk(t0)

yi(j+1)k(t)−yi(j−1)k(t)
yi(j+1)k(t0)−yi(j−1)k(t0)

yij(k+1)(t)−yij(k−1)(t)
zij(k+1)(t0)−zij(k−1)(t0)

z(i+1)jk(t)−z(i−1)jk(t)
x(i+1)jk(t0)−x(i−1)jk(t0)

zi(j+1)k(t)−zi(j−1)k(t)
yi(j+1)k(t0)−yi(j−1)k(t0)

zij(k+1)(t)−zij(k−1)(t)
zij(k+1)(t0)−zij(k−1)(t0)

 (11)
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Figure 4. (A) Explanatory sketch illustrating the separation of nearby particles due to the flow map
Φt

t0
, during time interval |t− t0|. (B) Nodal indexing of elemental cells in a 3D-structured mesh.

Indices i, j, k represent the positions along the x, y, z directions, respectively.

Once the flow map gradient is obtained, the Cauchy–Green strain tensor C(x0, t0, t)
can be computed according to Equation (9).

Finally, the maximum eigenvalue λmax(C(x0, t0, t)) and the FTLE σ(x0, t0, t) can be
computed according to Equation (8) (Figure 2). The obtained σ(x0, t0, t) value for each
particle is assigned to the particle position at time t0. This procedure is repeated, varying
the time t0 (e.g., within the cardiac cycle in cardiovascular applications) and aiming at
providing the time series of FTLE values and ultimately the time history of LCS movements
(Figure 2). Positive integration times reveal repelling LCS in the FTLE field, while negative
integration times reveal attracting LCS in the FTLE field.

In general, the computation of the spatial variation of the FTLE field requires the
vector field to be interpolated in both time and space, and high-order integration and
interpolation schemes are needed to ensure accuracy of results. Furthermore, the mesh
used to compute the FTLE distribution over the domain of interest usually needs to be
more resolved than the computational mesh for a more robust detection of LCS.

3.2. LCS Application to Intravascular Flows

Lagrangian-based approaches have been largely applied to identifying LCS in intravas-
cular flows. Indeed, Lagrangian particle tracking has been massively applied to explore
the complexity of intravascular flows, e.g., to provide a measure of stasis in idealized
computational bifurcation models [36], or to study vortices generation and their poten-
tial role in thrombogenesis in idealized aneurysm models [37,38]. Several studies have
applied particle tracking to identify flow disturbances in, e.g., carotid bifurcation models,
contributing to providing a deeper understanding of the hemodynamics-driven processes
underlying atherosclerosis onset/progression [39–42]. Moreover, particle tracking has
been used to study the hepatic perfusion in the Fontan circulation [43,44], identify the
optimal left ventricular assist device cannula outflow configurations [45], obtain a deeper
understanding of the dynamics of embolic particles within arteries [46], and detect peculiar
intravascular helical flow patterns in the aorta from in vivo, 4D-flow MRI data [47,48].

Regarding the FTLE-based analysis of the flow field, its extension to intravascular
flows is relatively recent, motivated by the fact that LCS are determined by blood flow
structures associated to adverse vascular events including flow stagnation, separation, and
recirculation. Among the main contributions, here we mention that Shadden and Taylor [32]
used LCS to quantify the extent of flow stagnation to determine where flow separated
and to understand how flow was partitioned to downstream vasculature in computational
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hemodynamic models of large vessels. LCS have been proposed as a powerful method
to capture vortex transport in blood flow. In this regard, Arzani and Shadden [33] used
LCS to characterize the hemodynamics in abdominal aortic aneurysm (AAA) models,
suggesting that AAA intravascular flow topology is dictated by systolic vortex propagation
through the abnormal vessel. Arzani et al. [49] computed FTLE fields and associated LCS
to capture a large coherent vortex in AAA computational models. Furthermore, LCS have
been applied to identify left ventricle (LV) blood flow features during heart filling. In
detail, Gharib et al. [50] used LCS to demonstrate the existence of a link between the vortex
ring formation inside the LV and the ejection fraction. Charonko et al. [51] quantified the
vortex ring volume by computing LCS from in vivo LV phase contrast MRI data of healthy
and diseased patients. Töger et al. [52] extracted LCS from in vivo LV phase contrast
MRI data to measure the vortex ring volume during LV rapid filling. The identification
of attracting and repelling LCS from LV Doppler-echocardiography data was adopted
as a criterion to discriminate between healthy and diseased patients [53]. Other studies
applied LCS to characterize the flow field through heart valves. In particular, LCS were
extracted to delineate the boundaries of the outflow jet downstream of aortic valves and
used as a measure of the severity of the valve’s stenosis [54,55]. In a very recent study [56],
FTLE-based LCS detection on computational hemodynamics models of aortic bicuspid and
mechanical heart valves was used to study mass transport processes that might be related
to valve disease. The analysis of the fluid dynamics in the neighborhood of blood clots
was another effective application of LCS to hemodynamics [57]. In addition, FTLE-based
analysis was adopted to highlight the hemodynamic impact of flow diverter stents in the
treatment of intracranial aneurysms [58,59].

We refer the interested reader to reference [31] for a broader, detailed overview of
Lagrangian methods used in post-processing of velocity data in cardiovascular flows.

3.3. LCS Application to Near-Wall Flow Features

Recently, in the study of cardiovascular flows, the concept of LCS has been extended to
analyze the near-wall flow topology, i.e., the topology of the flow field close to the luminal
surface of arteries. The rationale is in the well-established involvement of near-wall mass
transport in most of the processes concurring to determine vascular pathophysiology [5]: in
the near-wall region, blood flow regulates the local biotransport processes and imparts me-
chanical shear stress on the endothelium (i.e., the WSS), which in turn regulates important
developmental, homeostatic, and adaptive mechanisms in arteries, as well as susceptibility
to and progression of atherosclerosis [1].

Based on theory, it has been demonstrated [60] that the WSS vector field can be scaled
to provide a first-order approximation for the near-wall blood flow velocity vector field as
follows:

uπ =
τδn

µ
+ O

(
δn2
)

, (12)

where uπ ∈ R3 is the near-wall velocity, τ ∈ R3 represents the WSS vector field, µ is the
dynamic viscosity, and δn is the distance from the wall where the velocity is evaluated. By
construction, the vector field in Equation (12) is defined on the luminal surface of the vessel,
and it represents the near-wall velocity, as the velocity is zero on the surface itself due to
the no-slip condition. The LCS underlying theory described in Section 3.1 can be extended
to analyze the near-wall flow topology by using the expression of near-wall velocity uπ

(given by Equation (12)) in Equation (1). Such near-wall Lagrangian structures, computed
from the WSS vector field, are referred to as WSS LCS [15].

Computationally, WSS LCS can be identified on the luminal surface of the vessel
by numerically integrating a high number of luminal surface tracer particles, applying
the procedure described in the first part of Section 3.1. In detail, attracting and repelling
WSS LCS can be traced out with forward and backward time integration of surface tracer
particles based on the near-wall blood flow velocity (Equation (12)), respectively.
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The recent interest in WSS LCS from the cardiovascular fluid mechanics research
community was driven by WSS LCS ability to highlight blood flow features associated with
vascular disease initiation and progression, like flow stagnation, separation, recirculation,
flow impingement, and the interaction of vortex structures with the vascular wall [19,61,62]
These blood flow features have been classified as “aggravating flow events”, as they trigger
biological processes leading to the development or progression of vascular disease [2,17].
An example of attracting WSS LCS on the luminal surface of a patient-specific compu-
tational hemodynamic model of carotid bifurcation is presented in Figure 5. Details on
the carotid bifurcation hemodynamic modeling are reported elsewhere [9,14,20,63]. In
this specific case, luminal surface tracer particles (Figure 5A) are numerically integrated
in forward time. The resulting LCS is located at the carotid bulb, a region characterized
by flow disturbances (slow, recirculating blood flow) promoting atherosclerosis [2,4]. In
detail, the attracting WSS LCS provides the boundary at the luminal surface of the slow
vortex structure formed inside the carotid bulb (Figure 5C, where the recirculation region
is highlighted visualizing the streamlines of the cycle-average velocity vector field).
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In addition, the shear forces exerted by the streaming blood flow in the near-wall
region on the endothelium affect biotransport processes, i.e., the transport of biochemicals
through the subendothelial layer [22]. Biotransport is of paramount importance in many
cardiovascular processes, including the initiation of atherosclerosis and thrombogene-
sis [23]. In general, cardiovascular mass transport is investigated in silico by coupling the
governing equations of motion, the Navier–Stokes equations, with the advection–diffusion
equation, given by:

dC
dt

+ u· ∇C− D∇2C = 0, (13)

where C is a non-dimensional concentration of the species transported in the domain, u
is the fluid velocity vector, and D is the mass diffusion coefficient. However, high com-
putational costs are associated with the class of numerical simulations used to accurately
solve the near-wall transport and blood-wall transfer [64,65], making this approach ex-
pensive in hemodynamics applications. To overcome this limitation, and based on the
well-established role that WSS plays in conditioning the permeability of the endothelium
and the near-wall mass transport process, recent studies [15,18] have brilliantly demon-
strated that WSS LCS can be used as a template for near-wall mass transport. This allows
reduction of the computational effort needed to solve the full transport problem, repre-
sented by Equation (13) [15]. In particular, it has been demonstrated that attracting WSS
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LCS attract biochemicals, leading to high near-wall concentration in their neighborhood,
whereas repelling WSS LCS have been shown to act as near-wall transport barriers [15,17].

In the context of cardiovascular flows, it has been recently demonstrated that attract-
ing/repelling WSS LCS on the luminal surface of an artery match the unstable/stable
manifolds of the cycle-average WSS vector field [15,18], defined as:

τ =
1
T

∫ T

0
τ(x, t)dt, (14)

where τ is the instantaneous local WSS value and T is the time duration of the cardiac cycle.
Technically, the first step in the topological analysis of cycle-average WSS at the luminal
surface of a vessel is the identification of WSS fixed points. The exact position of WSS fixed
points can be identified by computing, e.g., the Poincaré index, as explained in Section 2.
Then, the cycle-average WSS field around a fixed point x f p, according to Equation (5), by
linearization can be expressed as:

τ(x) = τ
(

x f p

)
+ J
(

x f p

)(
x− x f p

)
, (15)

where J is the Jacobian matrix of τ (see Equation (14)). The identified WSS fixed points can
be classified according to their nature (i.e., saddle, node, or focus, Figure 1A) by analyzing
the eigenvalues of the Jacobian matrix J of τ (Table 1), as described in Section 2. Note
that the WSS vector field is embedded in a three-dimensional space even if it lies in a
two-dimensional space (the luminal surface of a vessel). To perform a two-dimensional
analysis, two strategies are possible. In the first strategy, a projection of the vector field into
two orthogonal directions (hence, in a two-dimensional space) is needed. In the second
one, avoiding the projection of the vector field (and thus reducing the computational steps),
a three-dimensional analysis is performed, thus obtaining three eigenvalues of the Jacobian
matrix, with one of them having a value close to zero. Then, the eigenvalue-based analysis
for the WSS fixed points classification considers only the two eigenvalues different from
zero.

Saddle-type fixed points are of particular interest, since typically a stable or unstable
manifold starts from a saddle point and vanishes into a source or sink, respectively, as
depicted in Figure 1B. Saddle point locations (where the Poincaré index is −1 and the
eigenvalues are real with different signs) are perturbed along the positive eigenvector of
J in two opposite directions, obtaining two initial conditions [18,61]. Unstable manifolds
can be traced out by numerically integrating τ from these initial conditions in forward
time until trajectories reach a stable fixed point (sink configuration) or leave the domain.
Similarly, stable manifolds are delineated by integrating τ in backward time starting
from the perturbation of saddle point locations along the negative eigenvector of J until
trajectories reach an unstable fixed point (source configuration) or leave the domain.

An example of unstable manifolds of cycle-average WSS on the luminal surface
of a patient-specific computational hemodynamic model of carotid bifurcation is pre-
sented in Figure 6. Details on carotid bifurcation hemodynamic modeling are reported
elsewhere [9,14,20,63]. WSS fixed points were identified by computing the Poincaré index
(Figure 6A), and subsequently, unstable manifolds were traced out by applying Runge-
Kutta 4-5 numerical integration schemes (Figure 6B). By visual inspection of Figure 6C, it
can be appreciated that cycle-average WSS unstable manifolds co-localize with attracting
WSS LCS, confirming the capability of the latter to identify critical lines of the WSS field.
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Figure 6. (A) Cycle-average WSS fixed points on the luminal surface of a carotid bifurcation model.
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The analysis of cycle-average WSS fixed points and manifolds has been applied to
analyze cardiovascular flows. Arzani et al. [18] used WSS LCS from stable and unstable
manifolds of cycle-average WSS on patient-specific computational hemodynamics models
of AAAs, carotid arteries, cerebral aneurysms, and coronary aneurysms to characterize near-
wall flow topology and biochemical transport. Farghadan et al. [16] used WSS topology and
magnitude analysis to predict surface concentration patterns in cardiovascular transport
problems by computing WSS LCS from manifolds of cycle-average WSS in image-based
coronary and carotid artery models. Mahmoudi et al. [21] studied the near-wall transport
of some of the prominent biochemicals contributing to the initiation and progression of
atherosclerosis in computational hemodynamic models of the coronary artery, highlighting
the strength of cycle-average WSS LCS as a template for luminal surface concentration and
flux patterns of biochemicals transported with blood.

Summarizing, the Lagrangian approach for identifying near-wall topological features
is schematized in Figure 7, where the link between attracting/repelling WSS LCS with
unstable/stable cycle-average WSS manifolds, respectively, is highlighted. In addition,
Figure 7 presents a brief summary of the link between Lagrangian-based near-wall flow
topology and mass transport. For a more in-depth analysis, the interested reader can
refer to recent literature [15,17,18,21] where the link between WSS LCS, cycle-average
WSS manifolds, and biochemical transport in cardiovascular flows is unambiguously
documented.
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4. Eulerian Approach
4.1. Volume Contraction Theory

From a Eulerian perspective, the volume contraction theory provides a simple alterna-
tive way to analyze the behavior of a dynamical system. Contrarily to Lagrangian-based
approaches, the Eulerian perspective considers vector field properties at each point in
space and time. The here-presented volume contraction theory, based on fluid mechanics
and differential geometry, is focused on the temporal change of an elemental volume (of
fluid, for the case of interest) in the phase space of a dynamical system (fluid flow, for
the case of interest). Let V(t) be an arbitrary volume in the phase space of the dynamical
system defined in Equation (1). Let S(t) be a closed surface enclosing the volume V(t), i.e.,
such that S(t) = δV(t). S(t) evolves during the time interval dt resulting in a contraction
or expansion of the volume, as depicted in Figure 8. The rate of volume variation, which
we will call volume contraction rate in the following, can be expressed as follows as a
consequence of the application of the Gauss theorem:

dV(t)
dt

=
∫ ∫

S
u·n dS =

∫ ∫ ∫
V
∇·u dV, (16)

where u is the vector field defined in Equation (1) and n is the unit normal to the surface S
(Figure 8). Shrinking the near-wall volume V to a point, it can be written:

lim
V→0

1
V

dV(t)
dt

= lim
V→0

1
V

∫ ∫ ∫
V
∇·u dV = (∇·u). (17)

Equation (17) clearly shows that in the limit as V approaches zero, the local value of
vector u divergence is equal to its total flux per unit volume.

In general, in non-conservative dynamical systems, the volume of phase space is not
preserved, as it can contract or expand. Thus, trajectories tend toward a lower-dimensional
subset of phase space. From Equation (17), the volume contraction rate Λ(x,t) of a n-
dimensional system, representing the rate of separation of infinitesimal close trajectories,
can be obtained as:

Λ(x, t) = ∇·u(x, t) = tr J(u) =
n

∑
i=1

λi, (18)
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where tr J(u) is the trace of the Jacobian matrix of vector field u and λi are its eigen-
values. Physically, the Jacobian matrix describes how a small change at a starting point
x0 propagates to the final point of the flow map Φt

t0
(x0) of Equation (3). In this sense,

Equation (18) represents the sum of the Lyapunov exponents of Equation (8).
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4.2. Eulerian-Based Approach for WSS Topological Skeleton Identification

It has been recently demonstrated [19] that the application of the volume contraction
theory to cardiovascular flows allows the analysis of the WSS topological skeleton on
the luminal surface of a vessel through the direct calculation of the WSS divergence.
Briefly, considering the expression of the near-wall blood flow velocity vector uπ given in
Equation (12) and substituting it in Equation (17), it follows that:

lim
V→0

1
V

dV(t)
dt

= lim
V→0

δn
Vµ

∫ ∫ ∫
V
∇·τ dV = (∇·τ). (19)

Based on Equation (19), the WSS divergence gives practical information about the
WSS topological skeleton. Note that in general, the WSS vector field defined at the luminal
surface of a vessel is not conservative, even in the case of incompressible flows.

Contextualizing the physical meaning of Equation (19) to the study of the phenomena
at the interface between blood flow and vessel wall, it can be observed that as the divergence
represents the volume density of the outward flux of a vector field from an infinitesimal
volume around a given point:

• a local positive value of the divergence of the WSS field at the luminal surface means
that locally shear forces exert an expansion action on the endothelium;

• a local negative value of the divergence of the WSS field at the luminal surface means
that locally shear forces exert a contraction action on the endothelium.

In general, the application of the volume contraction theory to the analysis of a dy-
namical system faces one limitation in cases where the distance between two neighboring
trajectories increases/decreases in spite of a negative/positive value of divergence, respec-
tively. As WSS divergence depends by construction upon the algebraic summation of the
magnitude of the single gradients of WSS vector components, in some cases, it might fail to
properly identify WSS expansion/contraction configuration patterns. In fact, these regions
describe specific directional arrangements of the vectors, but both variations in magnitude
and in direction are accounted for in the divergence. To overcome this limitation, which
could markedly affect the application of the Eulerian-based approach to study WSS mani-
folds in cardiovascular flows, the use of the divergence of the normalized WSS vector field
has been recently proposed [19]:

DIVW = ∇·τu = ∇·
(

τ

|τ|

)
(20)
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where τu is the WSS unit vector. Equation (20) can be used to encase the connections
between fixed points, i.e., manifolds, identify basins of attraction, and subdivide the
domain into different vector field behaviors. Then, in the light of the above and as depicted
in Figure 9, luminal surface regions characterized by negative values of DIVW are referred
to as contraction regions and approximate unstable manifolds. Similarly, regions at the
luminal surface characterized by positive values of DIVW are referred to as expansion
regions and approximate stable manifolds (Figure 9).
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Figure 9. Explanatory sketch of the topological skeleton of a vector field. Contraction/expansion
regions, colored in blue/red, respectively, approximating unstable/stable manifolds, are highlighted.

To complete the Eulerian-based WSS topological skeleton analysis, once WSS man-
ifolds have been identified using DIVW , the WSS fixed point location can be carried out
using the Poincaré index, as in the Lagrangian-based analysis (as described in Section 2).
Then, the eigenvalues of the Jacobian matrix of the WSS vector field can be used to distin-
guish between a node or a focus and between the attractive or repelling nature of a fixed
point, as described in Section 2 in general terms (Table 1) and in Section 3.3 for the specific
case of a WSS vector field defined on the luminal surface of a vessel.

An example of Eulerian-based topological skeleton analysis of the cycle-average WSS
field on the luminal surface of a patient-specific computational hemodynamic model of
carotid bifurcation is presented in Figure 10A. Details on carotid bifurcation hemodynamic
modeling are reported elsewhere [9,14,20,63]. WSS fixed points were identified and classi-
fied by computing the Poincaré index and eigenvalues of the Jacobian matrix, respectively,
whereas contraction/expansion regions were identified by computing the divergence of
the normalized cycle-average WSS vector field. By visual inspection of Figure 10B, it can
be noted that cycle-average WSS contraction regions co-localize with cycle-average WSS
unstable manifolds, traced out by integrating cycle-average WSS starting from saddle
point positions, thus confirming the capability of the contraction regions to encase WSS
manifolds.

The Eulerian-based approach to analyze the WSS topological skeleton can be easily
implemented. It requires only single snapshots of the WSS vector field, and the post-
processing algorithms, based on a robust theory, are easily reproduced. This approach does
not need the Lagrangian surface transport computation, as required for Lagrangian-based
and integrated trajectory-based methods, thus reducing computational effort. Furthermore,
it is characterized by modularity in the sense that the method can be applied only for the
purpose of fixed point identification and/or classification or only for contraction/expansion
region identification.
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4.3. Application of the Eulerian-Based Method for WSS Topological Skeleton Analysis to
Cardiovascular Flows

The described Eulerian-based method to identify the WSS topological skeleton on the
luminal surface of an artery can be easily applied (1) to cycle average WSS vectors (defined
in Equation (14) in Section 3.3) and (2) to instantaneous WSS vectors along the cardiac
cycle.

The cycle-average WSS topological skeleton highlights blood flow features associated
with vascular disease development, and it is strongly related to arterial near-wall mass
transport. In detail, on the one hand, contraction/expansion regions of cycle-average
WSS vectors, because of their capability to encase unstable/stable cycle-average WSS
manifolds, can be used to identify biochemical concentration patterns at the arterial luminal
surface. On the other hand, the instantaneous WSS topological skeleton allows analyzing
the unsteady nature of WSS fixed points and contraction/expansion regions. In detail,
instantaneous WSS fixed points may have a potential impact on the endothelial cells (ECs)
function. By definition, a WSS fixed point represents a focal point on the luminal surface of
a vessel where WSS vanishes, and low WSS is a biomechanical factor involved in vascular
dysfunction. In light of this, quantitative descriptors of WSS fixed points residence times
along the cardiac cycle were proposed [17,19], aiming at characterizing their unsteady
nature. In detail, a WSS fixed point residence time, that for each surface element measures
the accumulated amount of time that WSS fixed points spend inside that element, weighted
by the sum of the absolute values of the eigenvalues of the instantaneous WSS Jacobian
matrix, was proposed elsewhere [17]. More recently, a different formulation for quantifying
WSS fixed points was proposed [19] where the local residence time of WSS fixed points were
weighted by the absolute value of the sum of the eigenvalues of the WSS Jacobian matrix
(i.e., according to Equation (18), the absolute value of the WSS divergence, representing the
strength of the contraction/expansion of the WSS around the fixed point). In mathematical
terms:

RT∇x f p(e) =
A
Ae

1
T

T∫
0

Ie

(
x f p, t

)
|(∇·τ)e|dt, (21)

where x f p is the location of a WSS fixed point at time t ∈ [0, T], T is the cardiac cycle
duration, e is the generic triangular element of the superficial mesh of area Ae, A is the
average surface area of all triangular elements of the superficial mesh, Ie is the indicator
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function (equal to 1 if x f p ∈ e, 0 otherwise) and (∇·τ)e is the instantaneous WSS divergence
value, representing the local strength of the contraction/expansion of the WSS around the
considered fixed point. Roughly speaking, Equation (21) allows quantifying the fraction of
the cardiac cycle for which a generic triangle mesh surface element e on the vessel luminal
surface hosted as a fixed point, weighting the residence time by the strength of the local
contraction/expansion action.

Furthermore, the strength and the nature of WSS contraction and expansion action
on the ECs lining the luminal surface, as identified by WSS contraction/expansion re-
gions, is expected to have biological consequences linked to vascular pathophysiology.
In particular, the exposure to high variability of WSS contraction and expansion action
may mechanically induce a recurring variation in EC stimulation along the cardiac cycle,
with consequent widening cell–cell junctions and associated increased endothelium per-
meability and EC dysfunction and apoptosis [7,66]. The amount of variation in the WSS
contraction/expansion action exerted at the luminal surface of a vessel along the cardiac
cycle can be quantified using the quantity topological shear variation index (TSVI) [24]:

TSVI =
{

1
T

∫ T

0

[
DIVW − DIVW

]2 dt
}1/2

. (22)

Equation (22) allows localizing regions on the vessel luminal surface exposed to large
variations in WSS contraction/expansion action exerted by the flowing blood along the
cardiac cycle.

An example of the distribution of WSS fixed point weighted residence time (Equa-
tion (21)) and the topological shear variation index (Equation (22)) on the luminal surface
of a patient-specific computational hemodynamic model of carotid bifurcation is presented
in Figure 11. Details on the carotid bifurcation hemodynamic modeling are reported
elsewhere [9,14,20,63]. From Figure 11, it emerged that the highest RT∇x f p(e) values and
highest variation in the contraction/expansion action exerted by the WSS along the cardiac
cycle were mainly located at the carotid bulb and around the bifurcation apex.
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Interestingly, very recent studies highlighted a link between WSS contraction/expansion
variability along the cardiac cycle and aggravating biological events at the arterial wall.
In particular, De Nisco et al. [24] applied the Eulerian-based approach for the analysis of
the WSS topological skeleton for personalized computational hemodynamic models of
ascending thoracic aorta aneurysm (ATAA) and healthy aorta, reporting that: (1) the differ-
ent spatiotemporal heterogeneity characterizing the ATAA and healthy hemodynamics
markedly reflect on their WSS topological skeleton features; (2) a link emerged between
the variability of the contraction/expansion action exerted by WSS on the endothelium



Mathematics 2021, 9, 720 17 of 21

(as quantified by the TSVI) along the cardiac cycle and ATAA wall stiffness. Morbiducci
et al. [20] demonstrated in a longitudinal study integrating clinical data with compu-
tational hemodynamics that WSS topological skeleton features quantified by the TSVI
independently predicted long-term restenosis after carotid bifurcation endarterectomy.

5. Future Directions

The translation into clinical settings of the WSS topological skeleton is hampered by
several barriers that add up to those affecting in general the translation of computational
hemodynamics and the derived knowledge, as discussed elsewhere [67]. Specifically,
as a first step, the analysis of the topological skeleton needs to be distilled into intu-
itive, clinically relevant criteria. To this aim, only semi-quantitative results are obtained
from the definition of fixed points and stable/unstable manifolds, consisting of contrac-
tion/expansion regions. However, quantitative results can be obtained by focusing on
specific features by using ad-hoc topological skeleton descriptors, such as the fixed point
weighted residence time RT∇x f p(e) (Equation (21)) or the topological shear variation index,
TSVI (Equation (22)). Then, the definition of clinically relevant criteria based on the WSS
topological descriptors require cut-off values for an effective translation into the clinic.
These cut-off values need to be accurately defined and tested in terms of performance
including accuracy, sensitivity, specificity, and positive predictive value, among others.
Therefore, the determination of cut-off values requires adequate statistical power, obtained
usually through multiple prospective, randomized trials. Moreover, the endpoint to be
predicted should be clearly defined, as different endpoints correspond to different cut-off
values.

In the perspective of an effective translation into the clinic of quantitative topolog-
ical skeleton features, in a previous study [20], we proved that exposure to high values
of both descriptors RT∇x f p(e) and TSVI was correlated with intima-media thickness (a
marker of vascular disease) at 60 month follow-ups in carotid bifurcations after carotid
endarterectomy. To determine the cut-off values of the descriptors, a pooled distribution
for each descriptor was calculated from 46 models of healthy carotid bifurcation. The 80th
percentile of those distributions was then used. This approach allowed definition of the
cut-off values for abnormally high values of RT∇x f p(e) or the TSVI.

It is evident that cut-off values are specific to the vascular region and to the predicted
endpoint and therefore cannot be extrapolated to other conditions. In the future, the
continuous improvements in imaging and data acquisition, the increasing availability
of computational power, and the development of more and more efficient and robust
methodologies for blood flow modeling are expected to accelerate the translation into
the clinic of the analysis of the WSS topological skeleton. Our paper aims to give the
methodological basis to tackle these future efforts.

6. Conclusions

The need for the identification of hemodynamic coherent structures in blood vessels is
dictated by the so-called hemodynamic risk hypothesis, suggesting a major role of flow
disturbances in vascular pathophysiology [2]. The action of fluid forces on the endothelial
mechanosensors and biochemical machinery has been historically explained in terms of
WSS [3,4]. However, only moderate (and sometimes contradictory) associations between
vascular disease and WSS-based descriptors have emerged to date, motivating a more
in-depth analysis of the fluid near-wall transport phenomena. In this sense, the capability
of the WSS topological skeleton to capture features reflecting cardiovascular flow com-
plexity [17–20] and having a direct link to adverse vascular biological events has recently
attracted a strong research interest. In this regard, recent studies have demonstrated that
the cycle-average WSS topological skeleton governs the near-wall biochemical transport in
arteries [15,16,18], a process linked to, e.g., endothelium-mediated vasoregulation, throm-
bosis, and atherosclerosis [23]. Furthermore, evidence about the role of WSS topological
skeleton features in vascular pathophysiology emerged from very recent studies suggesting
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a direct link between WSS topological skeleton features and, e.g., aortic wall stiffness [24]
and late restenosis in endarterectomized carotid arteries [20].

Motivated by the need to characterize more precisely the WSS phenotype(s) linked
to aggravating biological events, here we provided an overview of the theoretical and
methodological basis for analyzing the WSS topological skeleton in cardiovascular flows.
In detail, the present study is intended to: (1) promote the application of WSS topological
skeleton analysis to cardiovascular flows, aiming at elucidating the role that peculiar WSS
features play in vascular pathophysiology; (2) facilitate the reproducibility and comparabil-
ity of results from WSS topological skeleton analyses among different studies; (3) confirm
its potential as a tool for increasing the chance of elucidating the mechanistic link between
flow disturbance and clinical outcomes when applied to real-world clinical data.

Here, both WSS topological skeleton Lagrangian- and Eulerian-based methods cur-
rently adopted in the literature are presented. Lagrangian-based approaches start from
the processing of Eulerian data, which represent the typical outputs of current in vivo
(e.g., phase contrast MRI), in vitro (e.g., particle image velocimetry), and computational
methods used for the investigation of cardiovascular flows. On the one hand, Lagrangian
approaches are particularly useful for revealing the global organization of the vector field
and characterizing its evolution over time, making the relevant features easy to detect
by visual inspection, as they offer effective three-dimensional (or even four-dimensional,
i.e., including time) visualizations. On the other hand, Lagrangian techniques rely on
the numerical integration of particle trajectories, requiring sufficiently resolved data in
both time and space, thus, in principle, making such methods computationally expensive
and time consuming [29]. Moreover, adopting a Lagrangian approach may result in a
poor control over the zone of investigation, which is determined by particle motion and
accumulation. For this reason, it can also be difficult to get a complete picture of the flow
at specific time instants. Furthermore, the influence of particle distribution and of particle
seeding schemes on quantities of interest is poorly investigated.

In contrast, Eulerian-based approaches usually simplify the data analysis workflow, as
they can be directly applied to the output given by the main current techniques used for the
investigation of cardiovascular flows (e.g., phase contrast MRI, CFD data). Moreover, they
usually have a simpler definition, making their implementation easy and characterized
by a reduced computational cost. More importantly, they can give a picture of the entire
vector field. However, the inherent unsteady nature of the hemodynamic vector fields (e.g.,
velocity, WSS) can make the characterization of the dynamic evolution of the vector field
features difficult with Eulerian-based approaches.

In conclusion, the theoretical background of the advanced methods of analysis of the
WSS presented here and the recent findings related to their application to cardiovascular
flows support their use to further elucidate the cause–effect relationships at the basis of the
links between local hemodynamics and vascular disease. Based on the reported evidence
about the physiological significance of the WSS topological skeleton in cardiovascular
flows, its application in future studies, including longitudinal data, biological mechanism,
and mechanobiology studies, is strongly encouraged and warranted.
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