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Abstract: In this paper, we studied the existence results for solutions of a new class of the fractional
boundary value problem in the Caputo–Hadamard settings. Moreover, boundary conditions of this
fractional problem were formulated as the mixed multi-order Hadamard integro-derivative condi-
tions. To prove the main existence results, we applied two well-known techniques in the topological
degree and fixed point theories. Finally, we provide two examples to show the compatibility of our
theoretical findings.

Keywords: Caputo–Hadamard derivative; condensing function; topological degree theory; fractional
boundary value problem (FBVP)

1. Introduction

An arbitrary order calculus is regarded as one of the most widely used subbranches of
applied mathematics, which includes a vast range of applications in other sciences. Such a
usefulness is because of the high compatibility of the formulas and fractional operators in-
troduced in aforesaid theory. Different researchers have utilized several newly-introduced
fractional operators in recent times to describe some dynamical aspects of different kinds
of real processes in the world based on their fractional modelings. Examples on the applica-
bility of arbitrary order operators in the modeling of natural processes can be observed in
different published literature works, including [1–11]. On the contrary, since making new
modelings with the aid of fractional operators obtains more accurate numerical findings
than modeling by means of the standard integer order operators, numerous mathemati-
cians have tried to provide different novel extensions of some existing standard fractional
operators every day. Two fractional operators that we intend to apply in this manuscript
are the Hadamard integration, along with the Caputo–Hadamard differentiation operators.
We can even refer the readers to articles in which the existing modelings are studied with
the help of both aforementioned operators. See, for example, [12–16].
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In 2017, Ntouyas and Tariboon [17] turned to a new framework of the boundary value
problem via multiple orders on fractional operators, as follows:ζRDςu(t) + (1− ζ)RDθ∗u(t) = h

(
t, u(t)

)
,

u(0) = 0, σ∗RIq∗1 u(R) + (1− σ∗)RIq∗2 u(R) = δ∗2 ,
(1)

in which boundary conditions are regarded as Riemann–Liouville bi-order integral condi-
tions and t ∈ [0, R] and ς ∈ (1, 2). The authors proved the existence results via Sadovski’s
fixed point theorem. After this, Lei, Qixang, and Gang [18] established some theorems
based on the existence and Hyers–Ulam stability of solutions for the proposed fractional
two-term multi-order boundary value problem:pRDk∗µ(t) + RDθ∗µ(t) = h

(
t, µ(t)

)
,

µ(0) = 0, σ∗RDγ∗1 µ(R) + RIq∗2 µ(ν) = δ∗2 , (k∗ ∈ (1, 2)).
(2)

The boundary conditions considered by them are in a two-term framework of mixed
three-point Riemann–Liouville boundary conditions. The authors proved the existence
results with the help of an integral inequality and established the stability results for null
boundary conditions [18].

At this moment, according to the available ideas in these articles, we intend to ad-
dress a general extension of these works by formulating the following Caputo–Hadamard
fractional boundary value problem via mixed multi-order integro-derivative conditions:

λCHDς
1+u(t) + CHDθ∗

1+u(t) = Â
(
t, u(t)

)
,

u(1) = 0,

µ∗1
CHD

γ∗1
1+u(M) + CHD

γ∗2
1+u(η) = δ1,

µ∗2
HIq∗1

1+u(M) + HIq∗2
1+u(η) = δ2,

(3)

so that λ, µ∗1 , µ∗2 ∈ (0, 1], γ∗1 , γ∗2 ∈ (0, ς− θ∗) with 2 < θ∗ < ς < 3, q∗1 , q∗2 ∈ R+, δ1, δ2 ∈ R
and t ∈ [1, M]. The symbol CHDα∗

1+ points out the Caputo–Hadamard derivative of order

α∗ ∈ {ς, γ∗1 , γ∗2 , θ∗}, with the notation HIq∗

1+ stands for the Hadamard integral of order
q∗ ∈ {q∗1 , q∗2}. A map Â formulated by Â : [1, M]×R→ R is assumed to be continuous on
[1, M]×R with respect to its both components. It is convenient that the researchers of this
field notice this subject so that, motivated by the flexibility of boundary value problems
(1) and (2), the multi-order Caputo–Hadamard-FBVP (3) is modeled with respect to the
generalized operators with kernels, including logarithmic functions. In other words, the
presented formulation for the given multi-order Caputo–Hadamard-FBVP (3) involves
four different derivatives in the format of the Caputo–Hadamard, as well as two different
integrals in the sense of Hadamard. This combined FBVP covers the previous standard
cases of nonlinear fractional differential equations by assigning arbitrary values for all
existing parameters and orders or defining the standard kernel in the mentioned FBVP (3).
The supposed abstract fractional boundary value problem (3) with given mixed boundary
conditions can describe some mathematical models of real and physical processes in which
some parameters are often adjusted to suitable situations. The value of these parameters
can change the effects of fractional derivatives and integrals. Moreover, we express that
such a Caputo–Hadamard multi-order fractional problem has a new and general structure
and is defined for the first time with the aid of the Caputo–Hadamard notion. In this way,
we tried to find analytical existence criteria for the proposed problem (3) with the help of
a composition of existing techniques in the topological degree and fixed point theories.
For more details, see [19–22].
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The scheme of the contents is as follows: First, several required contexts on fractional
calculus and some notions about condensing operators are assembled. Section 3 is assigned
to finding the criteria in which the existence properties can be derived by terms of the
mixed techniques available in the topological degree and fixed point theories. In Section 4,
our analytical findings are supported by demonstrating two simulation examples in the
numerical setting to indicate the applicability of our proofs.

2. Preliminaries

First of all, some fundamental and auxiliary preliminaries on the arbitrary order
calculus are assembled in this part of the manuscript. The ςth-Hadamard integral of a given
function u ∈ CR([c, b]) is formulated by:

HIς
c+u(t) =

1
Γ(ς)

∫ t

c

(
ln

t
r

)(ς−1)
u(r)

dr
r

when the right hand integral exists [13,23] and HI0
c+u(t) = u(t). Additionally, for each

ς1, ς2 ∈ R+, the semigroup property HIς1
c+
(HIς2

c+u(t)
)
= HIς1+ς2

c+ u(t) settles and:

HIς1
c+

(
ln

t
c

)ς2
=

Γ(ς2 + 1)
Γ(ς1 + ς2 + 1)

(
ln

t
c

)ς1+ς2
, t > c.

Taking ς2 = 0, it is clear that:

HIς1
c+1 =

1
Γ(ς1 + 1)

(
ln

t
c

)ς1
.

In this position, we suppose that n = [ς] + 1. Then, the ςth-Hadamard derivative for
an arbitrary mapping u : (c, b)→ R is illustrated by:

HDς
c+u(t) =

1
Γ(n− ς)

(
t

d
dt

)n ∫ t

c

(
ln

t
r

)(n−ς−1)
u(r)

dr
r

,

if RHS exists [13,23]. In the following, the ςth-Caputo–Hadamard derivative for u ∈ ACn
R([c, b])

is introduced by

CHDς
c+u(t) =

1
Γ(n− ς)

∫ t

c

(
ln

t
r

)(n−ς−1)(
t

d
dt

)n
u(r)

dr
r

if the existing integral has finite value [13,23,24]. Again, by assuming u ∈ ACn
R([c, b]) and

n − 1 < ς < n and in light of [23], it is confirmed that the series solution of the given
homogeneous Caputo–Hadamard-FDE CHDς

c+u(t) = 0 possesses a series structure as:
u(t) = ∑n−1

l=0 bl(ln t
c )

l and thus the following equality is valid for each t > c:

HIς
c+
(CHDς

c+u(t)
)
= u(t) + b0 + b1

(
ln

t
c

)
+ b2

(
ln

t
c

)2
+ · · ·+ bn−1

(
ln

t
c

)n−1
.

We now regard B∗ as the category of all bounded sets belonging to the Banach space
W . The measure of noncompactness attributed to Kuratowski (KMNC) µ : B∗ → R+ is
constructed by:

µ(G∗) := inf{ε > 0 : G∗ = ∪n
l=1G

∗
l and D(G∗l ) ≤ ε, l ∈ Nn

1},

so that D(G∗l ) = sup{|u− u′| : u, u′ ∈ G∗l } and G∗ stands for a bounded set contained in
B∗ and µ(G∗) ≤ D(G∗) ∈ (0, ∞). The symbol D points to the diameter here [25–27].

Lemma 1 ([25,28]). Let G∗,O∗ ∈ B∗ be contained inW , which is bounded. Then the following
seven statements hold:
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(1) µ(G∗) = 0 if and only if G∗ is relatively compact;

(2) µ(G∗) = µ(G∗) = µ(cnvx(G∗)), in which cnvx(G∗) and G∗ display the convex hull and
the closure of G∗;

(3) G∗ ⊆ O∗ gives µ(G∗) ≤ µ(O∗);

(4) µ(σ +O∗) ≤ µ(O∗) for any σ ∈ R;

(5) µ(σG∗) = |σ|µ(G∗) for any σ ∈ R;

(6) µ(G∗ +O∗) ≤ µ(G∗) + µ(O∗) subject to G∗ +O∗ = {u + u′; u ∈ G∗, u′ ∈ O∗};

(7) µ(G∗ ∪O∗) ≤ max{µ(G∗), µ(O∗)}.

Let us take G∗ ∈ B∗ as a bounded subset contained inW . A continuous bounded
mapping Ψ∗ : G∗ →W is termed to be µ-Lipschitz whenever R̃∗ ≥ 0 exists so that:

µ(Ψ∗(G∗)) ≤ R̃∗µ(G∗).

In addition, we call Ψ∗ a strict µ-contraction when R̃∗ < 1 [25]. A µ-condensing map-
ping Ψ∗ is formulated by inequality µ(Ψ∗(G∗)) ≤ µ(G∗) for any G∗ ∈ B∗ via µ(G∗) > 0.
From µ(Ψ∗(G∗)) ≥ µ(G∗) it follows that µ(G∗) = 0 [25,29,30].

Proposition 1 ([31]). Suppose that Ψ∗ : G∗ ⊂ W → W is Lipschitz with constant R̃∗. Then,
Ψ∗ is µ-Lipschitz with constant R̃∗.

Proposition 2 ([31]). Let Ψ∗ : G∗ ⊂ W → W be compact for any G∗ ⊂ W . Then, Ψ∗ is
µ-Lipschitz via R̃∗ = 0.

Proposition 3 ([31]). For any G∗ ⊂ W , both operators Ψ∗1 , Ψ∗2 : G∗ → W are supposed to
be µ-Lipschitz with constants R̃∗1 and R̃∗2 . In this case, Ψ∗1 + Ψ∗2 : G∗ → W is µ-Lipschitz via
R̃∗1 + R̃∗2 .

The next theorem from Isaia is used to establish our desired results on the proposed
mixed multi-order Caputo–Hadamard boundary problem (3).

Theorem 1 ([31]). Let Ψ∗ :W →W be µ−condensing and

G∗ = {u ∈ W : ∃ σ ∈ [0, 1], so that u = σ(Ψ∗u)}.

By assuming G∗ as a bounded subset belonging to W , that is, m̃ > 0 exists so that
G∗ ⊂ Vm̃(0), with Vm̃(0) = {u ∈ W : ‖u‖W ≤ m̃}, then:

Deg(I − σΨ∗,Vm̃(0), 0) = 1.

In addition, Ψ∗ admits at least one fixed point and Vm̃(0) involves all fixed points of Ψ∗.

The following theorem, due to Leray–Schauder, yields another criterion to establish
the existence property for the suggested mixed multi-order Caputo–Hadamard-FBVP (3).

Theorem 2 ([32]). Let N be a convex, closed set inW , O be open set belonging to N , and 0 ∈ O.
In addition, a function Ψ∗ : Ō → N is supposed to be continuous and compact.
In this case, either:

(L1) Ψ∗ admits a fixed point in Ō; or

(L2) ∃ u ∈ ∂O, ∃ω∗ ∈ (0, 1) s.t. u = ω∗Ψ∗(u).
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3. Main Results

After determining some of the preliminaries, we intended to reach our main goal for
deriving analytical criteria that guarantee that the proposed mixed multi-order Caputo–
Hadamard-FBVP (3) admits solution on [1, M]. First, we constructed the space: W =
{u(t) : u(t) ∈ CR([1, M])}, along with ‖u‖W = supt∈[1,M] |u(t)|. In this case, an ordered
pair (W , ‖ · ‖W ) has all of the properties of a Banach space. Now, the first structural result
is indicated in the following lemma to illustrate the framework of the equivalent integral
solution for the mixed multi-order Caputo–Hadamard-FBVP (3).

Lemma 2. Let Q ∈ W , λ, µ∗1 , µ∗2 ∈ (0, 1], γ∗1 , γ∗2 ∈ (0, ς − θ∗) with 2 < θ∗ < ς < 3,
q∗1 , q∗2 ∈ R+, δ1, δ2 ∈ R and Θ∗ 6= 0. Then, û0 is a solution for the mixed multi-order
Caputo–Hadamard-FBVP 

λCHDς
1+u(t) + CHDθ∗

1+u(t) = Q(t),

u(1) = 0,

µ∗1
CHD

γ∗1
1+u(M) + CHD

γ∗2
1+u(η) = δ1,

µ∗2
HIq∗1

1+u(M) + HIq∗2
1+u(η) = δ2,

(4)

iff û0 satisfies:

û0(t) =
1

Γ(ς)

∫ t

1

(
ln

t
r

)ς−1
Q(r) dr

r
− 1

Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
û0(r)

dr
r

+
(ln t)ς−1

Θ∗

[
µ∗1Λ∗4

λ
HIς−γ∗1

1+ Q(M)−
µ∗1Λ∗4

λ
HIς−θ∗−γ∗1

1+ û0(M) +
Λ∗4
λ
HIς−γ∗2

1+ Q(η)

−
Λ∗4
λ
HIς−θ∗−γ∗2

1+ û0(η)−
µ∗2Λ∗2

λ
HIς+q∗1

1+ Q(M) +
µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ û0(M)− Λ∗2
λ
HIς+q∗2

1+ Q(η)

+
Λ∗2
λ
HIς+q∗2−θ∗

1+ û0(η)− δ1Λ∗4 + δ2Λ∗2

]
+

(ln t)ς−2

Θ∗

[−µ∗1Λ∗3
λ

HIς−γ∗1
1+ Q(M)

+
µ∗1Λ∗3

λ
HIς−θ∗−γ∗1

1+ û0(M)−
Λ∗3
λ
HIς−γ∗1

1+ Q(η) +
Λ∗3
λ
HIς−θ∗−γ∗2

1+ û0(η) +
µ∗2Λ∗1

λ
HIς+q∗1

1+ Q(M)

−
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ û0(M) +
Λ∗1
λ
HIς+q∗2

1+ Q(η)−
Λ∗1
λ
HIς+q∗2−θ∗

1+ û0(η) + δ1Λ∗3 − δ2Λ∗1

]
, (5)

so that:

Λ∗1 = µ∗1
Γ(ς)

Γ(ς− γ∗1)
(ln M)ς−γ∗1−1 +

Γ(ς)
Γ(ς− γ∗2)

(ln η)ς−γ∗2−1,

Λ∗2 = µ∗1
Γ(ς)

Γ(ς− γ∗1)
(ln M)ς−γ∗1−2 +

Γ(ς)
Γ(ς− γ∗2)

(ln η)ς−γ∗2−2,

Λ∗3 = µ∗2
Γ(ς)

Γ(ς + q∗1)
(ln M)(ς+q∗1−1) +

Γ(ς)
Γ(ς + q∗2)

(ln η)(ς+q∗2−1),

Λ∗4 = µ∗2
Γ(ς)

Γ(ς + q∗1)
(ln M)ς+q∗1−2 +

Γ(ς)
Γ(ς + q∗2)

(ln η)ς+q∗2−2,
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Θ∗ = Λ∗2Λ∗3 −Λ∗1Λ∗4 .

Proof. Suppose that û0 satisfies the given Caputo–Hadamard multi-order differential
Equation (4). Then, we reach the following Hadamard integral equation:

û0(t) =
1
λ
HIς

1+Q(t)−
1
λ
HIς−θ∗

1+ û0(t) + p1(ln t)ς−1 + p2(ln t)ς−2 + p3(ln t)ς−3. (6)

We have to derive three unknowns, namely, p1, p2, and p3 ∈ R that appear in above
integral equation. Since 2 < ς < 3, from the first boundary condition given in (4), we can
obtain p3 = 0. On the contrary, by utilizing the α∗th-Caputo–Hadamard derivative and
q∗th-Hadamard integral so that α∗ ∈ {γ∗1 , γ∗2}, q∗ ∈ {q∗1 , q∗2} and 0 < θ∗ < ς− β∗, we have:

CHDα∗
1+ û0(t) =

1
λ
HIς−α∗

1+ Q(t)− 1
λ
HIς−θ∗−α∗

1+ û0(t)

+ p1
Γ(ς)

Γ(ς− α∗)
(ln t)(ς−α∗−1) + p2

Γ(ς)
Γ(ς− α∗)

(ln t)(ς−α∗−2)

and:

HIβ∗

1+ û0(t) =
1
λ
HIς+β∗

1+ Q(t)− 1
λ
HIς−θ∗+β∗

1+ û0(t)

+ p1
Γ(k)

Γ(ς + β∗)
(ln t)(ς+β∗−1) + p2

Γ(ς)
Γ(ς + β∗)

(ln t)(ς+β∗−2).

Inserting α∗ = γ∗1 , α∗ = γ∗2 , β∗ = q∗1 , and β∗ = q∗2 into the above relations and
invoking the second condition of (4), we reach:

p1 =
1

Λ∗2Λ∗3 −Λ∗1Λ∗4

[
µ∗1Λ∗4

λ
H Iς−γ∗1

1+ Q(M)−
µ∗1Λ∗4

λ
H Iς−θ∗−γ∗1

1+ û0(M)

+
Λ∗4
λ
H Iς−γ∗2

1+ Q(η)−
Λ∗4
λ
H Iς−θ∗−γ∗2

1+ û0(η)−
µ∗2Λ∗2

λ
H Iς+q∗1

1+ Q(M) +
µ∗2Λ∗2

λ
H Iς+q∗1−θ∗

1+ û0(M)

− Λ∗2
λ
H Iς+q∗2

1+ Q(η) + Λ∗2
λ
H Iς+q∗2−θ∗

1+ û0(η)− δ1Λ∗4 + δ2Λ∗2

]
and:

p2 =
1

Λ∗2Λ∗3 −Λ∗1Λ∗4

[
−

µ∗1Λ∗3
λ

H Iς−γ∗1
1+ Q(M) +

µ∗1Λ∗3
λ

H Iς−θ∗−γ∗1
1+ û0(M)

−
Λ∗3
λ
H Iς−γ∗2

1+ Q(η) +
Λ∗3
λ
H Iς−θ∗−γ∗2

1+ û0(η) +
µ∗2Λ∗1

λ
H Iς+q∗1

1+ Q(M) +
µ∗2Λ∗2

λ
H Iς+q∗1−θ∗

1+ û0(M)

+
Λ∗1
λ
H Iς+q∗2

1+ Q(η)−
Λ∗1
λ
H Iς+q∗2−θ∗

1+ û0(η) + δ1Λ∗3 − δ2Λ∗1

]
.

Eventually, we can insert the above-obtained values for unknown constants p1 and p2
into (6), and this means that û0 satisfies the Hadamard integral Equation (5). The converse
is immediately followed by some simple calculations. This ends the proof.

To reach the main purpose for deriving the existence criteria for the solutions of the
mixed multi-order Caputo–Hadamard boundary problem (3), in the light of Lemma 2, we
formulated an operator Ψ∗ :W →W as follows:
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Ψ∗u(t) =
1

Γ(ς)

∫ t

1

(
ln

t
r

)ς−1
Â
(
r, u(r)

) dr
r
− 1

Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
u(r)

dr
r

+
(ln t)ς−1

Θ∗

[
µ∗1Λ∗4

λ
HIς−γ∗1

1+ Â
(

M, u(M)
)
−

µ∗1Λ∗4
λ

HIς−θ∗−γ∗1
1+ u(M) +

Λ∗4
λ
HIς−γ∗2

1+ Â
(
η, u(η)

)
−

Λ∗4
λ
HIς−θ∗−γ∗2

1+ u(η)− µ∗2Λ∗2
λ

HIς+q∗1
1+ Â

(
M, u(M)

)
+

µ∗2Λ∗2
λ

HIς+q∗1−θ∗

1+ u(M)− Λ∗2
λ
HIς+q∗2

1+ Â
(
η, u(η)

)
+

Λ∗2
λ
HIς+q∗2−θ∗

1+ u(η)− δ1Λ∗4 + δ2Λ∗2

]
+

(ln t)ς−2

Θ∗

[−µ∗1Λ∗3
λ

HIς−γ∗1
1+ Â

(
M, u(M)

)
+

µ∗1Λ∗3
λ

HIς−θ∗−γ∗1
1+ u(M)−

Λ∗3
λ
HIς−γ∗1

1+ Â
(
η, u(η)

)
+

Λ∗3
λ
HIς−θ∗−γ∗2

1+ u(η) +
µ∗2Λ∗1

λ
HIς+q∗1

1+ Â
(

M, u(M)
)

−
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ u(M) +
Λ∗1
λ
HIς+q∗2

1+ Â
(
η, u(η)

)
−

Λ∗1
λ
HIς+q∗2−θ∗

1+ u(η) + δ1Λ∗3 − δ2Λ∗1

]
(7)

for each u ∈ W . Before attempting to prove the first result, we first regarded some initial
hypotheses that are utilized in the rest of the article.

(S1) There is a constant, LÂ > 0, so that for any u1, u2 ∈ W , the following inequality
holds:

|Â
(
t, u1

)
− Â

(
t, u2

)
| ≤ LÂ|u1 − u2|.

(S2) There exist two constants, CÂ and MÂ, so that for any u ∈ W :

|Â
(
t, u
)
| ≤ CÂ|u|+MÂ.

(S3) Let LÂQ∗ < 1, so that:

Q∗ = (ln M)ς

λΓ(ς + 1)
+
( (ln M)ς−1|Λ∗4 |

λΘ∗
+

(ln M)ς−2|Λ∗3 |
λΘ∗

)[ |µ∗1 |(ln M)ς−γ∗1

Γ(ς− γ∗1 + 1)
+

(ln M)ς−γ∗2

Γ(ς− γ∗2 + 1)

]

+
( (ln M)ς−1|Λ∗2 |

λΘ∗
+

(ln M)ς−2|Λ∗1 |
λΘ∗

)[ |µ∗2 |(ln M)ς+q∗1

Γ(ς + q∗1 + 1)
+

(ln M)ς+q∗2

Γ(ς + q∗2 + 1)

]
. (8)

In addition, we split the operator Ψ∗ :W →W into two operators, i.e., Ψ∗1 :W →W
and Ψ∗2 :W →W , by the following formulations:

(Ψ∗1u)(t) =
1

Γ(ς)

∫ t

1

(
ln

t
r

)ς−1
Â
(
r, u(r)

) dr
r

+
(ln t)ς−1

Θ∗

[
µ∗1Λ∗4

λ
HIς−γ∗1

1+ Â(M, u(M)) +
Λ∗4
λ
HIς−γ∗2

1+ Â(η, u(η))

− µ∗2Λ∗2
λ

HIς+q∗1
1+ Â(M, u(M))− Λ∗2

λ
HIς+q∗2

1+ Â(η, u(η))
]

+
(ln t)ς−2

Θ∗

[
−

µ∗1Λ∗3
λ

HIς−γ∗1
1+ Â(M, u(M))−

Λ∗3
λ
HIς−γ∗2

1+ Â(η, u(η))
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+
µ∗2Λ∗1

λ
Iς+q∗1

1+ Â(M, u(M)) +
Λ∗1
λ
HIς+q∗2

1+ Â(η, u(η))
]

(9)

and:

(Ψ∗2u)(t) =
1

Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
u(r)

dr
r

+
(ln t)ς−1

Θ∗

[
−

µ∗1Λ∗4
λ

HIς−θ∗−γ∗1
1+ u(M)−

Λ∗4
λ
HIς−θ∗−γ∗2

1+ u(η)

+
µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ u(M) +
Λ∗2
λ
HIς+q∗2−θ∗

1+ u(η)− δ1Λ∗4 + δ2Λ∗2

]

+
(ln t)ς−2

Θ∗

[
µ∗1Λ∗3

λ
HIς−θ∗−γ∗1

1+ u(M) +
Λ∗3
λ

Iς−θ∗−γ∗2
1+ u(η)

−
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ u(M)−
Λ∗1
λ
HIς+q∗2−θ∗

1+ u(η) + δ1Λ∗3 − δ2Λ∗1

]
. (10)

In fact, (Ψ∗u)(t) = (Ψ∗1u)(t) + (Ψ∗2u)(t). In this position, it is evident that if there
exists a fixed point for an operator Ψ∗ defined by (7), then this is equivalent to the fact that
there exists a solution for the mixed multi-order Caputo–Hadamard-FBVP (3).

Lemma 3. By taking into account hypothesis (S1), the single-valued operator Ψ∗1 : W → W
formulated above is µ-Lipschitz with constant R̃∗1 = LÂQ∗, where Q∗ is illustrated by (8), and we
also have the growth condition ‖Ψ∗1(u)‖W ≤ CÂQ∗‖u‖W +MÂQ∗ for any u ∈ W .

Proof. Clearly, from hypothesis (S1), we know that Â is Lipschitz with constant LÂ. Thus,
one may write:

|(Ψ∗1u)(t)− (Ψ∗1u′)(t)|

≤ 1
Γ(ς)

∫ t

1

(
ln

t
r

)ς−1
|Â
(
r, u(r)

)
− Â

(
r, u′(r)

)
| dr

r

+
(ln t)ς−1

|Θ∗|

[ |µ∗1 ||Λ∗4 |
λ

HIς−γ∗1
1+ |Â(M, u(M))− Â(M, u′(M))|

+
|Λ∗4 |

λ
HIς−γ∗2

1+ |Â(η, u(η))− Â(η, u′(η))|

+
|µ∗2 ||Λ∗2 |

λ
HIς+q∗1

1+ |Â(M, u(M))− Â(M, u′(M))|+ |Λ
∗
2 |

λ
HIς+q∗2

1+ |Â(η, u(η))− Â(η, u′(η))|
]

+
(ln t)ς−2

|Θ∗|

[ |µ∗1 ||Λ∗3 |
λ

HIς−γ∗1
1+ |Â(M, u(M))− Â(M, u′(M))|

+
|Λ∗3 |

λ
HIς−γ∗2

1+ |Â(η, u(η))− Â(η, u′(η))|+
|µ∗2 ||Λ∗1 |

λ
HIς+q∗1

1+ |Â(M, u(M))− Â(M, u′(M))|

+
|Λ∗1 |

λ
HIς+q∗2

1+ |Â(η, u(η))− Â(η, u′(η))|
]

≤ LÂ‖u− u′‖W
[

(ln M)ς

λΓ(ς + 1)
+
( (ln M)ς−1|Λ∗4 |

λΘ∗
+

(ln M)ς−2|Λ∗3 |
λΘ∗

)[ |µ∗1 |(ln M)ς−γ∗1

Γ(ς− γ∗1 + 1)
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+
(ln M)ς−γ∗2

Γ(ς− γ∗2 + 1)

]
+
( (ln M)ς−1|Λ∗2 |

λΘ∗
+

(ln M)ς−2|Λ∗1 |
λΘ∗

)[ |µ∗2 |(ln M)ς+q∗1

Γ(ς + q∗1 + 1)
+

(ln M)ς+q∗2

Γ(ς + q∗2 + 1)

]]

= LÂQ
∗‖u− u′‖W = R̃∗1‖u− u′‖W .

This illustrates that Ψ∗1 is Lipschitz with constant R̃∗1 = LÂQ∗. Then, in view of
Proposition 1, we can find that Ψ∗1 is µ-Lipschitz via R̃∗1 = LÂQ∗, where µ stands for the
Kuratowski’s measure of non-compactness (KMNC). On the contrary, with due attention
to hypothesis (S1), we have:

‖Ψ∗1(u)‖W ≤ CÂQ
∗‖u‖W +MÂQ

∗

and finally, the proof process is finished.

Lemma 4. Assume that the condition (S2) holds. Then, Ψ∗2 : W → W is continuous and the
growth condition ‖Ψ∗2(u)‖W ≤ Z∗‖u‖W + ∆∗1 is valid for any u ∈ W , so that:

∆∗1 =
(ln M)ς−1

Θ∗
(
|δ1Λ∗4 |+ |δ2Λ∗2 |

)
+

(ln M)ς−2

Θ∗
(
|δ1Λ∗3 |+ |δ2Λ∗1 |

)
(11)

and:

Z∗ = (ln M)ς−θ∗

λΓ(ς− θ∗ + 1)
+
( (ln M)ς−1|Λ∗4 |

λΘ∗
+

(ln M)ς−2|Λ∗3 |
λΘ∗

)[ |µ∗1 |(ln M)ς−γ∗1−θ∗

Γ(ς− γ∗1 − θ∗ + 1)

+
(ln M)ς−γ∗2−θ∗

Γ(ς− γ∗2 − θ∗ + 1)

]
+
( (ln M)ς−1|Λ∗2 |

λΘ∗
+

(ln M)ς−2|Λ∗1 |
λΘ∗

)

×
[ |µ∗2 |(ln M)ς+q∗1−θ∗

Γ(ς + q∗1 − θ∗ + 1)
+

(ln M)ς+q∗2−θ∗

Γ(ς + q∗2 − θ∗ + 1)

]
. (12)

Proof. Let {un} be a continuous sequence of functions defined on [1, M], so that
limn→∞ un(t) = u(t). By taking into account the dominated convergence theorem at-
tributed to Lebesgue, we arrive at:

lim
n→∞

Ψ∗2un(t) =
1

Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
lim

n→∞
un(r)

dr
r

+
(ln t)ς−1

Θ∗

[
−

µ∗1Λ∗4
λ

HIς−θ∗−γ∗1
1+ lim

n→∞
un(M)−

Λ∗4
λ
HIς−θ∗−γ∗2

1+ lim
n→∞

un(η)

+
µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ lim
n→∞

un(M) +
Λ∗2
λ
HIς+q∗2−θ∗

1+ lim
n→∞

un(η)− δ1Λ∗4 + δ2Λ∗2

]

+
(ln t)ς−2

Θ∗

[
µ∗1Λ∗3

λ
HIς−θ∗−γ∗1

1+ lim
n→∞

un(M) +
Λ∗3
λ

Iς−θ∗−γ∗2
1+ lim

n→∞
un(η)

−
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ lim
n→∞

un(M)−
Λ∗1
λ
HIς+q∗2−θ∗

1+ lim
n→∞

un(η) + δ1Λ∗3 − δ2Λ∗1

]
= Ψ∗2u(t)
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for all t ∈ [1, M]. Therefore we realize that Ψ∗2un(t)→ Ψ∗2u(t) for all t ∈ [1, M] whenever
n→ ∞, and thus, Ψ∗2 is continuous on Vm̃(0). In the sequel, to check the growth condition
for an operator Ψ∗2 , the assumption (S2) considered, and we have:

|Ψ∗2u(t)| ≤ 1
Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
|u(r)| dr

r

+
(ln M)ς−1

Θ∗

[
µ∗1Λ∗4

λ
HIς−θ∗−γ∗1

1+ |u(M)|+
Λ∗4
λ
HIς−θ∗−γ∗2

1+ |u(η)|

+
µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ |u(M)|+ Λ∗2
λ
HIς+q∗2−θ∗

1+ |u(η)|+ |δ1Λ∗4 |+ |δ2Λ∗2 |
]

+
(ln M)ς−2

Θ∗

[
µ∗1Λ∗3

λ
HIς−θ∗−γ∗1

1+ |u(M)|+
Λ∗3
λ
HIς−θ∗−γ∗2

1+ |u(η)|

+
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ |u(M)|+
Λ∗1
λ
HIς+q∗2−θ∗

1+ |u(η)|+ |δ1Λ∗3 |+ |δ2Λ∗1 |
]

≤ ‖u‖WZ∗ +
(ln M)ς−1

Θ∗
(
|δ1Λ∗4 |+ |δ2Λ∗2 |

)
+

(ln M)ς−2

Θ∗
(
|δ1Λ∗3 |+ |δ2Λ∗1 |

)
= Z∗‖u‖W + ∆∗1 ,

and we reach the desired conclusion.

Lemma 5. Ψ∗2 :W →W is compact, µ-Lipschitz via R̃∗2 = 0 by assuming µ as the KMNC.

Proof. We regard a bounded set G∗ ⊂ Vm̃(0) = {u ∈ W : ‖u‖W ≤ m̃} ⊆ W and an
arbitrary sequence {un} in G∗. In light of Lemma 4, we have inequality: ‖Ψ∗2(un)‖W ≤
Z∗m̃ + ∆∗1 for every un ∈ G∗. This ensures the boundedness of Ψ∗2(G

∗). Moreover, we
claim that {Ψ∗2(un)} is equi-continuous for every un ∈ G∗ ⊂ Vm̃(0). To confirm this claim,
we select t1, t2 ∈ [1, M] arbitrarily, such that t1 < t2. Now, one can write:

|(Ψ∗2un)(t2)− (Ψ∗2un)(t1)|

≤ m̃
∣∣∣ 1
Γ(ς− θ∗)

∫ t2

1

(
ln

t2

r

)ς−θ∗−1 dr
r
− 1

Γ(ς− θ∗)

∫ t1

1

(
ln

t1

r

)ς−θ∗−1 dr
r

∣∣∣
+
|(ln t2)

ς−1 − (ln t1)
ς−1|

|Θ∗|

[
m̃
∣∣∣µ∗1Λ∗4

λ
HIς−θ∗−γ∗1

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗4
λ
HIς−θ∗−γ∗2

1+ (1)
∣∣∣

+ m̃
∣∣∣µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗2
λ
HIς+q∗2−θ∗

1+ (1)
∣∣∣+ ∣∣∣δ1Λ∗4

∣∣∣+ ∣∣∣δ2Λ∗2
∣∣∣]

+ m̃
∣∣∣ (ln t1)

ς−2 − (ln t2)
ς−2

Θ∗

∣∣∣[∣∣∣µ∗1Λ∗3
λ

HIς−θ∗−γ∗1
1+ (1)

∣∣∣+ m̃
∣∣∣Λ∗3

λ
HIς−θ∗−γ∗2

1+ (1)
∣∣∣

+ m̃
∣∣∣µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗1
λ
HIς+q∗2−θ∗

1+ (1)
∣∣∣+ ∣∣∣δ1Λ∗3

∣∣∣+ ∣∣∣δ2Λ∗1
∣∣∣].

In view of above inequality, we can find that the RHS of the above relations ap-
proaches zero (free of un ∈ G∗) when we take t1 → t2. Thus,

∣∣Ψ∗2(un)(t2)− Ψ∗2(un)(t1)
∣∣

tends to 0 as t1 → t2. As a consequence, {Ψ∗2(un)} is equi-continuous, and with due atten-
tion to the Arzelà–Ascoli theorem, the compactness of Ψ∗2(G

∗) is concluded. Eventually,
by considering Proposition 2, Ψ∗2 is µ-Lipschitz via R̃∗2 = 0.
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Based on the above Lemmas, we intended to indicate the next theorem in which the
existence criterion of the solution for the mixed multi-order Caputo–Hadamard boundary
problem (3) is established.

Theorem 3. Suppose that the three hypotheses (S1), (S2), and (S3) are valid. Then, the proposed
mixed multi-order Caputo–Hadamard boundary problem (3) has at least one solution u ∈ W if
CÂQ∗ + Z∗ < 1. Moreover, the collection of all solutions of the multi-order problem (3) is a
bounded set inW .

Proof. With due attention to condition (S3) and by Lemma 3, it is found that Ψ∗1 :W →W
formulated in (9) has a µ-Lipschitzian property with constant R̃∗1 = LÂQ∗ ∈ (0, 1), where
Q∗ is illustrated by (8). On the contrary, by Lemma 5, it is deduced that the opera-
tor Ψ∗2 : W → W formulated in (10) is µ-Lipschitz with R̃∗2 = 0. As a consequence,
from Proposition 3, we confirm that the operator Ψ∗ :W →W decomposed by Ψ∗ = Ψ∗1 + Ψ∗2
is a strict µ-contraction via R̃∗ = R̃∗1 + R̃∗2 = R̃∗1 . However, we know that R̃∗ = R̃∗1 < 1, so
Ψ∗ is µ-condensing. Subsequently, we constructed the following subset ofW by:

G∗ := {u ∈ W : there exists σ ∈ [0, 1], so that u = σΨ∗(u)}.

Here, we checked the boundedness of the subset G∗ in W . To reach the desired
purpose, we chose u ∈ G∗ arbitrarily. In this case, by considering the growth conditions
achieved in both Lemmas 3 and 5, we obtained the following estimate:∥∥u

∥∥
W =

∥∥σΨ∗(u)
∥∥
W = σ

∥∥Ψ∗(u)
∥∥
W ≤ σ

(∥∥Ψ∗1(u)
∥∥
W +

∥∥Ψ∗2(u)
∥∥
W
)

≤ σ
(
CÂQ

∗‖u‖W +MÂQ
∗ +Z∗‖u‖W + ∆1

)
≤ σ

(
CÂQ

∗ +Z∗)‖u‖W + σ(MÂQ
∗ + ∆∗1).

The above estimates demonstrate that G∗ is bounded inW . Hence, a positive number
m̃ > 0 exists, so that G∗ ⊂ Vm̃(0), and thus, Deg(I − σΨ∗,Vm̃(0), 0) = 1 according to
Theorem 1. Eventually, since all items of Isaia’s theorem 1 are valid, one can realize that at
least one fixed point exists for the operator Ψ∗ = Ψ∗1 +Ψ∗2 , and that the collection of all fixed
points of Ψ∗ is a bounded subset inW . From this, we understand that at least one solution
to [1, M] exists for the mixed multi-order Caputo–Hadamard boundary problem (3), and
that the collection of all solutions is a bounded set—and so the proof is ended.

In the subsequent step, the uniqueness property of solution for the mixed multi-order
Caputo–Hadamard-FBVP (3) is obtained in the next theorem.

Theorem 4. Suppose that all three assumptions (S1), (S2), and (S3) are valid, and that we also
have the inequality LÂQ∗+Z∗ < 1, whereQ∗ and Z∗ are illustrated by (8) and (12), respectively.
Then, a unique solution exists for [1, M] for the mixed multi-order Caputo–Hadamard boundary
problem (3).

Proof. To implement the deduction, we invoked the contraction principle due to Banach.
By choosing u ∈ W arbitrarily and in view of Lemma 3 and condition (S1), we have:

|Ψ∗1u(t)−Ψ∗1u′(t)| ≤ LÂQ
∗‖u− u′‖W (13)

so that an operator Ψ∗1 :W →W is formulated by (9). In addition, we estimate:

|Ψ∗2u(t)−Ψ∗2u′(t)|

≤ 1
Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
|u(r)− u′(r)| dr

r
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+
(ln M)ς−1

Θ∗

[
µ∗1Λ∗4

λ
HIς−θ∗−γ∗1

1+ |u(M)− u′(M)| −
Λ∗4
λ
HIς−θ∗−γ∗2

1+ |u(η)− u′(η)|

+
µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ |u(M)− u′(M)|+ Λ∗2
λ
HIς+q∗2−θ∗

1+ |u(η)− u′(η)|
]

+
(ln M)ς−2

Θ∗

[
µ∗1Λ∗3

λ
HIς−θ∗−γ∗1

1+ |u(M)− u′(M)|+
Λ∗3
λ

Iς−θ∗−γ∗2
1+ |u(η)− u′(η)|

+
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ |u(M)− u′(M)|+
Λ∗1
λ
HIς+q∗2−θ∗

1+ |u(η)− u′(η)|
]

≤ Z∗‖u− u′‖W (14)

so that an operator Ψ∗2 :W →W is formulated by (10). As a consequence, by (13) and (14),
we find that:

‖Ψ∗(u)−Ψ∗(u′)‖W ≤ (LÂQ
∗ +Z∗)‖u− u′‖W .

From the obtained result, we realize that Ψ∗ = Ψ∗1 + Ψ∗2 : W → W is a contraction.
Then, a unique solution exists for [1, M] for the mixed multi-order Caputo–Hadamard
boundary problem (3) according to the Banach principle, and this ends the proof.

In the final step, another existence criterion of the solution for the mixed multi-order
Caputo–Hadamard boundary problem (3) is derived by invoking a result due to Leray–Schauder.

Theorem 5. Assume that Z∗ < 1. Let Â : [1, M]×W → W be continuous and a nondecreas-
ing continuous mapping Φ1 : [0, ∞) → (0, ∞) and Φ2 ∈ CR+([1, M]), so that |Â(t, u)| ≤
Φ2(t)Φ1(‖u‖W ) for any (t, u) ∈ [1, M]×W . Furthermore, suppose that a constant N∗ > 0
exists, provided that:

(1−Z∗)N∗
Φ1(N∗)‖Φ2‖Q∗ + ∆∗1

> 1, (15)

whereQ∗, ∆∗1 , and Z∗ are illustrated by (8), (11), and (12), respectively. Then, at least one solution
is found for [1, M] for the mixed multi-order Caputo–Hadamard boundary problem (3).

Proof. To begin the proof, we first regard the operator Ψ∗ : W → W formulated by (7).
Now, we intend to check this property that every bounded set corresponds to bounded
subsets of W by the operator Ψ∗. To confirm this subject, we take m̃ > 0 and Vm̃(0) =
{u ∈ W : ‖u‖W ≤ m̃} in the Banach spaceW . In this case, for any t ∈ [1, M]:

|Ψ∗u(t)| ≤ sup
t∈[1,M]

∣∣∣∣∣ 1
Γ(ς)

∫ t

1

(
ln

t
r

)ς−1
Â
(
r, u(r)

) dr
r
− 1

Γ(ς− θ∗)

∫ t

1

(
ln

t
r

)ς−θ∗−1
u(r)

dr
r

+
(ln t)ς−1

Θ∗

[
µ∗1Λ∗4

λ
HIς−γ∗1

1+ Â
(

M, u(M)
)
−

µ∗1Λ∗4
λ

HIς−θ∗−γ∗1
1+ u(M) +

Λ∗4
λ
HIς−γ∗2

1+ Â
(
η, u(η)

)
−

Λ∗4
λ
HIς−θ∗−γ∗2

1+ u(η)− µ∗2Λ∗2
λ

HIς+q∗1
1+ Â

(
M, u(M)

)
+

µ∗2Λ∗2
λ

HIς+q∗1−θ∗

1+ u(M)− Λ∗2
λ
HIς+q∗2

1+ Â
(
η, u(η)

)
+

Λ∗2
λ
HIς+q∗2−θ∗

1+ u(η)− δ1Λ∗4 + δ2Λ∗2

]
+

(ln t)ς−2

Θ∗

[−µ∗1Λ∗3
λ

HIς−γ∗1
1+ Â

(
M, u(M)

)
+

µ∗1Λ∗3
λ

HIς−θ∗−γ∗1
1+ u(M)−

Λ∗3
λ
HIς−γ∗1

1+ Â
(
η, u(η)

)
+

Λ∗3
λ
HIς−θ∗−γ∗2

1+ u(η) +
µ∗2Λ∗1

λ
HIς+q∗1

1+ Â
(

M, u(M)
)
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−
µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ u(M) +
Λ∗1
λ
HIς+q∗2

1+ Â
(
η, u(η)

)
−

Λ∗1
λ
HIς+q∗2−θ∗

1+ u(η) + δ1Λ∗3 − δ2Λ∗1

]∣∣∣∣∣
≤ ‖Φ2‖WΦ1(‖u‖W )Q∗ + ‖u‖WZ∗ + ∆∗1

and consequently:

‖Ψ∗(u)‖W ≤ ‖Φ2‖WΦ1(m̃)Q∗ + m̃Z∗ + ∆∗1 .

In the sequel, we continue the proof process to guarantee that every bounded set (balls)
corresponds to equi-continuous subsets ofW by the operator Ψ∗. By taking m1, m2 ∈ [1, M]

with m1 < m2 and u ∈ Vm̃(0), we have:

|Ψ∗(m2)−Ψ∗(m1)|

≤ ‖Φ2‖WΦ1(m̃)
∣∣∣ 1
Γ(ς)

∫ m2

1

(
ln

m2

r

)ς−1 dr
r
− 1

Γ(ς)

∫ m1

1

(
ln

m1

r

)ς−1 dr
r

∣∣∣
+ m̃

∣∣∣ 1
Γ(ς− θ∗)

∫ m2

1

(
ln

m2

r

)ς−θ∗−1 dr
r
− 1

Γ(ς− θ∗)

∫ m1

1

(
ln

m1

r

)ς−θ∗−1 dr
r

∣∣∣
+
|(ln m2)

ς−1 − (ln m1)
ς−1|

|Θ∗|

{
m̃
∣∣∣µ∗1Λ∗4

λ
HIς−θ∗−γ∗1

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗4
λ
HIς−θ∗−γ∗2

1+ (1)
∣∣∣

+ m̃
∣∣∣µ∗2Λ∗2

λ
HIς+q∗1−θ∗

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗2
λ
HIς+q∗2−θ∗

1+ (1)
∣∣∣‖Φ2‖WΦ1(m̃)

∣∣∣µ∗1Λ∗4
λ

HIς−γ∗1
1+ (1)

∣∣∣
+ ‖Φ2‖WΦ1(m̃)

∣∣∣Λ∗4
λ
HIς−γ∗2

1+ (1)
∣∣∣+ ‖Φ2‖WΦ1(m̃)

∣∣∣µ∗2Λ∗2
λ

HIς+q∗1
1+ (1)

∣∣∣+ ‖Φ2‖WΦ1(m̃)
∣∣∣Λ∗2

λ
HIς+q∗2

1+ (1)
∣∣∣

+
∣∣∣δ1Λ∗4

∣∣∣+ ∣∣∣δ2Λ∗2
∣∣∣}+

∣∣∣ (ln m1)
ς−2 − (ln m2)

ς−2

Θ∗

∣∣∣{m̃
∣∣∣µ∗1Λ∗3

λ
HIς−θ∗−γ∗1

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗3
λ
HIς−θ∗−γ∗2

1+ (1)
∣∣∣

+ m̃
∣∣∣µ∗2Λ∗1

λ
HIς+q∗1−θ∗

1+ (1)
∣∣∣+ m̃

∣∣∣Λ∗1
λ
HIς+q∗2−θ∗

1+ (1)
∣∣∣+ ‖Φ2‖WΦ1(m̃)

∣∣∣µ∗1Λ∗3
λ

HIς−γ∗1
1+ (1)

∣∣∣
+ ‖Φ2‖WΦ1(m̃)

∣∣∣Λ∗3
λ
HIς−γ∗2

1+ (1)
∣∣∣+ ‖Φ2‖WΦ1(m̃)

∣∣∣µ∗2Λ∗1
λ

HIς+q∗1
1+ (1)

∣∣∣
+ ‖Φ2‖WΦ1(m̃)

∣∣∣Λ∗1
λ
HIς+q∗2

1+ (1)
∣∣∣+ ∣∣∣δ1Λ∗3

∣∣∣+ ∣∣∣δ2Λ∗1
∣∣∣}.

In view of above inequality, we can find that the RHS of above relations approaches
zero (not depending on u ∈ Vm̃(0)) as m1 → m2. Thus,

∣∣Ψ∗(u)(m2)−Ψ∗(u)(m1)
∣∣ tends to

0. Accordingly, {Ψ∗(u)} is equi-continuous and with due attention to the Arzelà–Ascoli
theorem, Ψ∗(Vm̃(0)) is compact. The final considered goal in this proof is achieved by the
help of the Leray–Schauder result once we conclude the boundedness of the collection of
all solutions of ω∗Ψ∗u = u by choosing ω∗ ∈ (0, 1). To arrive at such an aim, we regard
u as having satisfied the mentioned equation. For each t ∈ [1, M] and by some simple
calculations, we obtain:

|u(t)| = |ω∗||Ψ∗u(t)| ≤ ‖Φ2‖Φ1(‖u‖W )Q∗ + ‖u‖WZ∗ + ∆∗1
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and thus it becomes:
(1−Z∗)‖u‖W

Φ1(‖u‖W )‖Φ2‖Q∗ + ∆∗1
< 1.

Based on the hypothesis, we select N∗ ∈ R+, so that N∗ 6= ‖u‖W . Then we construct
an open set O = {u ∈ W : ‖u‖ < N∗}. Then, we can easily realize that Ψ∗ : Ō → W is
continuous and completely continuous. With due attention to such a choice ofO, there is no
element u ∈ ∂O fulfilling ω∗Ψ∗u = u for one ω∗ ∈ (0, 1). Hence, based on the conditions
of Theorem 2, it is followed that Ψ∗ possesses a fixed point u ∈ Ō, and accordingly, it is
found a solution for the mixed multi-order Caputo–Hadamard-FBVP (3) on [1, M], and the
proof process is ended.

4. Examples

In this part of the current article, our analytical findings are supported by demon-
strating two simulation examples in the numerical setting to indicate the applicability of
our proofs.

Example 1. By taking into account the problem (3), we formulated the mixed multi-order Caputo–
Hadamard fractional boundary problem:

0.99CHD2.68
1+ u(t) + CHD2.01

1+ u(t) =
1

49 + exp (t2 − 1)

( |u(t)|
25 + |u(t)|

)
+

2020
2021

,

u(1) = 0, 0.01CHD0.6
1+u

(6
5

)
+ CHD0.5

1+u(1.01) =
1
5

,

0.99HI0.05
1+ u

(6
5

)
+ HI5.11

1+ u(1.01) =
1
12

.

(16)

Here, t ∈
[
1,

6
5

]
, λ = 0.99, ς = 2.68, θ∗ = 2.01, γ∗1 = 0.6, γ∗2 = 0.5, q∗1 = 0.5,

q∗2 = 5.11, δ1 =
1
16

, δ2 =
5

12
, µ∗1 = 0.01, µ∗2 = 0.99, η = 1.01, and M =

6
5

. Note that:
γ∗1 , γ∗2 < 0.67 = ς− θ∗. Based on the above parameters, we can find that:

Λ∗1 ' 0.0119, Λ∗2 ' 0.9774, Λ∗3 ' 0.0501, Λ∗4 ' 0.2746,

Θ∗ ' 0.0457, Q∗ ' 0.0128, Z∗ ' 0.9927.

In addition, we regarded Â :
[
1,

6
5

]
×R→ R based on the following formulation:

Â(t, u(t)) =
1

49 + exp (t2 − 1)

( |u(t)|
25 + |u(t)|

)
+

2020
2021

.

In this case, we obviously have:

∣∣Â(t, u(t)
)
− Â

(
t, u′(t)

)∣∣ ≤ 1
2
|u(t)− u′(t)|

and: ∣∣Â(t, u(t)
)∣∣ ≤ 1

50
|u(t)|+ 2020

2021
,

so that LÂ =
1
2

, CÂ =
1

50
and MÂ =

2020
2021

. On the contrary, we obtained the constants:

R̃∗1 = LÂQ
∗ ' 0.0064 < 1 and CÂQ

∗ +Z∗ ' 0.9930 < 1.
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As a consequence, in view of Theorem 3, we realized that the mixed multi-order Caputo–

Hadamard-FBVP (16) has at least a solution function u belonging to CR
([

1,
6
5

])
. Furthermore,

since
LÂQ

∗ +Z∗ ' 0.9991 < 1,

Theorem 4 guarantees that only one solution exists for the mentioned mixed multi-order Caputo–
Hadamard-FBVP (16).

Example 2. In the second example, by taking into account the problem (3), we formulated the
mixed multi-order Caputo–Hadamard fractional boundary problem:

0.99CHD2.78
1+ u(t) + CHD2.02

1+ u(t) =
1

t2 + 2020

( u(t)
|u(t)|+ 1

+
2021
2022

)
,

u(1) = 0, 0.01CHD0.68
1+ u(1.22) + CHD0.58

1+ u(1.02) =
2022
2023

,

0.89HI0.05
1+ u(1.22) + HI02.99

1+ u(1.02) =
2021
2022

.

(17)

Here, t ∈ [1, 1.22], λ = 0.99, ς = 2.78, θ∗ = 2.02, γ∗1 = 0.68, γ∗2 = 0.58, q∗1 = 0.05,

q∗2 = 2.99, δ1 =
2022
2023

, δ2 =
2021
2022

, µ∗1 = 0.01, µ∗2 = 0.89, η = 1.02, and M = 1.22. Note that:
γ∗1 , γ∗2 < 0.76 = ς− θ∗. Based on the above parameters, we can find that:

Λ∗1 ' 0.0227, Λ∗2 ' 1.0243, Λ∗3 ' 0.0444, Λ∗4 ' 0.2233,

Θ∗ ' 0.0404, Q∗ ' 0.0130, Z∗ ' 0.9315, ∆∗1 ' 2.2112.

In the sequel, regarding Â : [1, 1.22]×R→ R as the formulation:

Â(t, u(t)) =
1

t2 + 2020

( u(t)
|u(t)|+ 1

+
2021
2022

)
.

Then:∣∣Â(t, u(t))
∣∣ = ∣∣∣∣ 1

t2 + 2020

( u(t)
|u(t)|+ 1

+
2021
2022

)∣∣∣∣ ≤ 1
t2 + 2020

(
|u(t)|+ 2021

2022

)
.

Putting Φ1(|u|) = |u|+
2021
2022

and Φ2(t) =
1

t2 + 2020
, |Â(t, u)| ≤ Φ2(t)Φ1(‖u‖W ) is

valid for any (t, u) ∈ [1, 1.22]×R. By choosing the constant N∗ > 0 with N∗ > 32.2674, we
can reach:

(1−Z∗)N∗
Φ1(N∗)‖Φ2‖Q∗ + ∆∗1

> 1.

As a consequence, in view of Theorem 5, we realized that at least one solution function u
belonging to CR([1, 1.22]) exists for the mixed multi-order Caputo–Hadamard fractional boundary
problem (17).

5. Conclusions

In this study, we considered an abstract fractional configuration of the boundary
value problem based on the generalized Caputo–Hadamard and Hadamard operators.
By defining the Kuratowski measure of noncompactness and recalling its properties, a µ-
condensing map was defined. Then, for proving the main existence results, we first applied
a fixed point theorem due to Isaia by terms of the topological degree notion, and in the
next step, we established the existence criterion by using the Leray–Schauder fixed point
theorem. In the last part of the article, we investigated the consistency of our theoretical
findings by demonstrating two stimulative examples.
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The work accomplished in this paper is new and enriches the literature on boundary
value problems for nonlinear fractional differential equations. For future works, one can
extend the given fractional boundary value problem to more general structures, such as
finitely point multi-strip integral boundary value conditions given by newly introduced
generalized fractional operators with non-singular kernels.
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