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The author wishes to make the following correction to the paper [1].

It was found that there was a typo in the abstract section of [1]. Namely, it should be
) (xzp’% (log x)_1> in place of O (x2p7% (log x)_l) . This change has no material impact
on the conclusions of the paper.

In [1], we derived a number of results on prime geodesic theorems for compact,
even-dimensional, locally symmetric Riemannian manifolds of strictly negative sectional
curvature. For the sake of readers and the overall completeness of the research, we would
also like to complement [1] with analogous results in odd dimensions. Thus, we shall
briefly prove that the results obtained in [1] remain valid if the dimension of the underlying
locally symmetric space is assumed to be odd.

Let Y be a compact, n-dimensional (n odd), locally symmetric Riemannian manifold
of strictly negative sectional curvature. The rest of the notation used below will be fully
adopted from [1].

The following results hold true (see, [1] (Theorems 1-3) for the counterparts in the
even-dimensional case).

Theorem 1. Let Y be as above. Then

n—1

polx) =Y. (- Y %
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where S]}ff ) denotes the set of real singularities of Zg(s +p — A, T).

Proof. We adjust the proof of Theorem 1 in [1] (pp. 6-9).

The singularities of Zg(s + p — A, T) are given by Theorem 3.15 in [2] (pp. 113-115).

Since 7 is odd, there are only spectral singularities, so the part of the proof related to
topological singularities is missing now. The actual proof (in odd dimensions) is therefore
much simpler.

On page 7 in [1], Equation (9) becomes
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where 0, —1,..., —2n ¢ SIST As S;if\A is the set of non-real singularities of Zg(s +p — A, T),
and aj, Bj,j € {0,1, ..., 2n} are some explicitly computable constants.

The first inequality in [1] (p. 9) is now read as

n—1
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The assertion follows by taking d = xl—g, K=xi. O

Theorem 2. (Prime Geodesic Theorem) Let Y be as above. Then

n—1
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as x — oo, where 7tr(x) is the function counting prime geodesics on Y of length not larger than
log x.

Proof. Follows immediately from Theorem 1. [

Theorem 3. (Gallagherian Prime Geodesic Theorem) Let Y be as above and € > 0. There exists a
set E of finite logarithmic measure such that
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Proof. As a starting point, we take the explicit formula for ¢, (x) given by Equation (1).

Bearing in mind the fact that topological singularities are missing, and proceeding in
the same way as in [1] (pp. 10-12), we conclude that for x ¢ E (Cf. [1] (p. 12, relation (21)))
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The assertion of the theorem now follows by putting
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and finalizing the argument in a standard way. O

The author would like to thank the editor and anonymous referees who kindly re-
viewed the manuscript and provided valuable suggestions and comments. The authors
apologize for any inconvenience caused and state that the scientific conclusions are unaf-
fected. The original article has been updated.
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