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Abstract: This paper introduces a fuel-switching price to the Alberta market, which is designed
for encouraging power plant companies to switch from coal to natural gas when they produce
electricity; this has been successfully applied to the European market. Moreover, we consider an
energy-switching price which considers power switch from natural gas to wind. We modeled these
two prices using five mean reverting processes including a Regime-switching processes, Lévy-driven
Ornstein–Uhlenbeck process and Inhomogeneous Geometric Brownian Motion, and estimate them
based on multiple procedures such as Maximum likelihood estimation and Expectation-Maximization
algorithm. Finally, this paper proves previous results applied to the Albertan Market where the jump
modeling technique is needed when modeling fuel-switching data. In addition, it not only gives
promising conclusions on the necessity of introducing Regime-switching models to the fuel-switching
data, but also shows that the Regime-switching model is better fitted to the data.

Keywords: alberta energy markets; mean-reverting stochastic processes; carbon pricing; renewable
energies; fuel-switching; levy process; regime-switching

1. Introduction
1.1. Overview

The federal government of Canada published “The pan-Canadian approach to pricing
Carbon Pollution” in October 2016 aiming at reducing green house gas (GHG) emissions by
taxing fossil fuels. There are two carbon tax systems mentioned in it: an explicit price-based
system and a cap-and-trade system. The cap-and-trade system gives each company limit
tradable allowance for GHG emission, while the explicit price-based system sets a tax price
for a fixed carbon emission. In Alberta, we are using the explicit price-based system and
the current Carbon levy is $50 per tonne. However, Tombe (2017) [1] found that household
electricity bills were expected to rise by $150 when the Carbon levy increased in 2018.
Moreover, this tax is going to affect poor households which could increase inequalities in
turn (Ambasta and Buonocore, 2018 [2]). This all indicates that this price is imperfect and a
correct pricing method is needed for Albertan residents.

Electricity prices are effected by factors such as weather conditions, economic growth,
political principles and fuel-switching (Sjim et al., 2006 [3]; Seifert et al., 2008 [4]; Carmona
et al., 2009 [5]), where the fuel-switching is the only one that is controllable by the company
itself. The term fuel-switching means specifically that for any power plant that is coal fired
or gas fired, the company can switch based on price and produce the same quantities of
electricity. Since coal price is cheaper than natural gas price but nearly twice as polluting
as gas (Arora and Taylor 2014 [6]), we are able to consider potentials of GHG emissions
reduction through fuel-switching (Erik Delarue, William D’haeseleer 2006 [7]). This paper
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introduces a fuel-switching price, which explains how to switch from coal to natural gas
when producing electricity, and how this can apply to the Albertan energy market. In the
Albertan market, there are examples of power plant companies which are working on fuel
switching, such as Transalta’s Coal-to-Gas Conversions Project and Capital Power’s Repow-
ering Genesee Project. We also introduce an energy-switching price which considers a power
switch from natural gas to wind. Moreover, note that this paper focuses on different jump
and regime-switching mean-reverting stochastic models, where the financial and economic
meanings and their applications will be discussed in another paper. We model these two
prices using five mean-reverting processes and including regime-switching processes, such
as the Lévy-driven Ornstein–Uhlenbeck process and inhomogeneous geometric motion. The
estimation of these processes is based on multiple procedures such as maximum likelihood
estimation and the expectation-maximization algorithm. This paper also justifies previous
results applied to the Albertan energy market showing that the jump modelling technique
is needed when modelling fuel-switching data. Finally, the novelty of the paper lies not
only in giving a promising conclusion on the necessity of introducing regime-switching
models to the fuel-switching data, but also in showing that regime-switching models are
better fitted to the data.

This paper is based on several projects and ideas, first introduced in Arrigoni et al.,
2019 [8], and then extended in Lu 2020 [9] to consider more stochastic models for fuel-
switching and energy-switching prices. We consider inhomogeneous geometric Brownian
motion and generate its parameter estimation procedure by using change of time method
from Swishchuk 2008 [10]. We also consider the regime-switching models and the origi-
nal Lévy-driven models. Unlike previous models with a constant volatility, the regime-
switching model assumes that the volatility is changing according to each regime and they
can switch the value between regimes. The regime-switching models generally consider
a business cycle behind our data, with different regimes modelled by a Markov chain
that represents different stages in a business cycle. Furthermore, in reality, the volatility
often has a high and low value and this feature can be captured by the regime-switching
model. Such models have been widely used in economics and finance after Hamilton first
introduced them in 1989, and it is useful to model a different volatilities using financial
data (Yang et al., 2016 [11], Bai and Wu 2018 [12], Stübinger and Endres 2019 [13]). Finally,
we aim at finding a more accurate continuous time model by considering regime-switching
and non-negative properties of the prices.

We note that option valuations of futures contracts with negative underlying prices
were studied in Swishchuk et al., 2020 [14].

1.2. Literature Review

There are many papers that have studied fuel-switching before and there are two
main papers we are going to review. First, Goutte and Chevalier 2015 [15] introduced an
estimation methodology for Lévy-driven Ornstein–Uhlenbeck processes and applied them
on the fuel-switching price in the European market. They also defined a calculation formula
to fuel-switching price based on power plants efficiency, fuel price, emissions factor and etc.
They mainly concluded that the political decisions impact the jumping nature of the process
and enhance our understanding of emission reduction through power systems that could
be achieved in the EU Emissions Trading System (EU-ETS). We are going to introduce the
fuel-switching price below.

As we discussed before, the fuel-switching price should stimulate companies to reduce
GHG in a profitable way. Hence, this price starts from defining the marginal cost of each
fuel without a carbon cost:

MC =
FC
η

, (1)

where FC represents fuel cost and η is the power plant’s efficiency. In this paper, we do not
account for any cost that is related to regulatory cost, maintenance, labour force cost, etc and
we follow the same definitions mentioned in Goutte and Chevalier 2015 [15]. Thus, here,
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the total/average cost for one kWh power generation is equal only to fuel cost. Further, the
marginal cost defined here is different from the classic definition of marginal cost which is
the change in the total cost that arises when one unit of production is incremented by one.
The power plant’s efficiency is considered as an average efficiency, so the marginal cost is
actually only affected by the fuel cost. Next, if we have carbon cost such as carbon tax or
allowance price, the equation changes to:

MC =
FC
η

+
EF
η

EC, (2)

where EF is the emission factor, which depends on the fuel and the amount of fuel burnt,
and EC is the emission cost. For simplicity, we do not consider any cost. Now, the fuel
switching happens when generated from other fuel is cheaper, so to define the minimum
cost for a switch to occur, we need to let MCcoal = MCgas, which turns out as solving the
emission cost inside this equation:

ECswitch =
ηcoalFCgas − ηgasFCcoal

ηgasEFcoal − ηcoalEFgas
. (3)

Thus, when the EU Allowance price is lower than this price, generating electricity
from coal is cheaper than natural gas and vice versa. Later, they used this price in the
European market and modelling it by a jump mean reverting model. They conclude that
jump modelling techniques should included when modelling fuel-switching price.

The paper by Arrigoni et al. 2019 [8] introduces this method to the Albertan energy
market, and based on the difference situations between the Albertan and European energy
markets, they also introduced an energy-switching price as a ‘future’ fuel-switching price
which considers a fuel-switching between natural gas and wind. They then also present
their ideas as poster in the 42nd International Association for Energy Economics (IAEE)
Annual Conference [16]. This is more meaningful because coal to natural gas is a switch to
cleaner energy, while natural gas to wind is a switch to renewable energy. Later, similar
to Goutte et al., 2015 [15], they modelled these two prices using Levy-driven Ornstein–
Uhlenbeck process and standard Ornstein–Uhlenbeck process, and concluded that jump
modelling techniques is needed.

The paper by Fargos et al., 2021 [17] offers new insights into the risk of carbon leakage
and industrial relocation in case of asymmetric climate policies, and provides an improved
understanding of the sectoral and regional structure of leakage, as well as policy measures to
mitigate the adverse impacts on industrial competitiveness. Regarding the existing literature,
this paper goes beyond it by considering: (1) assessing for the first time the competitiveness
impacts of the ambitious EU Green Deal targets towards climate neutrality (no green
house gas emission) by mid-century, (2) using an advanced version of the leading GEM-
E3-FIT model (which is a multi-regional, multi-sectoral, recursive dynamic computable
general equilibrium (CGE) model) with an enhanced representation of energy system and
technologies required for net-zero transition. Here net-zero transition is brought out by
Global Future Council of the World Economic Forum, which represents reducing global
greenhouse gas emissions to ‘net zero’ by 2050, (3) exploring the impacts of first-mover
coalitions conceptualizing the most recent climate policy announcements of EU and China
aiming to achieve carbon neutrality (i.e., achieving net zero carbon dioxide emissions by
balancing carbon dioxide emissions) by mid-century, thus ensuring high policy relevance
of the analysis and (4) assessing the cost-effectiveness of border carbon adjustment (BCA)
mechanism in preventing carbon leakage and supporting the European Emissions-Intensive
and Trade-Exposed (EITE) industries, as suggested by the EU Green Deal.

The paper by Montenegro et al. (2021) [18] reviews the recent literature on the model-
based methods utilized for policy analyses in the areas of economics, energy systems, and
environmental damages. It also explores ways in which these models and methodologies
depict distributional impacts, the main indicators obtained from their results, shortcomings
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of each modelling methodology, and suggest improvements for future research. Georgescu-
Roegen (1971) [19] mentioned that it could generate a reverse or duel case if using the
temporal borders of economic process method, that two identical technologies could have
two different productivities or marginal cost after several years.

This paper is organized as follows. In Section 2, we introduce the economic back-
ground and fuel-switching data used in this paper. Section 3 described the parameters
estimation procedures for five stochastic models considered in this paper and introduced
in Appendix A. Section 4 gives the empirical results obtained by applying the models from
Appendix A to the data introduced in Section 2. Section 5 provides model comparison
based on AIC and BIC, and cross-validation methods. The Conclusion is given in Section 6.
Appendix A discusses five mean-reverting stochastic models which are used in this paper.

2. Economic Background and the Data
2.1. Economic Content

Signed in 2016, the Pairs Agreement which is an agreement within the United Na-
tions Framework Convention on Climate Change (UNFCC) aimed at dealing with GHG-
emissions mitigation, adaptation, and finance. Its goal can be summarized in three parts: (1)
Limit the long-term increase of temperature to 1.5 degrees which should be done by reduc-
ing emissions as much as possible. (2) Provide a framework for transparency, accountability,
and the achievement of more ambitious targets. (3) Mobilize support for climate change
mitigation and adaptation. Under this agreement, each country should determine a plan to
mitigate warming. According to these, the federal government of Canada published “The
pan-Canadian approach to pricing Carbon Pollution” in October 2016 as we mentioned
in the beginning and Alberta choose the taxation method for reducing GHG emission. It
raises the public’s attention on the carbon pricing method.

The prices in the energy sector mainly depend on two aspects. The electricity prices
determine majorly on the prices in the energy market such as coal and gas futures, plus the
carbon tax in one of the two forms. These factors are usually affected by the supply and
demand in the energy market. Further, the fuel-switching is another important aspect to
consider when pricing electricity. Theoretically, the switching can happen between either
coal, gas or nuclear, but in practise, switching from coal or gas to nuclear seems difficult
since nuclear energy is not flexible. There are several reasons the study of fuel switching is
needed. In general, there is a trade-off between coal fire plant and gas fire plant that the coal
causes more GHG emissions while gas is more expensive, and this can be applied in the
switching. Moreover, the fuel-switching between coal and gas appears to be a natural cost
effective way to reduce CO2 emission (Ellerman and Buchner 2007 [20]). At last, a stochastic
modelling on fuel-switching gives various applications in operation management and risk
management. These reasons make the accurate modelling on fuel switching to become
very important.

2.2. The Fuel-Switching Data

We use the fuel-switching and energy-switching price of Alberta as presented in
Arrigoni et al. (2019) [8]. We are interested in how these processes are performed on this
data and what are the general properties of this data reflected by these processes. Moreover,
it would be better if we can study this data using one of the mean reverting models, this is
why we introduce a cross validation method in Section 5.

In Arrigoni et al. (2019) [8], the authors provided a new method for carbon pricing
based on the European energy market experience which we reviewed in chapter one.
Remember that the fuel-switching price is defined as

ECswitch =
ηcoalFCgas − ηgasFCcoal

ηgasEFcoal − ηcoalEFgas
. (4)

To calculate this price, they found the emission factor is equal to 210 kgCO2eq/MWh for
natural gas and 320 kgCO2eq/MWh for coal from the financial data of Winnipeg. Further,
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a case study from JEM Energy in 2004 gives the average coal efficiency which is 32.6%,
and 31.1% for natural gas in Albertan power plants. The coal market price and natural
gas market price are derived from NRG stream. Thus, one can calculate the fuel-switching
price based on the information above, and the data are given in Figure 1.

(a) (b)

Figure 1. (a) The fuel cost and (b) fuel-switching data in Arrigoni et al. (2019), expressed in CAD/MWh.

As we can see from the yellow line in Figure 1, it is negative after September 2017,
which means that electricity from natural gas is always more profitable than coal. Hence, it
is reasonable to consider a switch between natural gas to wind. So they provide an energy-
switching price, where the emission factor for wind is zero and efficiency for wind ranges
from 32% to 37%. In the paper, they also generate a wind price by a random uniformly
distributed process lies between 37$ to 42.5$. So the energy-switching price is given in
Figure 2.

Figure 2. The energy-switching data in Arrigoni et al. (2019), expressed in CAD/MWh.

We also provide the descriptive statistics for our data in Table 1. As we can see, we
have a negative kurtosis and a positive skewness in fuel-switching data which means this
data have a thin-tail and are left-skewed. Furthermore, the negative skewness of energy-
switching data indicates that the mean of the data values is less than the median, while the
positive kurtosis implies a fat tailed distribution.

Table 1. Summary statistics of fuel-switching and energy-switching data.

Mean Standard Deviation Kurtosis Skewness Min Max

fuel-switching 2.553058 3.976492 −0.5539386 0.04961635 −7.15667 14.88465
energy-switching 61.08916 15.98072 0.6200243 −0.7082977 15.60934 95.58245
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Although it is hard to see graphically from Figures 1 and 2 that Albertan government
had the carbon tax in places in January first 2017, the results from regime switching models
reveal some signals of it. In the next section, we are going to give the model estimation
result of the fuel-switching price and energy-switching price based on Albertan market by
a panel of mean reverting processes we introduced before.

3. Parameter Estimation
3.1. Inhomogeneous Geometric Brownian Motion

Using time changed method, Swishchuk (2008) [10] obtained the solution to the
inhomogeneous geometric Brownian motion model (IGBM):

dSt = a(L− St)dt + σStdwt,

which is
St = e−at(S0 − L + w̃(φ−1

t )) + L.

where φ−1
t = σ2

∫ t
0 (S0 − L + w̃(φ−1

s ) + easL)2ds and w̃(t) is standard Brownian Motion.
In order to fit this model into our data, we consider the calibration of this model using

the solution above. Firstly, according to the solution we have

dSt = e−atdw̃(φ−1
t )− a · e−at[S0 − L + w̃(φ−1

t )]dt

= e−atdw̃(φ−1
t )− a · [St − L]dt.

Then calibrating the above equation we obtain (assuming here we have data set =
{St1 , St2 , St3 , . . . , StN }):

Stk+1 − Stk = e−atk [w̃(φ−1
tk+1

)− w̃(φ−1
tk

)]− a(Stk − L) · (tk+1 − tk),

which is then equivalent to

[Stk+1 − Stk + a(Stk − L)∆t] · eatk = w̃(φ−1
tk+1

)− w̃(φ−1
tk

)

with k = 1, 2, . . . , N − 1.
Since w̃(t) is Standard Brownian Motion and from the properties of it we know

that w̃(φ−1
tk+1

) − w̃(φ−1
tk

) is following a normal distribution with mean 0 and variance

Var[w̃(φ−1
tk+1

)− w̃(φ−1
tk

)].

Now since φ−1
t = σ2

∫ t
0 (S0 − L + w̃(φ−1

s ) + easL)2ds is an increasing function with
respect to t, we have φ−1

tk+1
> φ−1

tk
, so then

Var[w̃(φ−1
tk+1

)− w̃(φ−1
tk

)] = E[w̃2(φ−1
tk+1

)]− E[w̃2(φ−1
tk

)]

= σ2[(S0 − L)2 eσ2tk+1 − eσ2tk

σ2 +
L2(e2atk+1 − e2atk + eσ2tk − eσ2tk+1)

2a− σ2

+
2L(S0 − L)(eatk+1 − eatk + eσ2tk − eσ2tk+1)

a− σ2 ].

Thus, the log-likelihood for Xtk = [Stk+1 − Stk + a(Stk − L)∆t] · eatk is given by:

l(Xt; a, L, σ) = −
n−1

∑
k=1

1
2

log(2πV2
k )−

n−1

∑
k=1

[Stk+1 − Stk + a(Stk − L)∆t]2 · e2atk

2V2
k

,

where n is the length of St and Vk = Var[w̃(φ−1
tk+1

)− w̃(φ−1
tk

)].

As we can see from the above formula of Var[w̃(φ−1
tk+1

)− w̃(φ−1
tk

)], it contains many
exponential terms. Take eatk as an example, if atk is greater than 708, then R cannot compute
such big value and thus it will print Inf. So the algorithm for calculating maximized
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likelihood estimator is very sensitive to the initial value. Based on this, we choose to use
the result from as our initial value and we set time scale as 0, 1

n , 2
n , . . . , n−1

n to compensate
this defect, where n is the length of our data.

Now in order to maximize the log-likelihood and let our algorithm search in a correct
parameter space, we need to maximize the log-likelihood under several constrains for
our parameters:

Var[w̃(φ−1
tk+1

)− w̃(φ−1
tk

)] > 0 f or all k = 1, ..., n− 1;

|a− σ2| > 0 (i.e., a 6= σ2);

|2a− σ2| > 0 (i.e., 2a 6= σ2);

−708 < 2atn < 708;

0 < σ2tn < 708.

In the later section, we will proceed to a Augmented Lagrangian Adaptive Barrier
Algorithm to find our maximum likelihood estimator.

3.2. OU Process and Lévy-Driven OU Process
3.2.1. Parameter Estimation

We are going to present a two steps estimation procedure introduced by Goutte and
Chevalier (2015) [15]. Firstly, we use the Ordinary Least Square (OLS) method to estimate
parameters κ, θ and σ in OU process. Secondly, the Maximized Likelihood Estimation will
be used to model the parameters in Lévy NIG distribution.

In the previous section we have the solution to OU process and LDOU process which is

Stk+1 = Stk e−κ∆t + θ(1− e−κ∆t) +
∫ tk+1

tk

eκ(s−tk+1)σdYs. (5)

where Yt = Wt for OU process, Yt = Lt for LDOU process and ∆t = tk+1 − tk. Here we
change the time interval from [0, t] to [tk, tk+1] because in practice, we observed the data in
time increments 0 < t0 < t1 < · · · < tn with ∆t = tk+1 − tk be a constant. Now rearrange
this equation we obtain:

Stk+1 − Stk = m− aStk + vεtk , (6)

where m = (1− e−κ∆t)θ, a = 1− e−κ∆t, v =
√

1−e−2κ∆t

2κ σ and εtk =
1
s
∫ tk+1

tk
eκ(s−tk+1)σdYs.

Notice that the term vεtk is a white noise, where white noise means it has zero mean
with constant finite variance, and no autocorrelation or autocovariance. We consider the
Ordinary Least Square (OLS) method for Equation (6) which is one of the popular parameter
estimation methods for an autoregressive model of order one (AR(1)), then our first step to
estimate parameter {κ, θ, σ} is to minimize the empirical variance of white noise:

ˆVar(vεtk ) =
1
n

n−1

∑
k=0

(Stk+1 − Stk −m + aStk )
2

The solution is given by: (
m̂

1− â

)
= (A′A)−1 A′B (7)

where A =

 1 Sn−1
. . . . . .
1 S0

 and B =

Sn
. . .
S1

 and v2 is estimated by
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v̂2 =
1
n

n−1

∑
k=0

(Stk+1 − Stk − m̂ + âStk )
2 (8)

Suppose the Yt inside term εtk is a Wiener process (corresponding to OU process),
then till now we already find out the estimators of parameters in OU process. However,
when Yt is a Levy process with NIG distribution, we need our second step to estimate
parameters {α, β, δ, µ} for NIG. Noticing that in LDOU case, Stk+1 − Stk + aStk = m + vεtk

is following a non-centered and un-normalized NIG distribution, so we are considering
the MLE method for these four parameters. By Barndorff-Nielsen and Halgreen (1977) [21],
they have proved the log-likelihood function of NIG(α, β, δ, µ) distribution for a set of i.i.d
random variables x1, . . . , xn is

L(xi; α, β, δ, µ) = n log
α

π
+ nδγ +

n−1

∑
k=0

[βδτk − log ak + log K1(αδak)] (9)

where τk =
xk−µ

δ , ak =
√

1 + τ2
k and K1 is the same function in the density of NIG.

Thus, if we let xk = Stk+1 − Stk + âStk in Equation (9), the only thing we need to do
next is to maximize function (9) with respect to parameters (α, β, δ, µ). However, since the
log-likelihood function is very complicated, we consider using the nigFit function in R
package “GeneralizedHyperbolic” to find the MLE, which use a numeric way to maximize
this function. Moreover, notice that in definition of NIG distribution, we need δ > 0, α ≥ 0
and γ ≥ 0, so we are going to maximize the log-likelihood under constrains.

3.2.2. Parameters Initialization

Since we are going to maximize this function numerically, we have to decide the initial
value for the algorithm. Here we consider a method of moments for our initial value. In
Jordan S. (1999) [22], he present the formula for the first four moments of NIG distribution:

m1 ≈ E[x] = µ + δβγ−1 (10)

m2 ≈ E[x2] = δα2γ−3 (11)

m3 ≈ E[x3] = 3δβα2γ−5 (12)

m4 ≈ E[x4] = 3δβα2(α2 + 4β2)γ−7 (13)

where mi is the sample moments of i.i.d random variables xi which follow NIG(α, β, δ, µ)
distribution and γ =

√
α2 − β2. Then solving the parameters from Equations (10) to (13),

we obtain our formula of initial values.

γ0 =
3

S̄
√

3γ̄2 − 5γ̄1
(14)

β0 =
γ̄1S̄γ2

0
3

(15)

δ0 =
S̄2γ3

0
β2

0 + γ2
0

(16)

µ0 = X̄− β0
δ0

γ
(17)

where X̄ = 1
n ∑n

i=1 xi, S̄ = 1
n ∑n

i=1(xi − X̄)2, γ̄1 = µ3

µ3/2
2

and γ̄2 = µ4
µ2

2
− 2 with µk =

1
n ∑n

i=1(xi − x̄)k.
These result can also be found in Goutte and Chevalier (2015) [15].
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3.3. Regime-Switching Models

In the application below, we are going to consider a two-state continuous-time Markov
Chain Zt and these two states represent the ‘expansion’ and ‘contraction’ in economics.
The transition of this Markov chain determined the probability that of our parameters will
switch to another regime. Considering the complicated form of SDE of these two processes,
we are not going to find their explicit solution. Instead, we will use EM algorithm to estimate
parameters in it. Moreover, these processes also have the mean-reverting properties while
under different states, it will have a different long-term mean, mean reverting rate, volatility,
and even the parameters in Lévy process.

3.3.1. Parameter Estimation of RSOU Models Using EM Algorithm

Recall that the RSOU and RSLDOU are the solution to the SDE

dXt = κ(Zt)(θ(Zt)− Xt)dt + σ(Zt)dYt (18)

where Yt can be Wiener process or Levy process. Since it is complicate to find a explicit
solution when we add a Markov chain in it, we discretize these two processes by their SDE.
For the observed price {St1 , St2 , . . . , Stn}, we have:

Stk+1 = Stk + κ(Ztk )(θ(Ztk )− Stk )∆t + σ(Ztk )εtk (19)

We use the EM algorithm estimation procedure which was introduced in Julien
Chevallier and Stéphane Goutte (2016) [23] to estimate parameters in RSOU process:
Θ1 := {κ(Zt), θ(Zt), σ(Zt)}. For simplicity, we will write Stk , Ztk , κ(Ztk = i), θ(Ztk = i)
and σ(Ztk = i) as Sk, Zk, κi, θi and σi in the following formula.

For the expectation step, they first calculate the filtered probability:

P(Zk = i|FS
k ; Θ̂(m)

1 ) =
P(Zk = i|FS

k−1; Θ̂(m)
1 ) f (Sk|Zk = i;FS

k−1; Θ̂(m)
1 )

∑
j∈S

P(Zk = j|FS
k−1; Θ̂(m)

1 ) f (Sk|Zk = j;FS
k−1; Θ̂(m)

1 )
(20)

where
P(Zk = i|FS

k−1; Θ̂(m)
1 ) = ∑

j∈S
Π(n)

ij P(Zk−1 = i|FS
k−1; Θ̂(m)

1 ) (21)

and

f (Sk|Zk = i;FS
k−1; Θ̂(m)

1 ) =
1

√
2πσ

(m)
i

exp

{
−
(Sk − κ

(m)
i θ

(m)
i − (1− κ

(m)
i )Sk−1)

2

2(σ(m)
i )2

}
(22)

because of the Wiener process term in RSOU process. Then they calculate the Smoothed
probability,

P(Zk = i|FS
N ; Θ̂(m)

1 ) = ∑
j∈S

P(Zk = i|FS
k ; Θ̂(m)

1 )P(Zk+1 = j|FS
N ; Θ̂(m)

1 )Π(n)
ij

P(Zk+1 = i|FS
k ; Θ̂(m)

1 )

 (23)
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At last, for the maximize step, they provided a iterative solution which is given by:

θ
(m+1)
i =

N
∑

k=2
P(Zk = i|FN ; Θ̂(m)

1 )(Sk − (1− κ
(m+1)
I )Sk−1)

κ
(m+1)
i

N
∑

k=2
P(Zk = i|FN ; Θ̂(m)

1 )

(24)

κ
(m+1)
i =

N
∑

k=2
P(Zk = i|FN ; Θ̂(m)

1 )Sk−1B1

N
∑

k=2
P(Zk = i|FN ; Θ̂(m)

1 )Sk−1B2

(25)

σ
2(m+1)
i =

N
∑

k=2
P(Zk = i|FN ; Θ̂(m)

1 )(Sk − κ
(m+1)
i θ

(m+1)
i − (1− κ

(m+1)
i )Sk−1)

2

N
∑

k=2
P(Zk = i|FN ; Θ̂(m)

1 )

(26)

Π(m+1)
ij =

N
∑

k=2
P(Zk = j|FS

N ; Θ̂(m)
1 )

Π(m)
ij P(Zk−1=i|FS

k−1;Θ̂(m)
1 )

P(Zk=j|FS
k−1;Θ̂(m)

1 )

N
∑

k=2
P(Zk = i|FS

N ; Θ̂(m)
1 )

(27)

where

B1 = Sk − Sk−1 −

N
∑

k=2
P(Zk = i|FS

N ; Θ̂(m)
1 )(Sk − Sk−1)

N
∑

k=2
P(Zk = i|FS

N ; Θ̂(m)
1 )

, (28)

B2 =

N
∑

k=2
P(Zk = i|FS

N ; Θ̂(m)
1 )Sk−1

N
∑

k=2
P(Zk = i|FS

N ; Θ̂(m)
1 )

− Sk−1. (29)

In our cases, we only consider a two-states Markov chain, which means our stats space
S = {1, 2}. The next step of this algorithm is to set an ending constraint for it. Since we are
aiming at maximize the log-likelihood, so one of the constrain is log L(m+1) − log L(m) < ε.
Another constrain we set is that m < M where M is a fixed number of iterations we want,
since this algorithm might converge very slowly.

3.3.2. Parameter Estimation of the NIG Part of RSLDOU Model Using MLE Algorithm

After estimate the parameters Θ1, we then proceed to the remaining set of parameters
Θ2 in NIG distribution. Recall that in Section 3.2.1, we talked about how to estimate NIG
parameters using MLE method, here we are using the similar technique instead of that
we have two regimes now. Thus, to estimate the remaining set of parameters, we fit NIG
distributions for each regime:

S(Regime1) ∼ L1(α1, β1, δ1, µ1) (30)

and
S(Regime2) ∼ L2(α2, β2, δ2, µ2). (31)

Following the same procedures in Section 3.1, we can obtain the estimates Θ̂2 =
{α̂1, β̂1, δ̂1, µ̂1, α̂2, β̂2, δ̂2, µ̂2}.
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4. Empirical Results
4.1. Estimation Results for Fuel-Switching Data
4.1.1. Estimation of IGBM

When it comes to change of time approach, as we have talked before, due to the
limits of exponential term in computer, the algorithm is quite sensitive to the initial values.
Thus, in this problem, we use the estimators in Euler-scheme calibration method to be our
initial value and Augmented Lagrangian Adaptive Barrier Algorithm to find our maximum
likelihood estimator. The results are shown in Table 2.

Table 2. Estimation result of IGBM for fuel-switching data.

a L σ

2.514925 × −12 −2.212315 0.02235206

One of the simulation results in given by Figure 3.

Figure 3. Simulation Result of IGBM model on fuel-switching data.

The reason we have this terrible result is because IGBM keeps the simulation positive
all the time. So this model is typically not fit for our fuel switching data since the data
decrease below 0 at the end. Thus, we do not consider this situation in the later model
comparison section.

4.1.2. Estimation of OU and LDOU Processes

Table 3 gives esitmation result of OU and LDOU model and Figure 4 present our
simulation result.

Table 3. Estimation Result of OU and LDOU model on fuel-switching data.

κ θ σ α β δ µ

0.008600791 1.10466 0.4005829 0.2418017 −0.05377233 0.2637261 0.06009332

In Table 3, the θ is 1.10466 which represents a very low long-term mean and we also
have a very small mean-reverting rate κ = 0.008600791. The α in NIG is close to 0 witch
indicates a high intensity of jumps in Lévy process. Comparing to Figure 3, the simulation
result of OU process present in Figure 4 is clearly better, since OU process allows negative
values. However, we might also see that it reaches negative value in a very early date and
bounce back to positive, which could be a signal for not fitting the data well.

Figure 4 also gives simulation results for the LDOU process, we can see there are lots of
‘cliffs’ inside the process, which is the consequence of introducing Lévy process to the model.
Next, we talk about the solution of regime-switching models on fuel-switching price.
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Figure 4. Simulation Result of OU and LDOU model on fuel-switching data.

4.1.3. Estimation of RSOU and RSLDOU Processes

The estimation result for regime switching OU process is given by Table 4. In Table 4,
we can see that regime 1 has a positive long-term mean while regime 2 has a negative value,
and we will also see in the later that this process switch to regime 2 more frequently when
time increase. Compare to the volatility in OU process, regime switching model provides a
lower and a higher volatility according to different state. Now, one of the simulation result
is in Figure 5.

Table 4. Estimation result of RSOU for fuel-switching data.

κ1 κ2 θ1 θ2 σ2
1 σ2

2 π11 π22

0.00310 0.03306 4.9722 −1.7579 0.01146 0.4887 0.9370 0.8528

Figure 5. Simulation Result of RSOU model on fuel-switching data.

The reason we observe ‘cliffs’ in the trajectory even if we do not include Lévy process
is because when each regime changes, this process change its parameters, which cause the
’cliffs’ in the process. Regime switching Lévy driven OU model has the same estimator value
as above, but with different estimator for the parameters in NIG distribution. Next, we
present the estimators for two NIG distributions according to the two regimes we set before:

The α is increasing in regime two means a lower intensity of jump happened in Lévy
process in regime two. Further we have a negative beta value which implies a left skew in
NIG distribution. One of the simulation result is present in Figure 6:

To see when the switching happened in our simulation result, we need to have a closer
look at the filtered and smoothed probabilities in the regime switching model given in
Figure 7.
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Figure 6. Simulation Result of RSLDOU model on fuel-switching data.

Figure 7. The filtered and smoothed probabilities of fuel-switching data.

Figure 7 basically shows the probability of each regime happened in time t. Based
on the two graphs, when the number of trials is less than around 850, regime one is more
likely to happened and when the number of trials is greater than around 850, it has more
possibilities to switch to regime 2. According to our data, a number of trials around 850 is
consistent with July in 2017 which is the time Carbon Levy is introduce to Albertan energy
market. It tells us that the introduce of carbon tax changes the structure of our data and
according to Figure 1, the natural gas will be more profitable for generating electricity after
the introduction of carbon tax. Further, from Tables 4 and 5, the regime two has greater
volatility and higher alpha, which implies a higher volatility and intensity of jumps of
fuel-switching data caused by the introduction of carbon levy.

Table 5. Estimation result of the NIG part of RSLDOU model for fuel-switching data.

α1 β1 δ1 µ1

0.5565004 −0.07445405 0.1021734 0.009274105

α2 β2 δ2 µ2

1.026705 −0.4044685 0.1459743 0.1332535

So far, we can see that the regime-switching models provides a better fit graphically
compare to OU and LDOU process, since their simulation result have more points close to
the original trajectory.

4.2. Estimation Results for Energy-Switching Data

In this section, we follow the same procedure of Section 4.1 and create estimation
result of different models for energy-switching data.

4.2.1. Estimation of IGBM

The obtained estimation results for IGBM model are given in Table 6:
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Table 6. Estimates of IGBM model on energy-switching data.

a L σ

0.001173194 100.2216 0.1184857

The long-term mean reaches 100 means that this price will go higher in the future to
around 100.2216 indicated by the IGBM model. One of the simulation results in given by
Figure 8.

Figure 8. Simulation Result of IGBM model on energy-switching data.

We can see that the blue curve do not fit the red curve very well, as it separate with
the red curve in the early date and has an intend to go beyond red curve after the final date
of this data. Thus, this model may not fit the data very well.

4.2.2. Estimation of OU and LDOU Processes

Table 7 presents the estimation result for OU and LDOU process based on two-step
estimation method.

Table 7. Estimation Result of OU and LDOU model on energy-switching data.

κ θ σ α β δ µ

0.08757514 64.3041 6.655671 1.494409 −0.005857812 1.502579 0.005655803

Table 7 give a long-run mean 64.3041 which is smaller than the long-term mean in
IGBM model. Further, it has a larger α compares to fuel-switching data which shows that the
energy-switching price may includes less jumps compare to the fuel-switching price. Similar
as fuel-switching data, we have a negative beta here, which indicates a left skewed density.
Figure 9 is the simulation result of OU model. Compare to Figure 8, the blue trajectory goes
up and down around the red one and it also perfectly explains the trend of red curve.

Figure 9. Simulation Result of OU model on energy-switching data.
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So then we are interested in how LDOU model perform on energy-switching data,
as we can see from Figure 10, it keeps following the trend of red curve while it has some
extreme values in the early dates.

Figure 10. Simulation Result of LDOU model on energy-switching data.

4.2.3. Estimation of RSOU and RSLDOU Processes

The estimation result for regime switching OU process is given by Table 8.

Table 8. Estimation Result of RSOU model on energy-switching data.

κ1 κ2 θ1 θ2 σ2
1 σ2

2 π11 π22

0.075023 1.0327 62.3686 77.8781 25.8930 109.0701 0.9888 0.9209

And one of the simulation result is in Figure 11.

Figure 11. Simulation Result of RSOU model on energy-switching data.

Similar as before, Regime Switching Lévy Driven OU model has the same estimator
value as above, but with different estimator for the parameters in NIG distribution. So in
the next, we only present the estimators for two NIG distributions according to the two
regimes we set before in Table 9.

Table 9. Estimation result of the NIG part of RSLDOU model for energy-switching data.

α1 β1 δ1 µ1

0.1550563 0.002312699 7.641092 4.604966

α2 β2 δ2 µ2

0.07798173 −0.006995654 9.699337 40.40929

Further, we have the simulation result given by Figure 12.
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Figure 12. Simulation Result of RSLDOU model on energy-switching data.

To see the probabilities of regime one and two happened in time t, we report the
smoothed and filtered probabilities for energy-switching data in Figure 13.

(a) (b)

Figure 13. (a) The filtered and (b) smoothed probabilities for energy-switching data.

We can see the switch happened more frequently after the number of trials reaches
170 which is as well the July of 2017 in Figure 2. This indicates that for RSOU model,
the volatility and long-term mean are all changes after the introduction of carbon tax in
Albertan energy market. Since the volatility for regime two is 109.0701 according to Table 8,
and regime one only have σ2 = 25.8930, it can say that introduction of carbon tax cause a
higher volatility for our energy-switching data. As for the NIG distribution in RSLDOU
model, a smaller alpha in regime two means the decrease of steepness or pointiness of the
density, which implies a fat tail after July 2017.

If we have a closer look at Figures 4–11, it is hard to tell which model fits the data well
graphically. Hence, in the next section we are going to propose two model comparison test
and hoping to sifting the best fitted model for the two prices.

5. Models Comparison

So far we have fitted the fuel-switching data into five different mean-reverting models:
The Inhomogeneous Geometric Brownian Motion (IGBM), OU process, Levy-driven OU
process, regime switching OU process and regime switching Levy driven OU process.
In this section, we numerically compare their performance on the fuel-switching and
energy-switching data.

5.1. AIC and BIC

To compare the goodness of fit of all the models, we first use the Akaike information
criteria (AIC) and Bayesian Information Criteria (BIC), as these two criteria are estimators
of relative quality of statistical models for a given set of data:

AIC = −2In(L̂) + 2k BIC = −2In(L̂) + kIn(n)
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where L̂ is the likelihood value under Maximum likelihood estimator, k is the number of
parameters that need to estimated and n is the number of observation. The smaller of AIC
and BIC, the better the model is.

Table 10 gives the results for fuel-switching data:

Table 10. Model comparison for fuel-switching data using AIC and BIC, where 5× 10−324 represents
the smallest positive double in R.

Likelihood-Value AIC BIC

OU process <5× 10−324 3613.942 3629.387
Levy-driven OU process <5× 10−324 2414.07 2450.108
regime switching OU process 5.36326× 10139 −623.4778 −571.9943
regime switching Levy driven OU process 2.500369× 1018 −48.72594 43.94428

As we can see from Table 10, if we only compare the result of OU process and LDOU
process, the introduction of jump modeling techniques did create a better model and this
result in consistent with the result in Arrigoni et al. (2019) [8]. However, we can see the
value of AIC and BIC decrease significantly after we introduce regime-switching model
to the data and the RSOU process gives the best fit to the fuel-switching data. Notice that
here we do not consider AIC and BIC for IGBM because this model is typically not fit for
fuel-switching data, since IGBM is always positive while the data have negative values.

Table 11 gives the comparison results for energy-switching data:

Table 11. Model comparison for energy-switching data using AIC and BIC, where 5 × 10−324

represents the smallest positive double in R.

Likelihood-Value AIC BIC

Inhomogeneous Geometric Brownian Motion <5× 10−324 1598.655 1608.877
OU process 9.50999× 10−138 637.0088 647.2303
Levy-driven OU process 5.098482× 10−138 646.2556 670.1058
regime switching OU process 5.287361× 10−314 1462.693 1496.765
regime switching Levy driven OU process 5.41323× 10−319 1501.672 1563.001

In Table 11, the OU process and LDOU process produced a relatively low value of
AIC and BIC,while other models have the value around 1500. It is reasonable since the
wind prices used in Arrigoni et al. (2019) [8] is a random uniformly distributed process
and the OU process reflect this property.

As we can see from Table 10, our AIC and BIC report negative values, which is
reasonable since our data create a relatively large density and cause the In(L̂) to be a
positive value. Moreover, this negative value also just depend on the model and have
nothing to do with the initial value. If we try a 3-states MC in RSOU or RSLDOU model,
we will still obtain negative AIC and BIC. Another worth noticing feature is that the AIC
and BIC values are relatively large, this situation also happened in Chevallier and Goutte
(2016) [23] and there is no need to re-scale them.

The AIC and BIC give us a general idea of the goodness of fit for each model on the
data. In addition, to access the predictability of each model on the data, we propose a
cross validation test in the next section. More importantly, in the cross validation test we
estimate the mean square error of each model, which is a different comparison scale with
respect to AIC and BIC.

5.2. Cross Validation (CV) for Time Series Data: The h-Block Cross Validation

The traditional k-fold cross validation introduced by P. A. Lachenbruch and M. R.
Mickey (1968) [24] is a popular method in evaluate machine learning models. The first
step of this method is to shuffle the data randomly, while it is impossible for time series
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data since they already have an order based on time. For times series data, people usually
consider a leave-one-out cross validation. Suppose the model we have is

xt = g(θ, xt−1) (32)

where θ is a set of parameters in the model and g is a linear function of variable xt−1 depend
on the model, for example, g(θ, xt−1) = δ + φxt−1 + ε for an AR(1) model. The leave-one-
out CV first estimate parameter on the data that removed a single case xi, which we name
this set of estimator θ̂i. Then it assess the predictive ability of the model by the expectation

E[(x̃i+1 − g(θ̂, x̃i))
2] ≈ 1

n

n

∑
i=1

(xi+1 − g(θ̂1, xi))
2. (33)

where x̃i is a random variable that has same distribution as xi and θ̂ is the estimates of
original model. However, when xt are not independent of each other, the estimation of
E[(x̃i+1 − g(θ̂, x̃i))

2] in Equation (A16) can be very poor. Thus, in the h-block CV [25],
instead of removing one case for the i-th parameter estimate, we remove as well a block
of h cases from either side of it and then calculate the corrected h-block cross-validated
estimate as:

E[(x̃i+1 − g(θ̂, x̃i))
2] ≈ 1

n

n

∑
i=1

(xi+1 − g(θ̂i, xi))
2 − 1

n2

n

∑
i=1

n

∑
j=1

(xj+1 − g(θ̂i, xj))
2 +

1
n
(xi+1 − g(θ̂, xi))

2. (34)

Now we use the method given in Equation (A17), which we set h = 2 to make sure
the Independence of each test value on our models and produce the following result in
Table 12. Similarly as before, we do not test IGBM for fuel-switching data due to incon-
sistent property between them. Further we are happy to see that the RSOU process and
OU process has the best predictability for fuel-switching data and energy-switching data
respectively, which has the same result as we obtained from AIC and BIC. It is saying that
these two models are the best fitted model for the two prices respectively.

Table 12. The h-block cross-validation result for each model on both prices.

Fuel-Switching Data Energy-Switching Data

Inhomogeneous Geometric Brownian
Motion 96.95243

OU process 0.1973981 88.33951
Levy-driven OU process 0.1896627 125.8895
regime switching OU process 0.06602948 106.7323
regime switching Levy driven OU process 0.2099495 95.20393

6. Conclusions

In this paper, we introduced the fuel-switching price and energy-switching price to
the Albertan Market hoping that they can encourage power plant companies to generate
electricity with cleaner energy. We modeled these prices using five mean reverting pro-
cesses: IGBM, OU process, LDOU process, RSOU process, and RSLDOU process. Each of
them have characteristic properties and the modelling steps not only to give us an insight
on the properties of the price, but also help us to find a practical guidance for companies to
proceed fuel switching in a profitable way.

After the model comparison in Section 6, we are able to conclude that the RSOU
process and OU process are the best models for fuel-switching price and energy-switching
price, respectively. We can see that for the fuel-switching price, the regime-switching
model largely increases the goodness of fit compared to other models, which indicates
the important property of regime-switching for this price. Moreover, jump modelling
techniques are also important as they increase the performance of the OU process, and this
finding is similar to the previous results from North American and European Markets.
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So far, as reflected by the stochastic models, the fuel-switching price in the Albertan
market includes jumps and regime-switching. However, as the natural gas price keep
decreasing in Alberta, more and more companies have already switched their power plant
to natural gas, and this is why we need to further consider energy-switching prices. The
best fit of the OU process on energy-switching price reflects the steadyness of wind price,
since it is a uniform distributed process.

The result in this paper can be applied in many different areas related to the energy
market. Firstly, for speculators, arbitrageurs and risk managers in the market, a jump or
regime-switching modelling technique can be applied in the optimization of futures and
options portfolios, or, more importantly, the study of the volatility of a specific market. For
example, a regime-switching or jump volatility can totally change the calculation of Value-
at-Risk (VaR) or Expected Short Fall (ES) in risk management. Secondly, considering the
impact of carbon cost on wholesale electricity prices, our results can be used to better study
electricity prices, optimize portfolios including fuel contracts and emission allowances, and
compare the price formation in different countries. A similar conclusion can also be found
in Goutte and Chevalier (2015) [15] and Zachmann (2011) [26]. Finally, the fuel-switching
and energy-switching prices introduced in this paper provide a better understanding of
operation management and policy making. For electricity producers, it helps them to
understand the trade-off between carbon prices and emission reduction costs. For policy
makers in Alberta, it would be better to consider a fuel-switching carbon price instead
of an explicit carbon tax in order to better incite the electricity generator of using cleaner
energy in a profitable way.
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Appendix A. Mean-Reverting Stochastic Models

In this section, we introduce a set of five mean-reverting processes: inhomogeneous
geometric Brownian motion (IGBM), Ornstein–Uhlenbeck (OU) process, Lévy-driven OU
process, regime-switching OU process and regime-switching Lévy-driven OU process.

Appendix A.1. Inhomogeneous Geometric Brownian Motion (IGBM) and Change of Time Method

Definition A1. Under the probability space (Ω,Ft,P), a stochastic process is called Inhomoge-
neous Geometric Brownian Motion (IGBM) if it satisfied the following SDE:

dSt = a(L− St)dt + σStdwt, (A1)

where a is the mean reverting rate, L > 0 is the long-term mean, σ > 0 is the volatility and Wt is a
Ft Wiener process.

Unlike the Geometric Brownian Motion (GBM) where we can solve its SDE by applying
Ito’s lemma on d log(St), the SDE of IGBM is very hard to find the explicit solution because
of the long-term mean L in the equation. In Swishchuk, A. (2008) [10], he generate this
solution by change of time method which introduced in Ikeda and Watanabe (1981) [27] or
Elliott (1982) [28] and this method is state as:

Theorem A1 ((Ikeda and Watanabe 1981, Chapter IV, Theorem 4.3 [27])). Consider the SDE
dXt = α(t, Xt)dWt, where Wt is the Wiener process and α is a measurable function on [0,+∞]×R.
Let W̃(t) be an one-dimensional F (t) -Wiener process with W̃(0) = 0, given on a probability
space (Ω,F , (Ft)t ≥ 0,P) and let X(0) be an F (0)-adopted random variable. Define a continuous
process V(t) by

V(t) = X(0) + W̃(t)

Let φ(t) be the change of time process

φ(t) =
∫ t

0
α−2(φ(s), V(s))ds

If
X(t) := V(φ−1

t ) = X(0) + W̃(φ−1
t )

and F̃t := F
φ−1

t
, then there exists a F̃t adopt Wiener process W(t) such that (X(t), W(t)) is

the a solution to the SDE. Now we can solve the SDE of IGBM by letting Vt = eat(St − L)
first and calculate

dVt = aeat(St − L)dt + eatdSt = σ(Vt + eatL)dWt (A2)

by the Itô’s Lemma, then use theorem 7.1 to solve Vt from the SDE above. The solution is

Vt = S0 − L + W̃(φ−1
t ), (A3)

or equivalently,
St = e−at[S0 − L + W̃(φ−1

t )] + L, (A4)

where

φt =
∫ t

0
σ−2(S0 − L + W̃(s) + eaφs L)−2ds. (A5)

and W̃t is a standard Wiener process. From this solution one can find out the expectation
and variance which are

E[St] = e−at[S0 − L] + L (A6)

Var[St] = σ2e−2at[
(S0 − L)2(eσ2t − 1)

σ2 +
2L(S0 − L)(eat − eσ2t)

a− σ2 +
L2(e2at − eσ2t)

2a− σ2 ]. (A7)
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An apparently result from the formula of expectation will be limt→∞ E[St] = L, this
explain why L is called long-term mean. Before we proceed further, let us calculate the
E[St] and Var[St] above.

This calculation method can be found in Swishchuk (2008) [10]. We first calculate
the mean of St. Since St = e−at[S0 − L + W̃(φ−1

t )] + L and W̃(φ−1
t ) is a Brownian Motion,

we have
E(St) = e−at[S0 − L] + L. (A8)

Now since

Var(St) = e−2atVar(W̃(φ−1
t )) = e−2atE(W̃2(φ−1

t )), (A9)

we need to find out E(W̃2(φ−1
t )) to know what is Var(St).

Recall that

φt =
∫ t

0
σ−2(S0 − L + W̃(s) + eaφs L)−2ds. (A10)

then

dφt = σ−2(S0 − L + W̃(t) + eaφt L)−2dt (A11)

dt = σ2(S0 − L + W̃(t) + eaφt L)2dφt (A12)

and so we have

t =
∫ φt

0
σ2(S0 − L + W̃(s) + eaφs L)2dφs (A13)

φ−1
t =

∫ t

0
σ2(S0 − L + W̃(φ−1

s ) + easL)2ds. (A14)

Thus,

E(W̃2(φ−1
t )) = E(E(W̃2(φ−1

t )|φ−1
t )) = E(φ−1

t ) (A15)

= σ2[(S0 − L)2t +
2L(S0 − L)(eat − 1)

a
+

L2(e2at − 1)
2a

+
∫ t

0
E(W̃2(φ−1

s ))ds] (A16)

Take derivative with respect to t on both side we have,
dE(W̃2(φ−1

t ))

dt
= σ2[(S0 − L)2 +

2L(S0 − L)(eat − 1)
a

+
L2(e2at − 1)

2a
+ E(W̃2(φ−1

s ))] (A17)

and solve this nonhomogeneous differential equation we have,

E(W̃2(φ−1
t )) = σ2[

(S0 − L)2(eσ2t − 1)
σ2 +

2L(S0 − L)(eat − eσ2t)

a− σ2 +
L2(e2at − eσ2t)

2a− σ2 ] (A18)

so by Equation (A9), we have

Var[St] = σ2e−2at[
(S0 − L)2(eσ2t − 1)

σ2 +
2L(S0 − L)(eat − eσ2t)

a− σ2 +
L2(e2at − eσ2t)

2a− σ2 ]. (A19)

Appendix A.2. Lévy Process and Normal Inverse Gaussian Distribution

Before we go further to other models, we need to introduce Lévy process. It is named
after French mathematician Paul Lévy and it can be considered as a mixture of continuous
process and jump process, where jump process means it allows left discontinuous. Another
important property the Lévy process have is that it has independent identically distributed
increments, like Wiener process, and we can see this from the definition below.
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Definition A2. {Lt} is Lévy Process if it is a continuous-time stochastic process and it follows

• L0 = 0;
• for any three times 0 ≤ s < t < u, the increments of this process Lt − Ls and Lu − Lt are

independent;
• for any two times 0 ≤ s < t, Lt − Ls have equal distribution to Lt−s.
• The sample path of Lt should have right continuous and admit left limits, i.e., a CadLag path.

In this paper, we consider the lévy process that follows a Normal Inverse Gaussian
(NIG) distribution which was introduced by Barndorff-Nielsen and Halgreen (1977) [21].
This distribution has been widely used in modeling fat-tailed process in economics and
finance. There are also other distributions that can be considered, one can refer to [29].

Definition A3. A Random Variable X that following a Normal Inverse Gaussian Distribution has
the following probability density function

f (X; α, β, δ, µ) =
αδ

π
exp(δ

√
α2 − β2 + β(x− µ))

K1(αδ
√

1 + (x− µ)2/δ2)√
1 + (x− µ)2/δ2

(A20)

where δ > 0,α ≥ 0, γ ≥ 0 and

K1(z) =
1
2

∫ ∞

0
exp(−1

2
z(y + y−1))dy.

and it is written as X ∼ NIG(α, β, δ, µ).

The parameters of NIG distributions have their natural interpretations related to the
overall shapes of the density. Firstly, a large value of α implies light tail as well as a smaller
steepness or pointiness. Further, a lower value of α indicates a higher intensity of jumps.
When β equals 0 and µ arbitrary, an NIG r.v. is following a Normal distribution if α goes to
infinity. Secondly, the beta is the skewness parameter with β < 0 implies a density skew
to left and vice versa. When β = 0, we have a density symmetric around µ. At last, δ is a
scale parameter in the sense that the re-scaled parameter δα and δβ are consistent under
location scaled change of x.

Here we consider a Lévy process with NIG distribution means that the increments
is following NIG(α, β, δ, µ) and other definitions remains the same. Under this case, the
Lévy process is a purely jump process.

Appendix A.3. Ornstein–Uhlenbeck (OU) Process and Lévy-Driven Ornstein–Uhlenbeck
(LDOU) Process

This section includes two mean reverting processes that are related to the Ornstein–
Uhlenbeck (OU) process and Lévy process. Comparing to IGBM, OU process is another
widely used mean reverting process where its value can be negative. Sometimes an oil
company faces a situation of overstock which created a huge amount of storage costs and
they would like to sale these oil even in a negative price, so at some point, the spot price
of oil may goes to negative even if it looks like impossible. Thus, OU process is also an
interesting topic to study and would be useful in commodity market.

Definition A4. Under the probability space (Ω, (Ft)t ≥ 0,P), a stochastic process is called
Ornstein–Uhlenbeck (OU) process if it satisfied the following SDE:

dSt = κ(θ − St)dt + σdWt, (A21)

where κ is the mean reverting rate, θ is the long-term mean, σ > 0 is the volatility and Wt is a
Ft-Wiener process.
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Note that if we apply Ito’s Lemma on f (t, St) = Steκt, we will obtain

dSteκt = κSteκtdt + eκtdSt (A22)

= κSteκtdt + eκt(κ(θ − St)dt + σdWt) (A23)

= κθeκtdt + eκtσdWt (A24)

which means,

Steκt = S0 +
∫ t

0
κθeκsds +

∫ t

0
eκsσdWs. (A25)

So the explicit form of OU process is

St = S0e−κt + θ(1− e−κt) +
∫ t

0
eκ(s−t)σdWs. (A26)

The Wt term in the SDE indicate that this process is continuous everywhere and do
not include jumps in it, so the only difference in Lévy-driven OU process is that we change
dWt term into a dLt term, where Lt is a Lévy process with NIG distribution, so that we can
include jumps in our model.

Definition A5. Under the probability space (Ω, (Ft)t ≥ 0,P), a stochastic process is called
Lévy-driven Ornstein–Uhlenbeck (LDOU) process if it satisfied the following SDE:

dSt = κ(θ − St)dt + σdLt, (A27)

where κ is the mean reverting rate, θ is the long-term mean, σ > 0 is the volatility and Lt is a Ft
Lévy process with NIG distribution.

Following the same procedure above, we can solve the SDE of LDOU which is

St = S0e−κt + θ(1− e−κt) +
∫ t

0
eκ(s−t)σdLs (A28)

and our estimation method are going to based on these solutions.

Appendix A.4. Regime-Switching Ornstein–Uhlenbeck (RSOU) Process and Regime-Switching
Lévy-Driven Ornstein–Uhlenbeck (RSLDOU) Process

So far, we have already considered two popular mean reverting processes and one
can notice that all this has a constant mean reverting rate, long-term mean and volatility.
However, in practice, we are not facing a constant mean reverting rate, long-term mean and
volatility, so here we try to upgrade our model by considering a Regime-switching Ornstein–
Uhlenbeck (RSOU) process and a Regime-switching Lévy-driven Ornstein–Uhlenbeck
(RSLDOU) process. The basic idea of RSOU and RELDOU process is that we assume these
constants are following another continuous time Markov chain with discrete states. Each
state in the Markov chain can represent different states of economic activities such as
deflation and inflation so that these will bring out different values of those constants. Let
us introduce the definition of RSOU and RSLDOU.

Definition A6. For all t ∈ [0, T], let Zt be a continuous time Markov chain on finite space
S := {1, . . . , K}. A regime-switching model is a stochastic process (Xt) which is solution of the
stochastic differential equation given by

dXt = κ(Zt)(θ(Zt)− Xt)dt + σ(Zt)dYt (A29)

where κ(Zt), θ(Zt) and σ(Zt) are functions of the Markov chain Z. Hence, they are constants
which take values in κ(S), θ(S) and σ(S):

κ(S) := {κ(1), . . . , κ(K)} ∈ R, θ(S) := {θ(1), . . . , θ(K)}, σ(S) := {σ(1), . . . , σ(K)} ∈ RK+
.
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where Y is a stochastic process which could be a Brownian motion, which is called Regime-switching
Ornstein–Uhlenbeck (RSOU) process, or a Lévy process following NIG distributions, which is
called Regime-switching Lévy-driven Ornstein–Uhlenbeck (RSLDOU) process.
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