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Abstract: After a long transition period, the Central and Eastern European (CEE) capital markets
have consolidated their place in the financial systems. However, little is known about the price
behavior and efficiency of these markets. In this context, using a battery of tests for nonlinear and
chaotic behavior, we look for the presence of nonlinearities and chaos in five CEE stock markets. We
document, in general, the presence of nonlinearities and chaos which questions the efficient market
hypothesis. However, if all tests highlight a chaotic behavior for the analyzed index returns, there are
noteworthy differences between the analyzed stock markets underlined by nonlinearity tests, which
question, thus, their level of significance. Moreover, the results of nonlinearity tests partially contrast
the previous findings reported in the literature on the same group of stock markets, showing, thus, a
change in their recent behavior, compared with the 1990s.

Keywords: nonlinearities; chaos; stock markets; efficient market hypothesis; CEE countries

1. Introduction

An adequate perception of stochastic processes followed by stock index returns rep-
resents the core of the efficient market hypothesis (EMH) theory developed by [1], which
shows that financial markets are informationally efficient. The weak form of this hypothesis
asserts that prices already reflect all information and, therefore, in order to prove the EMH,
there should be no predictability in stock prices. This means that it is impossible for the
investors to achieve abnormally high returns; that is, financial markets are efficient if stock
price returns follow a random walk.

Nevertheless, noteworthy studies have shown that stock returns do not follow random
walks, being characterized by nonlinearities and chaos (for a review of the literature
see [2]). Consequently, recent developments in investigating the nonlinear dependence
and deterministic chaos of financial variables altered the traditional view of their erratic
behavior [3,4]. If the stock market returns are characterized by nonlinearities and chaos,
then the market is inefficient. This means that stock prices do not incorporate all existing
information and might be over- or under-evaluated. Thus, the investors can record excess
returns or losses.

Even if the nonlinear properties of developed stock markets were well highlighted in
the literature [5], little was done for the Central and Eastern European (CEE) economies.
While ref. [6] proved the presence of a long memory in eight CEE stock markets, more
recently, ref. [7] provided evidence for nonlinear dependencies, nonlinear patterns and
chaotic dynamics for the Czech Republic, Hungary, and Poland stock markets. However,
ref. [7] included in the analysis only the 1990s’ period, when CEE countries underwent
major changes in their economic and political systems. These changes impacted on the
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stock markets functioning, and created difficulties associated with low liquidity and high
volatility, but also with the lack of hedging opportunities and low price to earnings ratios.
Consequently, all this evidence could affect the estimations, as the EMH can hardly be
proved in transition markets.

Against this background, the aim of this study is to investigate the presence of nonlin-
earities and chaos in five CEE stock markets with a focus on the pre- and post-accession
period to the European Union (EU). For this purpose, we use daily returns series of BET (Ro-
mania), BUX (Hungary), PX (Czech Republic), SAX (Slovak Republic) and WIG20 (Poland)
indexes and we cover the period from June 2000 to September 2015, using Datastream
statistics. This period is large enough to allow for nonlinear tests estimations, and it is also
indicated for comparison between the selected markets, as we report to the same period
for all analyzed stock markets.

Another contribution of our paper is represented by the analysis of two stock markets
(Romania and Slovak Republic) which are usually not included in the advanced CEE stock
markets group. However, following the EU accessions, their behavior is similar to the
Czech, Hungarian or Polish stock markets, which recommends their inclusion in the same
group of CEE stock markets.

Finally, in addition to tests used by [7], we also employ the McLeod–Li test for
nonlinearities, a commonly used diagnostic tool for the presence of Auto Regressive
Conditional Heteroskedasticity (ARCH) effects, and the recent test proposed by [8]. Further,
we employ two different developments of the Lyapunov exponent to test the chaos. We also
use the 0–1 test for assessing the chaotic behavior of CEE stock markets. The nonlinearities
and chaos tests complement each other. Indeed, chaos is related to nonlinear dynamics of
stock markets [9]. On the one hand, the chaotic dynamics are necessarily nonlinear. On the
other hand, nonlinear models can generate much richer types of behavior. We therefore use
this battery of tests for two reasons: first, to check the robustness of our findings; second,
to compare our findings with those reported by [7]. A run test for randomness is used as a
benchmark for nonlinearities and chaos tests. If this test rejects the hypothesis of random
walks, it questions the EMH for the CEE stock markets.

To preview our findings, we discover that CEE stock markets are characterized by a
chaotic behavior and nonlinear dynamics of price returns. Further, we discover that the
results obtained in the case of the updated sample partially contradicts those reported
by [7] for the 1990s, a result explained by the development of CEE stock markets. However,
we also notice a strong heterogeneity of CEE stock markets behavior.

The rest of the paper is structured as follows. Section 2 presents some stylized facts
and a short review of the literature assessing the CEE stock markets’ behavior. Section 3
describes the methodology while Section 4 presents the results. The last section concludes.

2. Stylized Facts and Review of the Literature Related to the CEE Stock
Markets’ Behavior
2.1. Stylized Facts

The CEE stock exchanges were closed during the communist period and re-emerged
afterwards, establishing legal structures for contracts and transparency in accounting and
transactions [10]. Starting with the 1990s, the CEE stock markets unregistered remarkable
changes and developments toward the status of mature markets, reached in the 2000s.
Even if the CEE countries’ financial systems largely remain bank-dominated, their stock
markets appear to be well integrated with world financial markets [11], although loosely
correlated with European developed markets [12].

Due to the fact that CEE countries witnessed major structural changes in the 1990s,
including privatization, institutional reforms, and creation of financial systems [13], their
stock markets developed accordingly. As ref. [14] show, the CEE stock markets performance
was affected by the extent of the restructuring of these economies in the post-communist
period. More recently, the economic integration process and the crisis appearance also af-
fected the market efficiency. However, the behavior of these markets and the characteristics
of transactions and financial products are different during the 2000s, which confer them
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the status of mature markets. Some key indicators of CEE stock markets are reflected in
Table 1 and confirm CEE stock markets dynamics during the 2000s.

Table 1. CEE stock markets general indicators.

Czech
Republic

Slovak
Republic Hungary Poland Romania

Stock exchange CEESEG-
Prague

Bratislava Stock
Exchange

CEESEG-
Budapest

Warsaw Stock
Exchange

Bucharest Stock
Exchange

Establishment
year 1993 1993 1990 1991 1995

Index PX SAX BUX WIG 20 BET

Market
capitalization **

2000 * – – 13,946.34 29,812.44 –
2005 * 30,295.62 3798.98 30,831.00 69,219.45 –
2010 * 32,478.07 3524.40 22,056.60 134,075.87 9751.68
2015 * 24,078.55 4207.37 *** 14,214.09 135,351.55 17,632.70

Number of
listed

companies

2000 * – – 61 209 –
2005 * 42 243 43 236 –
2010 * 26 161 48 547 67
2015 * 24 128 *** 45 907 82

Note: (i) * September; (ii) ** Value at Month End (EUROm); (iii) *** Data for September 2014; (iv) “–” means data not available. Source:
Federation of European Securities Exchanges, monthly statistics.

Several aspects of CEE stock markets are noticed in Table 1. On the one hand, Roma-
nian, Polish and Slovak Republic stock markets recorded an increase in capitalization after
the crisis outburst, contrasting with the Hungarian and Czech markets, where the capi-
talization decreased. Further, the stock market capitalization in Poland, and to a smaller
extent in Romania, considerably increased during the last decade.

On the other hand, we notice that the number of listed companies considerably varies
between the CEE stock markets. First, a relatively reduced number of listed companies
is recorded in Czech Republic and Hungary. Second, in Poland, the number of listed
companies is considerably higher and follows the trend of market capitalization. Third,
compared with Romania for example, the number of listed companies on Bratislava Stock
Exchange is doubled, while the market capitalization is considerably smaller. All these
elements question the CEE stock market integration.

2.2. Literature Review

In general, international investors consider the CEE stock markets as a homogenous
group, given their location and characteristics [15]. However, ref. [16] reported a poor
integration of these stock markets. While most of existing literature assesses the CEE stock
market integration in relation with old European Union (EU) members [10,11,17–24], or
assesses the CEE stock markets’ co-movements and contagion [13,25], less is done in terms
of the investigation of CEE stock markets’ efficiency. An exception is the paper by [26]
which shows that intraday price movements present important deviations from a random
walk in the case of CEE markets.

At the international level, there are noteworthy papers exploring the integration level
of stock markets (for a literature review, see [27]). Other papers investigate nonlinearities
and chaos on stock markets, in order to confirm or to infirm the EMH, the Adaptive Market
Hypothesis (AMH), and the Heterogeneous Market Hypothesis (HMH) [28–38]. Recently,
ref. [3] shows that the returns series of six Indian stock market indexes do not follow a
random walk process, while ref. [39] tests the level noisy chaos in the Standard & Poor’s
500 index returns over four different frequencies and reports that the dynamics in all
frequencies are non-chaotic. In the same spirit, ref. [40] use different linear and nonlinear
tests for the Tehran stock exchange and provide evidence in the favor of the AMH. In
addition, ref. [41] investigates the presence of nonlinearities in the Athens Composite
Share Price Index high-frequency returns and find that the filtered return process does
not exhibit deterministic or higher-order stochastic nonlinearity. Similar, ref. [42] apply
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multiple state-of-the-art efficiency tests for developed stock markets and validate the idea
of dynamic and time–variant efficiency. Other recent papers investigating the EMH and
using nonlinearities and chaos tests are those of [43–45].

However, in respect to the CEE countries, few works reported nonlinearities and
chaos [6,7]. Therefore, our purpose is to use a large battery of tests for nonlinearities and
chaos to analyze the behavior and efficiency of mature CEE stock markets. As far as we
know, this is the first paper which uses different developments of the Lyapunov exponent
and the 0–1 test for studying the chaotic behavior of these markets. To contribute to the
existing literature, and to see if the CEE markets are really integrated, we also use an
appreciable number of nonlinearity tests as those advanced by [8,46–51].

3. Methodology

An important number of tests were used in the literature for assessing nonlinearities
and chaos in financial markets: the McLeod–Li test, the runs test, the variance ratio test,
the White test, the Teraesvirta test, the Keenan test, the Tsay test, the Engle LM test, the
BDS test, the Lyapunov exponent and the noise titration test. The technical details of these
tests are provided by [3,52,53], while ref. [54–57] realized a comparison of their efficiency.
In this section we provide only a brief description of the characteristics of each retained
test in our analysis.

3.1. Runs Test for Randomness

The runs test is a non-parametric test used to decide if a time series follows a random
process. It is usually considered a linear test which allows, however, for the identification
of nonlinearities in the data series. A run is defined as a series of increasing values or a
series of decreasing values. If the randomness assumption is not valid, we can interpret
this as a lack of efficiency of stock markets. If a data series is random, in the runs test, the
actual number of runs (sequences of positive or negative returns) in the series should be
close to the expected number of runs, irrespective of the signs [2]:

E(u) =
2PN(P + N)

(P + N)
+ 1, (1)

where: P denotes the number of positive runs, while N means the number of negative runs.
The variance of runs is given by:

σ2 =
2PN(2PN − P− N)

(P + N)2(P + N − 1)
. (2)

3.2. BDS Test for Independence

The BDS test proposed by [51] is a test used for independence but also for nonlinear
dependences. It tests the null hypothesis that the elements of a time series are independently
and identically distributed (iid):

Wm(ε) =

√
n{Cm(ε)− C1(ε)}

σm(ε)
(3)

where: Wm(ε) is known as the BDS test, Cm(ε) represents the fractions of m-dimensions in
the series; and σm(ε) is the standard deviation under the null of iid.
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The BDS test rejects the null if the test statistic is large (usually larger than 1.96).
If the null is rejected, the residuals contain a nonlinear structure. As in [7], we use a
range of dimensions (m) from 2 to 7 and four values for the distance (ε), namely 0.5σ, 1σ,
1.5σ and 2σ.

3.3. White and Teräsvirta Tests for Neglected Nonlinearities

An alternative way to look for nonlinearities is with the neural network models in
which the network output yt is determined based on input xt:

yt = xtβ + ∑q
j=1 δjψ

(
xtγj

)
+ εt, (4)

where: β is a column vector connecting the strength from the input to the output layers, yj
is a column vector connecting the strength from the input layer to the hidden unit (j = 1,
. . . q), δj represents a scalar connecting the strength from the hidden unit j to the output
unit, and ψ is a logistic squashing function.

Ref. [49] proposes a test for neglected nonlinearity, designed to be more powerful
compared with other neural network models. The neural network test by [49] is based on a
test function h(xt) which activates the hidden units ψ

(
xtΓj

)
. Under the null we have:

E
[
ψ
(

xtΓj
)
ε∗t
∣∣Γj
]
= E

[
ψ
(

xtΓj
)
ε∗t
]
= 0, (5)

so that
E(ψtε

∗
t ) = 0, (6)

where: Γj are random column vectors independent of xt, and ψt =
(
ψ(xtΓ1), . . . ,

(
xtΓq

))
represents a hidden unit activation vector.

Ref. [49] shows that in the presence of correlation, the network performance improves
by including in the model an additional hidden unit with the activation ψ(xtΓj). The test is
thus based on sample correlations of affine network errors:

n−1 ∑n
t=1 ψt ε̂t = n−1 ∑n

t=1 ψt
(
yt − xt β̂

)
. (7)

Different from [49], ref. [50] replace δjψ with a Taylor expansion approximation, in
order to solve the linearity testing problem, and to use a score testing framework.

3.4. Keenan and Tsay Tests for Nonlinearities

The null hypothesis of the Keenan test [47] is that of a linear model against a nonlinear
specification. Ref. [48], building upon [47], explicitly tests for quadratic serial dependence
in the data. It represents, thus, a more general form of the Keenan test.

The [48] test can be specified as follows. If we have K = k(k − 1)/2 column vec-
tors V1, . . . , Vk which contain all possible cross-products et−iet−j (where i ∈ [1, k] and
j ∈ [i, k]), then:

νt,1 = e2
t−1, νt,2 = et−1et−2, νt,3 = et−1et−3, νt,k+1 = et−2et−3, νt,k+2 = et−2et−4, . . . , νt,k = e2

t−k. (8)

If ν̂t,j represents the projection of νt,i on the orthogonal subspace et−1, . . . , et−k (mean-
ing the residuals of the νt,j regression on et−1, . . . , et−k), then the parameters γ1, . . . , γk are
the Ordinary Least Squares (OLS) estimates of the regression equation:

et = γ0 + ∑K
i=1 γtν̂t,j + ηt. (9)

Note that, if p exceeds K then the projection is unnecessary and the Tsay test is
equivalent to a classic F statistic for testing the null that γ1, . . . , γk are zero.
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3.5. McLeod–Li Test for Nonlinearity

The McLeod–Li test [46] uses the following statistic to test for nonlinear effects in time
series data:

Q(m) =
n(n + 2)

n− k ∑m
k=1 r2

a(k). (10)

where r2
a(k) = ∑n

t=k+1 ε2
t ε2

t−k/ ∑n
t=1 ε2

t (with k = 0, 1, . . . , n − 1) are the autocorrelations of
the squared residuals ε2

t generated by fitting the model to the data. If the residuals are iid,
χ2 with m degrees of freedom represents the asymptotic distribution of Q(m).

3.6. Harvey Test for Nonlinearities

A more powerful test for assessing the nonlinearities in data series is proposed by [8].
This test does not require an assumption of I(0) behavior of data series as the previous
tests do, and represents a simple data-dependent weighted average (Wλ) of two Wald
test statistics (computed for an I(0), and an I(1) process respectively). For a time series
yt = µ + υt, the nonlinearity is assumed to enter through the level of yt for an I(0) series, or
through the first differences of yt if the series is I(1):{

υt = δ1υt−1 + δ2υ2
t−1 + δ3υ3

t−1 + εt, i f I(0)
∆υt = λ1∆υt−1 + λ2(∆υt−1)

2 + λ3(∆υt−1)
3 + εt, i f I(1)

. (11)

If the series yt is (I0), the null hypothesis of linearity is H0,0 : δ2 = δ3 = 0, while the
alternative of nonlinearity is expressed as H1,0 : δ2 6= 0, and/orδ3 6= 0. The standard Wald
statistic for testing these restrictions is given by W0. The similar applies if yt is (I1), situation
in which the Wald statistic is represented by W1.

The weights (W0 and W1) are determined by considering the switch between the
two efficient Wald statistics, based on an auxiliary test. The new weighted statistic has a
standard chi-squared limiting null distribution in both the I(0) and I(1) cases:

Wλ = {1− λ}W0 + λW1. (12)

where λ represents a function which converges in probability to zero when the series yt is
I(0), and to one when yt is I(1).

3.7. The Lyapunov Exponent

The Lyapunov exponent is explicitly used in the literature to test whether a time
series is chaotic. In a chaotic system, if an infinitesimal change δx(0) appears in the initial
conditions, the corresponding change iterated through the system will grow exponentially
with the time t. Technically, the largest Lyapunov exponent is considered the only test
explicitly devised for testing chaos and measures the rate at which information is lost from
a system [3]. A process shows chaotic behavior if the maximum Lyapunov exponent is
positive [58].

Considering an infinitesimally small hypersphere of radius ε, the maximum Lyapunov
exponent is measured by the extent of the deformation as follows [55]:

λi = lim
t→∞

lim
ε(0)→∞

{
1
T

log2

[
εi(t)
εi(0)

]}
. (13)

where εi(t) represents the length of the ith principal axis of the ellipsoid at time t.
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The literature recorded several developments of the Lyapunov exponent, based on
a neural network, or on a non-neural network. In the first category, we can find the
maximum Lyapunov exponent proposed by [59], which allows for the identification of
chaotic dynamics in short noisy systems. In the second category of models, we mention [60],
who propose an alternative way of calculating the largest Lyapunov exponent, which takes
advantage of all the available data. We use both tests in our empirical analysis.

3.8. The 0–1 Test for Chaos

The 0–1 test for chaos proposed by proposed by [61] is based on a Euclidean extension,
instead on a phase space reconstruction as the Lyapunov exponent. It tests the chaos
in a deterministic dynamical system {xt}, by studding the asymptotic behavior of the
translation variables pc(n) = ∑n−1

j=0 cos(jc)g
(
xj
)

and qc(n) = ∑n−1
j=0 sin(jc)g

(
xj
)
, with n ∈ N

and c ∈ (0, π) representing an arbitrary but fixed frequency. Both pc(n) and qc(n) remain
bounded as n→ ∞ if the system does not exhibit chaos.

Ref. [61]’s test static is represented by the asymptotic Bravais–Pearson correlation
coefficient between n = (1, 2, . . . , n)T and ∆n = (Dc(1), . . . , Dc(n))

T:

Kc = lim
n→∞

nT∆n − 1
n 1T

nn1T
n∆n√[

nTn− 1
n (1

T
nn)2

][
∆T

n∆n − 1
n (1

T
n∆n)

2
] . (14)

where 1n = (1, 1, . . . , 1)T ∈ Rn.

4. Results and Discussion
4.1. Results of the Runs Test for Randomness

The results presented in Table 2 indicate the lack of randomness for the BET, SAX and
WIG20 indexes, while different results are reported for the BUX and PX indexes. In the
case of the PX index, the results contrast to those reported by [7]. It seems that after the
year 2000, the Czech Republic stock market is closer to the efficient market hypothesis.

Table 2. Results of the runs test.

Index Standard Normal p-Value

BET −4.954 0.000
BUX −0.146 0.883
PX −1.345 0.178

SAX 3.236 0.001
WIG20 2.324 0.020

4.2. Results of the BDS Test for Independence

For all selected markets, the BDS test results clearly indicate that the independence is
rejected (Table 3). These results are recorded for all values for the distance (ε), namely 0.5σ,
1σ, 1.5σ and 2σ.

4.3. The Results of the White and Teräsvirta Tests for Neglected Nonlinearities

The null hypothesis of the White neural network test is the linearity in the mean. As
shown in Table 4, except from BUX daily returns for which the null hypothesis of linearity
cannot be rejected, all other indexes present nonlinear features. In the case of WIG20 daily
returns, our results are different once again from those reported by [7], facts which prove
that the nonlinear characteristics are influenced by the selected period.
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Table 3. Results of the BDS test.

σ/m 0.5σ 1σ 1.5σ 2σ

BET 2 20.612 21.342 21.820 21.707
3 25.429 26.070 25.898 25.058
4 31.419 30.854 29.548 27.743
5 38.558 36.703 33.473 30.225
6 51.442 45.031 38.432 33.137
7 74.107 56.772 44.931 36.704

BUX 2 8.467 9.295 10.096 11.140
3 11.387 12.138 12.909 13.982
4 13.571 14.315 15.036 16.206
5 15.202 16.022 16.893 18.055
6 16.740 17.854 18.771 19.785
7 19.016 19.996 20.912 21.728

PX 2 11.496 12.570 14.223 15.725
3 15.768 16.748 18.484 20.032
4 18.846 19.404 21.007 22.393
5 22.922 22.281 23.330 24.266
6 28.717 25.587 25.732 26.038
7 36.473 30.328 28.828 28.033

SAX 2 9.527 8.916 8.342 7.477
3 11.987 11.367 10.186 9.192
4 14.092 12.830 11.471 10.593
5 16.045 14.000 12.170 11.238
6 18.518 16.052 13.365 11.801
7 20.896 17.631 14.106 12.015

PX 2 4.253 4.896 5.787 6.465
3 6.548 7.340 8.206 8.720
4 8.700 10.043 10.917 11.338
5 10.956 12.619 13.409 13.804
6 13.424 15.795 16.205 16.300
7 15.951 18.911 18.900 18.605

Table 4. Results of the White test.

Index Test Statistics (Chi-Squared) p-Value

BET 29.53 0.000
BUX 0.178 0.914
PX 5.392 0.067

SAX 5.276 0.071
WIG20 9.970 0.006

Table 5 presents the results for the Teraesvirta test. This test uses a Taylor series
expansion of the activation function to arrive at a suitable test statistic. The null hypothesis
is similar to the White test. However, the Teraesvirta test demonstrates that beside the BUX
index, the null hypothesis of linearity also cannot be rejected for the SAX index. Thus, our
results are mixed, as in [7].

Table 5. Results of the Teräsvirta test.

Index Test Statistics (Chi-Squared) p-Value

BET 34.87 0.000
BUX 4.171 0.124
PX 26.08 0.000

SAX 2.503 0.286
WIG20 7.794 0.020
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4.4. The Results of the Keenan and Tsay Tests for Nonlinearities

The results of the two tests are presented in Table 6. The two tests provide opposite
results. While the Keenan test shows that all index returns are linear, the Tsay test proves
the opposite. Only in the case of the WIG20 index, the two tests show consistence and
indicate linearity. As the Tsay test is considered a more powerful test, we conclude that the
series are nonlinear.

Table 6. Results of Keenan and Tsay tests.

Index
Keenan Test Tsay Test

Test Statistics p-Value Test Statistics p-Value

BET 0.664 0.415 3.483 0.000
BUX 1.079 0.298 3.833 0.000
PX 1.991 0.158 3.311 0.000

SAX 1.019 0.312 2.528 0.000
WIG20 0.938 0.332 0.426 0.734

4.5. The Results of the McLeod–Li Test for Nonlinearity

The test checks for the presence of conditional heteroscedascity by computing the
Ljung–Box (portmanteau) test with the squared data or with the squared residuals from
an Autoregressive Integrated Moving Average (ARIMA) model. As shown in Figure 1, all
series prove to be nonlinearities.
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Figure 1. Results of the McLeod–Li test. Figure 1. Results of the McLeod–Li test.
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4.6. The Results of the Harvey Test for Nonlinearities

The null hypothesis of the Harvey test is the existence of linearity. We notice from
Table 7 that all returns series are linear, results opposed to Tsay and McLeod–Li tests but in
agreement with the Keenan test.

Table 7. Results of the Harvey test.

Index
Test Statistics

(W)
Critical Values

1% 5% 10%

BET 36.57 76.79 76.62 76.53
BUX 6.500 39.77 39.71 39.67
PX 27.32 84.92 84.76 84.67

SAX 2.960 7.400 7.380 7.380
WIG20 7.750 24.26 24.22 24.20

Notes: (i) In order to reject the null of linearity, the W statistic has to be above its critical value; (ii) the critical
values are simulated with 10,000 replications.

4.7. The Results of the Lyapunov Exponent

The positive, largest Lyapunov exponent is considered as one operational definition
of chaotic behavior. For all the series, we observe chaotic dynamics, a fact which proves
the impossibility to forecast in the medium to long run (Table 8).

Table 8. The results of Lyapunov exponent tests for chaotic behavior.

Index
Largest Lyapunov Exponent Largest Lyapunov Index of Wolf Rosenstein Largest Lyapunov Exponent

m Lambda m Lambda m Lambda

BET 9 0.025 9 0.017 9 0.001
BUX 8 0.053 8 0.043 8 0.000
PX 5 0.016 5 0.087 5 0.100

SAX 11 0.033 11 0.021 11 0.001
WIG20 7 0.000 7 0.051 7 0.000

4.8. The Results of the 0–1 Test for Chaos

While applying the 0–1 test for chaos, we draw 100 random frequencies from a uniform
distribution on

[
π
5 , 4π

5

]
in each filter and calculate the test statistic for each frequency. The

results of [57] are presented in Table 9. Thus, Table 9 reports, for each series, the medians of
these 100 single frequency test statistics. As these test statistics are close to one, they indicate
that chaotic structures are inherent in the stock indexes’ return series of CEE countries.

Table 9. The results of the 0–1 test for chaotic behavior.

Index 0–1 Test Statistics

BET 0.997
BUX 0.998
PX 0.996

SAX 0.997
WIG20 0.996

All in all, even though the presence of nonlinearities and chaos in the CEE stock
markets is obvious, sometimes the results are mixed and contrast from those reported
by [7]. Table 10 centralizes our findings and makes a comparison with those reported
by [7]. The findings based on the BDS test and Lyapunov exponent are consistent for all
the analyzed stock markets and show nonlinearities and chaotic behavior. The other tests
provide mixed results, highlighting thus the differences in respect to the EMH between the
five CEE stock markets and between the analyzed periods.
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Table 10. Summary of results.

Test Own Estimations
All Indexes: June 2000–September 2015

Caraiani Results [7]
BUX: June 1993–December 2010

WIG20: June 1993–December 2010
PX: April 1994–December 2010

Index BUX PX WIG20 BET SAX BUX PX WIG20

Runs test R R LR LR LR LR LR LR
BDS test LI LI LI LI LI LI LI LI

White test L NL NL NL NL NL NL L
Teräsvirta test L NL NL NL L NL NL L

Keenan test L L L L L L NL L
Tsay test NL NL L NL NL L NL NL

McLeod–Li test NL NL NL NL NL - - -
Harvey test NL NL NL NL NL - - -

Largest
Lyapunov
exponent

C C C C C C C C

Lyapunov index
of Wolf C C C C C - - -

Rosenstein
Lyapunov
exponent

C C C C C - - -

0–1 test for
chaotic behavior C C C C C - - -

Note: I = independence; LI = lack of independence; R = randomness; LR = lack of randomness; L = linearities; NL = nonlinearities;
C = chaotic; NC = nonchaotic.

We also notice noteworthy discrepancies comparing our findings, obtained in the case
of mature CEE markets, with those reported by [7] with a focus on the 1990s. First, in the
case of BUX index, the Runs test used by [7] indicates a lack of randomness, whereas our
results show the existence of randomness, which is closer to the EMH and characteristics
for developed stock markets. The same applies in the case of the Tsay test, which, unlike [7],
indicates the existence of a nonlinear behavior. Second, the Keenan and Tsay tests applied
to the PX and WIG20 indexes indicate opposite results in our case compared to those
reported by [7]. We can therefore notice a change in the behavior of CEE stock markets,
which is influenced by their development level. At the same time, the outburst of the
2008–2009 global crisis might have had an impact on stock price behavior.

5. Conclusions

This paper tests for nonlinearities and chaos in five mature CEE stock markets, using a
large battery of tests. Although our results generally contradict the theoretical assumption
of linearity and nonchaotic behavior of stock markets, some issues appear. First, most of
the selected tests for nonlinearity points to mixed evidence. Second, our results partially
contrast from those reported by [7], which show that mature CEE stock market have
a different behavior compared to their behavior during the 1990s and 2000s, when the
efficient functioning of the selected markets was questioned. For example, the Runs test’s
results underline the presence of randomness for BUX and PX indexes, while the findings
of [7] show the lack of randomness for the same index returns. In addition, the White and
Teräsvirta tests highlight a linear behavior of the BUX index returns in our case.

To sum up, our results confirm the findings reported by the existing literature, which
point, in general, in favor of nonlinear and chaotic behavior of stock markets that requires
adequate forecasting techniques to predict the stock prices behavior. However, our findings
partially contrast earlier reported findings for the CEE stock markets behavior in the 1990s.
At the same time, our results underline the discrepancies existing between CEE stock
markets, which question the idea of CEE stock markets’ increasing integration.
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