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Abstract: Tip control is a current open issue in soft robotics; therefore, it has received a good amount of
attention in recent years. The desirable soft characteristics of these robots turn a well-solved problem
in classic robotics, like the end-effector kinematics and dynamics, into a challenging problem. The
high redundancy condition of these robots hinders classical solutions, resulting in controllers with
very high computational costs. In this paper, a simplification is proposed in the actuation setup of
the I-Support soft robot, allowing the use of simple strategies for tip inclination control. In order
to verify the proposed approach, inclination step input and trajectory-tracking experiments were
performed on a single module of the I-Support robot, resulting in zero output error in all cases,
including those where the system was exposed to disturbances. The comparative results of the
proposed controllers, a proportional integral derivative (PID) and a fractional order robust (FOPI)
controller, validate the feasibility of the proposed approach, showing a clear advantage in the use of
the fractional robust controller for the tip inclination control of the I-Support robot compared to the
integer order controller.

Keywords: soft robotics; robust control; fractional calculus

1. Introduction

Soft robotics is a growing research field which aims to incorporating softness in
robotic bodies or in novel end effectors, enabling safe and adaptive interactions [1]. Soft
robotics is bio-inspired, since it tries to reproduce the abilities of certain animals, such
as worms, snakes or the octopus [2], to move without a rigid skeleton or exoskeleton,
exploiting their softness in order to squeeze, and adapt to unstructured environments.
The stiffness characteristics of traditional industrial robots were desirable because they
enabled the fast, reliable and precise performance of tasks, such as those required in factory
lines. Conversely, soft robotics finds application in tasks where safety and adaptability to
unstructured environments is of paramount importance [1]. Such tasks include delicate
food handling, medical procedures, and assistive tasks.

The compliance which characterizes soft robots, besides granting the desired prop-
erties, also introduces challenges from the perspective of modeling and control [3]. The
hysteresis of the materials and their high redundancy, due to the virtually infinite number
of degrees of freedom (DoF) of soft robots, makes them hard to model with high accuracy.
Closed-form equations for describing the dynamics of soft robots are available [4], but
are too computationally demanding for efficient use in control. The constant curvature
(CC) or the piecewise constant curvature (PCC) approaches [5], which assume either all
of the robot’s body, or a number of robot sections, to be circular arcs, are computationally
efficient, but tend to fail when the robot is highly nonlinear.
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A different approach is to rely on neural networks [6] or reinforcement learning [7] for
data-driven modeling of the soft robot. In [6], a dynamic model of a soft robot is learned
through supervised learning using an auto-regressive network, and is employed for closed-
loop control by model-based reinforcement learning. In [7], a multiagent reinforcement
learning approach is used to learn the kinematic model of a robotic arm. A trajectory
optimization method is also exploited for open-loop control of dynamic reaching tasks [8].
In [9], it was shown that data-driven models can exploit the retraining of their networks’
weights to accommodate external disturbances. An extensive discussion of the challenges
of such platforms can be found in [10]. While these data-driven approaches can accurately
capture the nonlinearities of soft robot dynamics, their drawback is that neural networks
are black box models which are unfit for the traditional controller design methods usually
employed for state-space models.

Due to these limitations, many workspace control strategies applied to soft robots
are based on nonlinear model-based controllers or linear model-free controller schemes.
In the last case, as no model is available for the controller tuning, different alternatives
must be used. For instance, an empirical estimation of the kinematic Jacobian matrix is
proposed in [11], and later used in an optimal control scheme. Only the works in [12]
propose workspace linear controllers, but use very complex control laws, involving the
robot’s Jacobian matrix and its derivative. See [3] for a complete survey on different soft
robot control strategies.

Feedback control of nonlinear or time-varying systems has been a challenging problem
not just for soft robotics, but since the early nonlinear control attempts at the beginning of
the last century. Among the approaches proposed for dealing with nonlinearities, robust
control has been extensively used for that purpose. This strategy aims to achieve constant
system performance (in the sense of behavior), despite potential plant changes.

Some examples of robust control approaches can be found in [13], where a fractional
controller is proposed in the robust control of a soft neck, or in [14], where a fuzzy approach
is used to model a nonlinear plant (car steering), proposing an output feedback controller
to obtain a robust behavior. Other, more advanced, control strategies have also been used,
such as the sliding mode control of a wind turbine generator shown in [15], where a robust
behavior is obtained in simulations under the conditions of variable wind-speed inputs
and other parameter uncertainties. For a detailed discussion of nonlinear system control
problems and possible solutions, see [16].

A desirable feature in robust systems consists of providing a constant overshoot
despite changes in the plant parameters (usually the gain). This feature, often called
iso-damping in the literature, provides a significant advantage in the control of time-
varying or nonlinear systems. Often, this robustness specification is based on Bode’s ideal
function (see [17]), which features a flat phase diagram, and thus a constant damping. For
instance, in [18], the tuning of a proportional integral derivative (PID) controller based on
this flat-phase condition is proposed, showing the benefits of this robust specification in
several case studies. A similar approach is found in [19], where a relay test is proposed to
find the plant parameters, followed by the application of a tuning method based on the
aforementioned condition.

Using that robust specification, a wide range of solutions are possible, from the use of
a PID control, as described above, to more advanced strategies. A very interesting approach
to the robust control problem is found using fractional calculus. Fractional order controllers
(FOCs), based on non-integer-order derivative/integral operators, show greater flexibility
in fulfilling the flat-phase condition compared to their integer-order alternatives, while
keeping most of their benefits. An extensive review of fractional calculus applications
in the field of robust control can be found in [20,21], including system modeling and
controller design.

Although many fractional controller definitions have been proposed since the first
works in [22], the non-integer-order generalization of the classic PID is generally preferred,
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probably due to its simple control law and strong similarities with the ubiquitous PID
controller, allowing classic design tools to be adapted from integer to fractional exponents.

As described in [23], the fractional order PID (FOPID) controllers defined using
Equation (1) are able to provide a robust performance despite plant parameter changes
and nonlinearities

FOPID(s) = kp + ki
1
sλ

+ kdsµ, (1)

where kp, ki, kd are the controller gains, and λ, µ are the fractional operator orders.
Given its benefits and convenience, the FOPID controllers have received particular

attention in recent decades. Approaches using the definition in Equation (1) are found in
many works. For instance, in [24], new tuning and auto-tuning methods are proposed for
the controller parameters, showing excellent results in the control of real plants, like a water
circuit or a servomotor. The same controller is used for the control of a DC motor model
in [25], also proposing the possible electronic realization of the system. Again, in [26], an
optimization method is proposed for the tuning of the same controller, showing excellent
results in the control of a real servomotor system.

In this paper, a fractional-order robust control is proposed for I-Support, an assistive
soft robot [27]. The particular cases of proportional integral derivative (PID) and fractional-
order proportional integral controller (FOPI) are considered due to their plant and model
characteristics. As a novelty, a dynamic model of the plant will be used for the controller
tuning, achieving excellent results. This is an important contribution, as similar previous
works are based on very complex control laws, while the proposed control scheme is based
on simple PID or FOPI controllers.

In the following sections, the robotic platform hardware and the chosen model are
described. In order to obtain a suitable model, the robot inputs are redefined, allowing for
a direct relationship between the actuation variables and the work-space variables, such as
orientation and inclination angles. Then, a plant model is obtained using a recursive least
squares (RLS) parameter identification method, as described in [28]. Since the identification
is done offline, other, simpler methods could be used, such as least-squares fit; however,
given the tuning method proposed, the control strategy might be upgraded to an adaptive
scheme, as in the case of [29]. Therefore, a recursive identification algorithm like RLS may
have future advantages.

Once a plant model is available, it can be used for controller tuning. According to the
iso-m procedure explained in [30], the magnitude, phase and slope of the plant are needed,
which can be obtained from the RLS identification. In addition, the system’s behavior
must be defined using standard performance specifications, like the damping ratio (phase
margin) and peak time (crossover frequency). The resulting controller parameters will be
used in the robust control scheme proposed for the I-Support robot. See [30] for details on
the method application.

It will be shown that the proposed controllers can track the robot’s end effector
configuration in termso f its orientation and inclination angles, and can effectively reject
external disturbances, despite inaccuracies in the plant’s model, thanks to the robust
fractional order control.

2. Materials and Methods

A soft robotic manipulator for the assistance of elderly people, called I-Support, has
been used in this work [27] ( Figure 1). It belongs to the class of continuum manipulators
that receive inspiration from biological models like elephant trunks or snakes. It is com-
posed of three modules, each of them actuated by three coupled McKibben actuators and
three tendon-driven actuators. In this work, the proximal module of the robot was selected
and used independently of the others. McKibben actuators are artificial pneumatic muscles,
based on an internal latex balloon surrounded by a bellow-shaped braid. The braided
structure allows the McKibben actuator to perform uni-directional bending when inflated.
The pneumatic actuators are placed within the module at 120° to enable the bending and
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elongation of the module in all directions. The cable-driven actuation, which was not used
in this work for simplicity, allows for shortening and stiffness variation in the module. The
McKibben actuators are controlled by Camozzi K8P pneumatic valves, which are controlled
by an Arduino Due board. The Arduino is, in turn, controlled by a PC using a serial port
within the Matlab environment. The module is kept together by plastic discs placed 10 mm
from each other. An internal central channel is built to hold the hose, to provide water
and/or soap.

Figure 1. I-Support kinematic description.

2.1. Plant Model

According to [31,32], this robot is hyper-redundant, making the term degrees of
freedom (DOF) not applicable in the classical sense. Nevertheless, in this specific case,
the actuation parameters have a direct effect on measurable outputs like tip position and
orientation. A correlation between the three available system inputs and the measurable
outputs can be found and used to find a plant model.

The I-Support arm module is actuated through three evenly spaced, pressure-driven
McKibben pneumatic actuators. As described in [33], the actuator elongation depends on
the input pressure, which, in time, produces a change in the position and orientation of the
end-effector according to its relative location within the robot. In this case, given the actua-
tor disposition, the different input pressures result in a specific rotation and displacement,
depending on the actuator used, as shown in Figure 1. Note that, as there is only one input
variable per actuator, its resulting translations and rotations must be bounded.

The combined action of the three actuators produce the final end-effector’s position
and orientation in the workspace (Figure 2). As in a three-dimensional environment, the fi-
nal orientation of the end effector can be defined using three Euler angles. More specifically,
in our case, where the rotation in Z axis (yaw) cannot change, the final orientation can be
described using two rotation angles in X and Y: pitch and roll. Therefore, the combination
of the three angles produced by each actuator will result in a final rotation that can be
defined or measured with two angles.

Given that translations and rotations are bound, either can be considered as an output.
In this case, end-effector rotations will be considered as the system output. A deeper study
of the robot geometry will show how the actuator pressure inputs are related to these final
angle outputs.
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Figure 2. Left: elongated I-Support module, with three equally actuated chambers. Right: bended
module with only one chamber inflated.

Starting with a single actuator (A1), and making its rotation axis parallel to the X axis
in the frame of reference (see Figure 1), results in an output angle directly related to the
input pressure of its chamber. Given that the angles can be negative, the pressures are also
negative for the moment. Although the system does not allow this configuration, it can be
solved later by adding an offset. Considering this actuator, with the index number 1, the
equations describing angle α in X are as follows

α1 = f (P1). (2)

where α1 is the angle contribution from the first actuator to the final X axis angle (α), P1
is the actuator input pressure and f is a nonlinear function describing the relationship
between them.

However, there are other two actuators with an effect on the final angle α. Given the
proposed vertical robot setup, and using the same actuator type at all locations, we can
assume that functions f relating the input pressure and actuator angle are also similar.
Therefore, the same function applies, but including a projection factor that depends on the
actuator relative angle (γ), resulting in

α2 = cos(γ2) f (P2), (3)

α3 = cos(γ3) f (P3). (4)

In fact, we can generalize the previous functions as follows

αi = cos(γi) f (Pi). (5)

Although the f functions are nonlinear, the resulting tip angles depend on the forces
produced by the linear actuators; therefore, given the robot construction, the angles can be
considered additive. The final angle in the X axis is then found by addition of the three
actuator angles

α = α1 + α2 + α3 = cos(γ11) f (P1) + cos(γ12) f (P2) + cos(γ13) f (P3). (6)

Since the three actuators are symmetrically arranged, the angles are γ11 = 0 deg,
γ12 = 120 deg and γ13 = 240 deg, and Equation (6) results in

α = f (P1)− 0.5 f (P2)− 0.5 f (P3) = f (P1)− 0.5[ f (P2) + f (P3)]. (7)
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This result shows how both actuators’, A2 and A3, effects on the angle α are divided by
two, with an opposite direction to actuator A1. This leads to the first result of our approach.
The α angle is defined by the pressure difference, which is positive when P1 is larger than
0.5(P2 + P3), and negative otherwise. In the case of P1 = P2 = P3, angle α = 0, leading to
different robot elongations depending on the pressure value, form zero (P1 = P2 = P3 = 0)
to full-length ( P1 = P2 = P3 = Pmax).

Now, β angle is defined as the rotation around Y axis. Using the previous reasoning,
but projecting in the Y axis (using sin(γ))

β = β1 + β2 + β3 = sin(γ1) f (P1) + sin(γ2) f (P2) + sin(γ3) f (P3). (8)

In the case of γ1 = 0 deg, γ2 = 120 deg and γ3 = 240 deg, Equation (8) results in

β = 0.866 f (P2)− 0.866 f (P3) = 0.866[ f (P2)− f (P3)]. (9)

Note that the value of β angle depends on the difference between P2 and P3, and
the effects of the A1 actuator cannot change it. Again, the angle depends on a pressure
difference, and the elongation is a function of the minimum pressure values. For the case
P1 = P2 = P3, angle β = 0, leading to the previous result regarding robot elongation.
As there are just two actuators involved in this case, the final elongation depends on the
minimum values between those two pressures.

At this point, we can see that α and β angles depend on the pressure difference of
actuators A1, A2 and A3, and the elongation depends on the minimum of these values.
Based on that, we can define the new input variables βi, αi and li, as a linear combination
of the pressure inputs without loss of generality.

Using the results from Equations (7) and (9), and considering the description for the
elongation behavior of the robot, the following input redefinition is proposed

αi = P1 − 0.5(P2 + P3), (10)

βi = 0.866(P2 − P3), (11)

li = min(P1, P2, P3). (12)

As β depends only on the input pressure difference of the actuators A2 and A3, the
change in βi will only lead to a change in β output angle. Likewise, αi and li inputs will
affect only the output values of α and l.

Based on thid, the I-Support can be modeled as three decoupled single-input, single-
output (SISO) systems. The transfer functions Gα, Gβ, and Gl will model the actual outputs
(α,β, l) as a function of the new inputs (αi,βi,li), defined by Equations (10)–(12). Given the
simplifications we have considered, the reality will be different in several aspects, such
as the interference between actuators and the nonlinear plant behavior, as will be shown
in the experimental sections. To deal with these problems, we propose use of a robust
controller, since this will provide a constant behavior despite the plant parameter changes
or nonlinearities, as discussed above in Section 1.

In order to find these models, recursive least squares (RLS) system identification is
proposed. Based on the above discussion, redefined inputs (αi, βi and li) were considered
instead of pressure inputs. Note that these are just the pressure input redefinition, and the
output angles still depend on the system dynamics. Although f functions are unknown,
they are considered within the resulting models, but the nonlinear part will be neglected
due to the identification method. As a robust controller is proposed, the performance results
will be constant in the entire operation range of the robot, despite these nonlinearities.
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As the control system is now defined through angle and elongation inputs, the equiva-
lence between these inputs and the pressure of each actuator is required in order to operate
the robot. In that direction, Equations (10) and (11) can be used to solve P1 and P2.

P2 = βi + P3, (13)

P1 = αi + 0.5(P2 + P3) = αi +
βi
2
+ P3. (14)

Note that values of P1 and P2 depend on αi and βi inputs, and also depend on P3,
according to Equations (13) and (14). Using these results in Equation (12) provides

li = min(αi +
βi
2
+ P3, βi + P3, P3) = min(αi +

βi
2

, βi, 0) + P3, (15)

where the min function properties are applied to obtain P3 value out of the min function,
leading to the definition of P3 value based on the inputs αi, βi, and li detailed in the
following equation

P3 = li −min(αi +
βi
2

, βi, 0). (16)

This result means all the pressure results will be positive as long as li is greater
than zero, which means that this input variable actually controls the robot elongation, as
described before.

Once our system is defined, a model is needed for controller tuning and simulation.
Given the complex behavior of the robot, system identification is the best option to obtain
a linear model from captured data. This means that we neglect the possible nonlinear
behavior, but, thanks to the proposed robust controller, a good performance will be obtained
despite the model mismatch.

Using the described inputs and outputs definition, a set of experiments were carried
out for different target inclinations in order to obtain a plant model. The experimental
setup consists of different identification experiments where a changing target was set at
one of the three inputs (for instance, αi), while keeping the other two inputs fixed (for
instance, βi, and li). A motion-capture system was used to record the real plant behavior,
and later used to obtain the output angles (α and β) variation.

For example, Figure 3 shows the input and output captured data during two specific
identification experiments.
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Figure 3. Two examples of identification experiments. The left figure shows the system response to
variations in the input αi, while the other inputs are kept constant (βi = 30 and li = 0). Right figure
shows the system response to variations in the input βi, while the other inputs are kept constant
(αi = 20 and li = 0).
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Note that quite different behaviors can be observed for ascending and descending
steps. This is probably due to the compressed air valve setting, which can result in plant
differences when the air is pushed or released.

A relatively stable output is obtained for the fixed angle, despite the important vari-
ations in the changing angle, showing that the systems obtained are mainly decoupled,
but a minimal influence still exists. Note that although the input values considered in the
identification are αi, βi and li, the resulting model includes Equations (13), (14) and (16)
dynamics (just the linear behavior, of course).

An appropriate number of experiments were performed in the I-Support, covering the
entire robot workspace for different input combinations, resulting in a total of 62 separate
datasets. Each set consists of the system input data (αi,βi) and the response obtained (α,β)
over a period of 20 s (as shown in Figure 3). Then, RLS identification was applied to
selected parts of the captured data, as shown in Figure 4. As expected, the system has an
important variation in response over the range of possible inputs. The identification results
show how the systems clearly split into two different classes, coincident with the two main
observed behaviors. Figure 4 shows a validation example of the RLS results.
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Figure 4. Validation example of the identified models showing two different behaviors. Data obtained
from the case of variations in Alpha input ranging from 10 deg to 20 deg (left of Figure 3). Showing
the Step input (Alpha input), and the Real response (Alpha output) used in the RLS identification.
Resulting model time response is also shown for comparison.

Note that although the linear model captures the system behavior quite well, there are
mismatches due to plant nonlinearity. In this case, the identification data were extracted
from the capture data shown on the left side of Figure 3, but a different identification
procedure was performed for every experiment.

Using RLS identification in every dataset will result in a different model for every
single experiment. The frequency responses of these models are shown on the left side
of Figure 5, using one color label for each identified model, showing experiment number,
αi, βi, l. Note that two groups of frequency responses can be observed in the figure.
One group shows a decayed resonance with low stationary gain values (Mag < 0 dB
when Freq→ 0 rad/s), and the other group shows a significant resonant peak and higher
stationary gain values (Mag > 0 dB when Freq→ 0 rad/s). These groups are highlighted
on the right side of this figure, where only the systems with maximum and minimum gains
are shown. In addition, an average model, obtained as the mean value of all resulting RLS
parameters, is shown on the right side of Figure 5.
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Gains (right).

The transfer functions that describe these extreme systems are

Gmin =
311.86

(s + 3.154)(s2 + 2.949s + 210.9)
, Gmax =

3294.8
(s + 17.29)(s2 + 3.382s + 155.5)

, (17)

and the average system transfer function, with poles and gain found as the arithmetic
mean of the poles and gain obtained from each dataset, is

Gavg =
1403

(s + 8.665)(s2 + 3.462s + 176.7)
. (18)

Therefore, two classes can be used to model the I-Support system behavior. One
class is the low stationary gain case (Gmin), consisting of a pair of complex conjugate poles
shaped by the influence of a non-negligible real pole (three dominant poles). The other class
shows a higher stationary gain, and is described by (Gmax), with two complex dominant
poles and one negligible real pole.

The unit input time response and s plane pole locations are shown in Figure 6 for the
three described system models. An under-damped behavior is observed for the systems
with negligible real poles (Gmax, Gavg), while an oscillating over-damped response can be
observed in the case with three dominant poles (Gmin).

Note how the systems with less than 0 dB gain (Gmin, Gavg) show stationary responses
below the unit input value, while the other system (Gmax) stationary response rises above
this input level.
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Figure 6. Zero-pole representation (left) and unit input time response (right) for the three most
representative models obtained: Lowest Gain (Gmin), Average Gain (Gavg) and Maximum Gain
(Gmax) models.
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Given these results, a control scheme could be designed using two controllers, one
for each system class (two in this case), with a switching supervisor applying the correct
controller for each case. Nevertheless, the causes that affect the system behavior are not
clear; therefore, the supervisor implementation is not possible in this case. That strategy
could be considered in the future if the underlying reason leading to the differences in the
plant parameters is found.

2.2. Control Strategy

Considering these conditions, a solution will be proposed using robust control tech-
niques. As discussed before, robust controllers are able to show a constant performance
despite plant parameter variations or nonlinearities. Therefore, the average plant pa-
rameters can be used for a robust controller tuning, in this way granting an invariant
performance in the final system behavior despite changes in the plant parameters (usually
gain) or neglected nonlinear plant dynamics.

As discussed in Section 1, the fractional order generalization of the integer order PID
controller defined by Equation (1) is a convenient robust control approach, and it is suitable
in this case. Given the plant characteristics, the derivative part of the controller is not
needed and will only bring noise amplification. Therefore, the fractional order proportional
integral (FOPI) variant of the controller, defined by Equation (19), will be used.

FOPI(s) = kp + ki
1
sλ

. (19)

The three parameters (kp, ki,λ) must be tuned in order to achieve the desired system
performance. Usual control specifications are stability and responsiveness, normally
defined through frequency and damping ratio.

In order to provide a way to compare the robustness between the experiments, a small
overshoot will be forced using a target damping ratio lower than 1. As described in [34],
a phase margin of 70 deg will result in a damping ratio of 0.8, enough for a significant
overshoot. This allows us to compare the overshoot between experiments, providing a
measure of the system robustness by comparison. The design frequency must be low
enough to avoid the resonance influence in the vicinity of 10 rad/s in order to enforce
stability, with the fastest possible response. Based on this, the performance specifications
are the following

• φm = 70 deg
• ωgc = 1.5 rad/s

With the defined specifications, several tuning methods are available. The recently
published iso-m method, described in [30], is straightforward and easy to apply. In order
to tune a fractional order controller, a series of simple operations involving basic math and
the use of a graph to find the fractional exponent are needed. Therefore, this method can
be applied in the tuning of the controller described in Equation (19).

Using the average model defined in Equation (18) and the iso-m tuning method, the
controller parameters shown in Table 1 were found.

Table 1. Fractional order controller parameters.

kp ki λ

0.1878 1.8279 1.19

Based on these parameters, the resulting controller is defined as follows

FOPI(s) = 0.1878 + 1.8279
1

s1.19 . (20)
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An implementation of the fractional operator (s1.19) is then needed in order to apply
the previous controller in the feedback control scheme of the I-Support robot. One of
the most common techniques is the equivalent pole-zero approximation described in [35],
based on the operator frequency response (see, for example, [24] or [36]). Using that
approximation, the s1.19 operator implementation results in

s1.19 =
0.6614s3 + 1.763s2 + 0.4491s + 0.01586

s4 + 1.589s3 + 0.2861s2 + 0.007414s + 2.53E− 06
. (21)

The frequency response of the open-loop system cascading the controller and the
average plant model (FOPI(s) · Gavg(s)), and the closed-loop time response, are shown in
Figure 7.
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Figure 7. Frequency response (left) and time response (right) for the fractional order
controller system.

Note that, in the left side of the figure, the phase is completely flat in the vicinity of the
crossover frequency, leading to the desired iso-damping property and providing a constant
overshoot in the expected step response, shown on the right side of Figure 7.

In a similar way, the same specifications and tuning method were used in an equivalent
integer-order controller with the intention of a robustness comparison. The resulting
parameters are shown in Table 2.

Table 2. Integer order controller parameters.

kp ki λ

0.0071 1.6402 1.00

With these parameters, the resulting controller is

IOPI(s) = 0.0071 + 1.6402
1
s

. (22)

Again, the frequency and time responses of the system with controller IOPI(s) are
shown in Figure 8.

See the significant phase slope around the crossover frequency, leading to an important
difference in phase margin in the case of a gain change. Although the simulation predicts
an underdamped step response, as shown on the right side of Figure 8, in the experimental
section, how the overshoot variability is bigger in the case of the integer-order controller
will be shown.

A set of experiments were performed for both fractional- and integer-order controllers.
The results are shown and discussed in the following section.
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Figure 8. Frequency response (left) and time response (right) for the integer order controller system.

3. Results and Discussion

The experiments performed with the controllers defined in Equations (20) and (22)
were designed to assess and compare their performance and robustness properties. As
discussed earlier, the goal of robust control is to keep performance characteristics (like
overshoot) invariant despite changes in plant parameters (like gain). In this case, we have
seen that these parameters change for the different positions attained on the robot and,
therefore, a robust system should provide a constant overshoot percentage despite the end
effector position changes.

The first experiment consists of exciting the system with two-step input target angles
α and β at the same time, showing the controller robustness by overshoot comparison. Tip
orientation angles are recorded with an electromagnetic sensor (NDI Aurora®), as shown
in Figure 9. Note that a robust system is expected to have the same performance despite
plant parameter variations. Given the specifications defined, the difference in overshoot
percent values will show the system robustness, with the results showing similar overshoot
percentages in both output signals being more robust. An example of this first experiment
for target angles α = 10 and β = 30 is shown in Figure 10 for the FOPI and IOPI controllers.

Figure 9. Experimental setup.

Since the plant parameters change with the inclination, introducing two different
references for the target angles (α = 10, β = 30) allows us to observe the dynamic behavior
for two different parameter cases in a single experiment. Observe that, for the fractional-
order controller system (left), the overshoot variation is much lower (from 11% to 16%)
despite the difference in plant parameters compared to the integer controller (right), which
shows a higher overshot difference (from 0% to 17%).

A video recording of this experiment is available at https://vimeo.com/517321273
(accessed on 26 February 2021) for the case of the robust controller, showing the overshoots
during the tip positioning and the final controlled angles (Supplementary Material).

https://vimeo.com/517321273
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Figure 10. Experiment 1. Time response (above) and control signal (below) for the two controllers
tested, fractional (left) and integer (right) orders.

The second experiment is a disturbance response test, showing how the control
schemes respond to system disturbances. The targets from the first experiment are kept,
but, in this case, a constant mass of 150 g is used as a disturbance during the experiment.
The setup consists of a metal bar tied to the robot scaffolding in collision with the robot,
which can be manually attached or released at any time. In this experiment, the mass was
applied at t = 5 s, and removed at t = 10 s, both producing a sudden change in the feedback
error, as shown in Figure 11. Disturbance rejection was correct for both controllers.
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Figure 11. Experiment 2. Disturbance rejection. Time response for the two controllers tested,
fractional (left) and integer (right) orders.

The third experiment is a trajectory in space describing a square of four targets. This
experiment is the most demanding of all the experiments performed, presenting the most
extreme parameter variations. In this experiment, a changing reference was programmed,
following a trajectory of four positions. The references and points are shown in Table 3.
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Table 3. Trajectory for experiment 3.

α β l

Point 1 20 20 40

Point 2 −20 20 20

Point 3 −20 −20 40

Point 4 20 −20 20

The results are shown in Figure 12.
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Figure 12. Experiment 3. Trajectory tracking. Time response for the two controllers tested, fractional
(left) and integer (right) orders.

Note how the performances are varied in the case of the IOPI controller, ranging from
under-damped to over-damped systems, which cannot be considered as robust in the sense
described before. In contrast, the FOPI controller keeps a constant performance, showing
similar overshoots and time responses during the whole trajectory, which is considered as
a robust behavior, known in the literature as iso-damping.

Although elongation input was included to provide larger plant parameter variations,
the feedback loop is only applied to orientation control (α and β). Therefore, as elongation
positions are not feedback-controlled, their results show an important error. The position
and elongation control of the I-Support robot will be addressed in future works.

4. Conclusions

A robust control for the I-Support soft robot tip orientation is proposed in this paper
through the use of a FOPI controller, and compared to a similar PID controller in terms of
performance and robustness.

Given the specific robot characteristics, a previous input variable transformation has
been applied in order to split the MIMO system into three decoupled SISO systems. This
new approach allows to define the model of each system independently and to apply a
different feedback loop to each control variable.

With these decoupled SISO systems defined, a feedback control loop was designed
and implemented in these systems, steering the robot tip orientation actuation (α and β
angles). Given the simplifications made in the model, a robust controller is proposed to
deal with the parameter variations and neglected dynamics.

The proposed robust control scheme is based on a fractional-order, proportional in-
tegral FOPI controller, tuned through a recent method (iso-m) that provides an easy and
straightforward solution to the controller parameters. This is considered a major contri-
bution of this paper, as the previous works using similar control strategies show higher
control law complexity, resulting in much higher computational costs. This is probably



Mathematics 2021, 9, 702 15 of 16

the reason for the restriction of these control strategies to the simulation environment;
therefore, none of these works provide experimental results.

Experimentation is then considered as another important contribution of this paper,
as a thorough experimental comparison has been carried out between the two proposed
controllers in the real I-Support soft robot platform.

The excellent results obtained for the I-Support tip angle control validate the appli-
cation of this modeling and control scheme and open up the possibilities of position and
elongation feedback control of the platform, which will be proposed in future works.

Besides, a further comparison with previous works based on open-loop configuration
can be made in the future, to highlight the pros and cons of each control approach and show
some hybrid (feedback-machine learning) control possibilities with that can be applied to
the I-Support robot or similar platforms.
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