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Abstract: Simultaneous Equations Models (SEM) is a statistical technique widely used in economic
science to model the simultaneity relationship between variables. In the past years, this technique
has also been used in other fields such as psychology or medicine. Thus, the development of new
estimating methods is an important line of research. In fact, if we want to apply the SEM to medical
problems with the main goal being to obtain the best approximation between the parameters of
model and their estimations. This paper shows a computational study between different methods for
estimating simultaneous equations models as well as a new method which allows the estimation of
those parameters based on the optimization of the Bayesian Method of Moments and minimizing the
Akaike Information Criteria. In addition, an entropy measure has been calculated as a parameter
criteria to compare the estimation methods studied. The comparison between those methods is
performed through an experimental study using randomly generated models. The experimental
study compares the estimations obtained by the different methods as well as the efficiency when
comparing solutions by Akaike Information Criteria and Entropy Measure. The study shows that the
proposed estimation method offered better approximations and the entropy measured results more
efficiently than the rest.

Keywords: simultaneous equations models; bayesian method of moments; markov chain monte
carlo; akaike information criteria; entropy; computational statistics

1. Introduction

Simultaneous Equations Models (SEM) [1] is statistical model formed by a set of regres-
sion equations that reflect the simultaneity between the set of dependent and independent
variables of the model. SEM is used when there is a bidirectional influence relationship
between both types of variables. The estimation of the coefficients of a SEM can be made
by methods based on either the classical statistical approach or the Bayesian approach.

Regarding classic inference, the estimation of a SEM can be made by limited infor-
mation and full information methods. Limited information methods estimate each of the
equations of the structural form [1] without making use of the information contained in
the detailed specification of the rest of the model, only considering both the endogenous
and exogenous variables that are included in this equation. Ordinary Least Squares (OLS),
Indirect Least Squares (ILS), and the Two Stage Least Squares (2SLS) are examples of
limited information methods [1]. Full information methods consider joint estimation of the
whole model in the structural form. These methods require the specification all equations,
and all of them have to be identified. In general, they are more asymptotically efficient than
the others since they incorporate all the information of the system, but, with the drawback
that if any equation is incorrectly specified, estimates that are inconsistent with the other
equations may be generated. Examples of these kinds of methods are Full Information
Maximum Likelihood (FIML) or Three Stage Least Squares (3SLS) [1].
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On the other hand, the Bayesian inference which is based on a given set of data, does
not use sampling assumptions, but introduces a high degree of complexity due to the prior
specification of the distribution, as well as the obtaining of the posterior distribution. Some
estimation techniques in the Bayesian approach are the Bayesian Method of Moments
(BMOM) [2] or the methods used by Chao and Phillips [3], Geweke [4], and Kleibergen and
Van Dijk [5]. The recent development of the Markov Chain Monte Carlo method has been
key in making the computation of large models that require integrations over hundreds or
even thousands of unknown parameters possible. The Metropolis–Hastings algorithm and
the Gibbs Sampling [6] are examples of them.

Regarding model selection, the literature is limited to a comparison between Bayesian
and classical estimators, concluding that Bayesian methods perform better in the case of a
small sample [2].

Applications of SEMs can be found mainly in the economic framework, although
there are some applications of SEMs in other fields. For instance, in tax research, the
effects of fiscal decentralization on regional income inequality in Indonesia have been
studied using provincial-level data over the period 2001–2014 [7], or finding a SEM that
relates employment to mental health [8], others have studied the impact of foreign trade on
energy efficiency in China’s textile industry [9] or biomass energy consumption, economic
growth, and carbon emission in West Africa [10]. And other studies have concentrated on
comparing the results obtained by SEMs versus linear regression modeling of complex
phenotypes [11], a model for knowing the forecast demand on the facilities provided
airside at airports [12] or a SEM for modeling prescriptions in primary care [13]. The
Bayesian SEM approach has been used in agricultural science [14], or for studying the
impact of product information on third-party websites on the feedback mechanism between
internal word-of-mouth and retail sales on Download.com and Amazon.com (accessed
on 1 March 2020) [15]. It can be useful for analyzing the interdependence of a television
program viewership between spouses [16], for exploring peer effects in casino gambling
behavior [17], for modeling the interaction between people’s health risk perception and
betel chewing habits in Taiwan [18], and for studying the effects of repetitive iodine thyroid
blocking on the development of the foetal brain and thyroid in rats [19].

When several estimate models are available, it is necessary to have a selection pa-
rameter criteria. There are a lot of useful information parameter criteria for comparing
SEMs, such as Akaike Information Criteria (AIC) [20,21], its corrected version (AICc) [22],
Schwarz Information Criteria (SIC) [23], Bayesian Information Criteria (BIC) [24], Han-
nan and Quinn (HQ) [25], and Model Selection Criterion based on Kullback–Leibler’s
Symmetric Divergence [26].

Entropy was initially introduced in thermodynamics, where it was used to provide
the basis for the second law of thermodynamics. Subsequently, mechanical statistics
provided a connection between the macroscopic properties of entropy and the states of
the system, and from a mathematical point of view, are non-negative functions defined
in probability distributions with multiple applications such as using information theory
for measuring a system stability [27]. Applications of entropy have been used in the
fields of finance, [28], environmental and water engineering [29], urban systems [30], and
applications for customer satisfaction surveys [31].

In our paper, a new method for the SEM estimation is developed and compared
with other methods through the AIC and an entropy measure developed by Amigó [32],
which allows us to select the estimation method with the highest homogeneity in the
estimation errors.

The organization of the paper is as follows: In Section 2, the model is set up and
several classical and Bayesian methods for estimating SEM are briefly reviewed. Section 3
describes the proposed estimation method. In Section 4, the entropy is shown and a new
version is obtained as information criteria for selecting the method of estimation with
minimum error. The experimental design and the results are shown in Section 5, and,
finally, the conclusions and future lines of work are presented in Section 6.

Download.com
Amazon.com
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2. Definition of the Model and Methods for Estimating a SEM Problem
2.1. Definition of the Model

Consider m interdependent or endogenous variables which depend on k independent
or exogenous variables. Suppose that each endogenous variable can be expressed as a
linear combination of the other endogenous variables, the exogenous ones, and white noise
that represents stochastic interference. Thus, a SEM as a matrix form is [1]:

y1 = B1,2y2 + B1,3y3 + · · ·+ B1,mym + Γ1,1x1 + · · ·+ Γ1,kxk + u1

y2 = B2,1y1 + B2,3y3 + · · ·+ B2,mym + Γ2,1x1 + · · ·+ Γ2,kxk + u2

...

ym = Bm,1y1 + Bm,2y2 + · · ·+ Bm,m−1ym−1 + Γk,1x1 + · · ·+ Γm,kxk + um.

(1)

The equations can be represented in matrix form as:

YBT + XΓT + U = 0 (2)

where B ∈ Rm×m and Γ ∈ Rm×k are matrices of coefficients, Y ∈ Rn×m is the matrix of
endogenous variables, X ∈ Rn×k is the matrix of exogenous variables, and U ∈ Rn×m is
the matrix of white noise variables, being n the sample size. Some coefficients of B and Γ
are zero, and are known a priori. The number of endogenous and exogenous variables
in the ith equation of (1) is denoted by mi and ki. An equation is identified if the number
of variables (endogenous and exogenous) in the equation is lower than or equal to k + 1,
that is mi − 1 ≤ k− ki (order condition (1)). When mi − 1 = k− ki, the equation is exactly
identified and when mi − 1 < k− ki it is over-identified. Only identified equations can be
solved. Solving the model is equivalent to obtaining a estimation of B and Γ in (2) from a
representative sample of the model (a set of values of the data variables X and Y), in order
to explain a well-known matrix equation that represents the relationship between both sets
of variables.

2.2. Methods for Estimating an SEM Problem

There are different techniques for estimating SEM parameters. In the classical approach,
examples of these are 3SLS, 2SLS, OLS, K-class estimators [33], etc., and in the Bayesian
approach, MCMC algorithms, and several conjugate distributions are some examples. In
this section, a brief review of those estimators that have been used in our work is shown.

2.2.1. Two Stage Least Squares (2SLS)

2SLS is the most common estimation method for a SEM [1], developed independently
by Theil (1953) [34] and Basmann (1957) [35]. This method is called two stage, because in
its mathematical expression, Ordinary Least Square (OLS) is applied twice. In the first step,
new variables, called proxy, are calculated by Least Squares using the exogenous variables
of the model as independent variables, and in the second step, the endogenous variables
are substituted by the proxys, and then Least Squares is applied once more. Both, the 2SLS
and OLS method are single K-class estimators [33], expressed in (3) when K1 = K2 = 0
(OLS), and when K1 = K2 = 1 (2SLS).

2.2.2. Bayesian Method of Moments (BMOM)

This method, proposed by Zellner in 1998 [2], applies the principle of maximum
entropy and generates optimal estimation evaluated by double K-class estimators shown
in Table 1. When there is not enough information available to obtain the likelihood
function, allowing for data analysis without specifying a probability function and sampling
assumption.

Considering, for example, the first structural equation, y1 = Y1β1 + X1γ1 + u1, being
Y1 ∈ Rn×m and X1 ∈ Rn×k the matrix of endogenous and exogenous variables and
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u1 ∈ Rn×1, the white noise vector. The parameters δ1 = (β1 γ1)
′
∈ R1×(m+k), are estimated

by BMOM, that minimize the loss functions are given by:

δ̂1(K1, K2) =

[
Y
′
1Y1 − K1V̂

′
1V̂1 Y

′
1Z1

Z
′
1Y1 Z

′
1Z1

]−1
(Y1 − K2V̂1

)′
y1

Z
′
1y1

 (3)

with Z1 = (XΠ1 X1)
′
, where Π1 is the coefficient matrix of the reduced form equation

for Y1, being Y1 = X1Π1 + V1. Those coefficients can be calculated by LS obtaining
Π̂1 = (X

′
X)−1X

′
Y1 and V̂1 = Y1 − XΠ̂1 .

Table 1 shows the K1 and K2 parameters for two loss functions using the BMOM
approach, being n and k, the sample size and the number of exogenous variables:

Table 1. K1 and K2 parameters proposed to minimize loss function. Bayesian Method of Moments
(BMOM).

Loss Function BMOM Approach

Goodness of fit Lg = (y1 − Z1δ̂1)
′
(y1 − Z1δ̂1) K1 = 1− k/(n− k), K2 = 1

Precision of estimation Lp = (δ1 − δ̂1)
′
Z
′
1Z1(δ1 − δ̂1) K1 = K2 = 1− k/(n− k)

2.2.3. Bayesian Approach in Two Stages (Bayes2S)

In Bayesian inference, a pragmatic solution for choosing the prior distribution is to
select a member of the distribution family so that it remains in the same family as the prior
distribution. If the prior is conjugate, the posterior distribution after the first observation
belongs, by definition, to the same type and is used as the new prior distribution in the
next observation. Incorporating this second observation, the new posterior distribution,
also belongs to the class of conjugation. This sequential process only updates the value of
parameters of the distribution [6]. In this work, the Bayes2S method uses a Normal-Inverse
Gamma prior to obtaining the exact analytic expressions for the posterior distribution of
the structural B and Γ coefficients of the SEM. Basically, it has been applied in two stages
as the 2SLS method, used in the two-steps Bayesian Least Squares instead of Ordinary
Least Squares.

2.2.4. Markov Chain Monte Carlo (MCMC)

In the Bayesian approach, it is essential to select prior distribution, however, there are
situations where this selection is somewhat difficult due to the absence of previous model
information. The MCMC methodology provides a wide scope for statistical modeling, and
is widely used to summarize complicated posterior distributions in econometrics models.
In particular, Bayesian methods need to integrate the posterior distribution of model
parameters for that reason and MCMC draws samples from these posterior distributions.
There are many ways for constructing these chains like Gibbs sampler or special cases of
the general framework of Metropolis and Hastings [6]. In particular, in this work, Gibbs
Sampling has been used for the simulation of posterior distribution, calculating the average
to estimate the model parameters.

3. The Proposed Estimation Method: Optimized BMOM Method (BmomOPT )

A variation of BMOM (Section 2.2.2) is proposed obtaining K1 and K2 by the optimiza-
tion of different parameter criteria, instead of setting them by the proposed values in (1).
Concretely, the optimization of K1 and K2 parameters that minimize the AIC it is proposed,
which is a quality measure of statistical models [20] based on sample fit to estimate the
likelihood of a model. Thus, given a collection of model-based estimates for data, AIC
obtains the quality of each model with respect to other models, providing a way for a
model selection.
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The expression for this measure is:

AIC = n ln
∣∣Σ̂e
∣∣+ 2

m

∑
i=1

(mi + ki − 1) + m(m + 1) (4)

where n is the sample size, m is the number of equations, mi and ki are the number of
endogenous and exogenous variables in i-equation and Σ̂e, the variance-covariance matrix
of the errors ej = Yj − Ŷj, j=1, . . . , m.

For the experimental study, a large number of SEMs models have been randomly
generated through a model generator tool, called real models. Thus, new errors, denoted
by er

j , have been obtained as the difference between the values generated by the real models,

Yr
j , and the estimated values by each method described in the previous section, Ŷj. These

errors are substituted in (4), and, a new measure, denoted AICreal is calculated. This value
is a measure of the error and we propose it as a reference parameter, which could be an
indicator of the goodness of the estimated model. It can only be calculated if the real
coefficients are known, that is, in an experimental study. To reach the minimum AICreal
value, an algorithm based on the Quasi-Newton method is used, so that, in each iteration
the algorithm looks for an approximation of the inverse of the Hessian matrix. So, the
algorithm guarantees approximation at every step of the process.

4. Entropy as an Information Parameter Criteria

Another motivation in this work is to obtain an alternative measure to AIC which
is closely related to the BIC. In this section, it presents a parameter criteria of a SEM
quality based on entropy, H(e). Although entropy was introduced by Clausius [36] in
thermodynamics to measure the amount of energy in a system that cannot produce work,
this concept appears in many contexts (statistical mechanics, information theory, etc.) as
disorder, uncertainty, randomness, complexity, etc. Claude Shannon [37] in 1948 built
his theory of information and communication, being generalized by some authors as
Tsallis [38]. The expression for Shannon entropy [39], HS(x), is:

HS(x) = −
n

∑
i=1

p(x)log p(x). (5)

On the other hand, a new entropy measure, developed by Amigó [32] as a variation
of generalized entropy, has been developed to allow having small p(x) values in the
distribution. The expression for this entropy, HA(p), is:

HA(p) =
n

∏
i=1

(
2− (pi)

pi
)
. (6)

The model SEM has m equations, the same number as endogenous variables. Then,
applying this entropy to each equation in the estimated model obtains:

Hj(e) =
n

∏
i=1

(
2−

(
pij
)pij
)

j = 1, 2, . . . m (7)

where n is the sample size and m the number of endogenous variables, and the pij values
for each endogenous variable have been obtained as follows:

pij =
eij

∑n
i=i eij

j = 1, 2, . . . m, where eij = Yij − Ŷij (8)

where pij is the error mass in each endogenous variable and has been calculated from the
error matrix as the difference between endogenous variables and its estimation through
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each method. Finally, for each method and estimated model, the average of logarithms of
(7) is calculated:

H(e) =
∑m

j=1 ln Hj(e)

m
. (9)

The minimum value of H(e) is reached when eij are homogeneous, so, the Ŷij values
are more well-balanced.

5. Experimental Design and Results
5.1. Experimental Design

In the experimental study a large number of SEMs are generated (that is, generating
the matrices X, Y, B y Γ of each model) and then are estimated through the methods
presented in Sections 2 and 3 and finally, the models are compared to their estimations.

The SEMs have been generated as follows: The values of matrices B and Γ are gener-
ated randomly following a Uniform distribution in [0, 10], matrix X a multivariate normal
distribution, and finally, matrix Y as ΠX plus a Normal distribution with mean 0 and
sigma 0.1. Two functions of the R package have been used: In MCMC, Markov chains
have been simulated through the MCMCregress function of MCMCpack package without
prior information, and, in BmomOPT the function optim has been used to obtain the optimal
values K1 and K2. In Bayes2S, a Normal-Inverse Gamma prior has been used, with an
average of 5 and precision of 0.2 as the initial parameters.

For the comparison study, measures based on the generated model parameters and
measures based on the estimated parameters have been calculated, in order to have the
criteria to find the best estimation method. So, it is possible to have criteria to choose the
best estimation method. In the first type, the Euclidean distance between δ and δ̂, denoted
by Dδ,δ̂, where δ = [B Γ] is the coefficient matrix and δ̂ its estimation, and AICreal . In the
second type, AIC and the entropy H(e) have been calculated. And finally, the execution
time has been calculated. Table 2 shows the average and the standard deviation of 50
simulations for each measure, model, and method when the number of variables and
sample size of SEMs are varying.

Table 2. Average and standard deviation of 50 simulations of Dδ,δ̂, AICreal , AIC, H(e), and execution time in seconds.
Markov Chain Monte Carlo (MCMC). Sigma 0.1.

m k n 2SLS

BMOM

BmomOPT Bayes2S
a MCMC b

Goodness
of Fit

Precision
of Estima-

tion

D
δ,

δ̂

10 20 100 27.670
7.778

40.914
7.538

40.966
7.546

20.647
8.826

33.673
12.084

71.410
10.491

10 40 100 40.927
9.104

58.635
8.039

58.932
8.100

26.769
8.209

56.340
13.721

91.076
4.918

20 60 100 115.852
8.537

141.029
6.294

140.906
6.250

94.999
12.498

146.640
5.904

163.771
6.092

10 20 400 16.563
11.257

27.508
6.955

27.534
6.974

10.619
5.868

22.233
17.026

70.449
7.899

10 40 400 15.199
4.366

30.538
6.467

30.494
6.446

7.923
2.576

26.009
22.856

90.357
5.568

10 40 1000 7.394
2.830

17.218
5.450

17.229
5.458

5.130
1.944

9.233
7.540

95.210
10.424
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Table 2. Cont.

m k n 2SLS

BMOM

BmomOPT Bayes2S
a MCMC b

Goodness
of Fit

Precision
of Estima-

tion

A
IC

re
al

10 20 100 1361.764
781.683

1895.361
801.349

1896.600
800.971

1156.465
792.277

1993.402
831.727

4598.074
395.783

10 40 100 1915.270
651.931

2345.388
636.213

2351.286
635.582

1718.000
626.334

2531.052
715.689

4547.361
286.781

20 60 100 5941.844
779.559

6458.904
762.773

6456.303
763.063

5692.839
793.354

6732.681
777.638

10,172.018
206.247

10 20 400 4438.187
3271.180

7319.586
3449.337

7323.685
3450.560

3409.573
3232.656

7517.898
5184.224

22875.120
1641.293

10 40 400 4645.919
2358.815

6989.900
2744.681

6983.853
2744.491

3877.930
2299.173

7382.701
4943.642

22,057.334
917.641

10 40 1000 6824.562
8001.673

11,738.582
8294.696

11,742.499
8294.949

5913.439
8123.421

9046.596
8850.159

63,247.410
2586.679

A
IC

10 20 100 2168.030
854.334

1784.122
808.851

1783.602
808.150

2419.415
893.327

2391.887
785.620

4413.688
421.952

10 40 100 2009.636
639.153

1850.753
626.141

1850.716
626.059

2372.355
692.930

2254.874
728.737

4348.852
256.390

20 60 100 3866.102
1051.585

3647.221
1056.690

3645.439
1056.018

4543.780
1054.504

4119.416
1128.524

9856.712
241.454

10 20 400 15,027.648
3347.331

13,448.372
3161.253

13,446.459
3161.039

15,524.231
3459.419

15626.142
3279.198

22,160.759
1516.667

10 40 400 12,849.587
2699.761

11,990.079
2509.827

11,991.659
2509.734

13,479.303
2744.344

13,606.665
2961.619

21,421.728
858.468

10 40 1000 37,879.770
9621.598

36,438.251
9459.390

36,437.331
9459.167

38,479.010
9605.284

38,035.942
9483.024

61,720.600
2138.345

H
(e
)

10 20 100 4.074
0.013

4.081
0.012

4.081
0.012

4.074
0.013

4.084
0.018

4.096
0.016

10 40 100 4.076
0.012

4.080
0.010

4.080
0.010

4.075
0.014

4.084
0.011

4.087
0.014

20 60 100 4.086
0.008

4.087
0.009

4.087
0.009

4.086
0.009

4.086
0.009

4.088
0.009

10 20 400 5.579
0.005

5.579
0.005

5.579
0.005

5.579
0.005

5.587
0.021

5.609
0.008

10 40 400 5.590
0.005

5.590
0.005

5.590
0.005

5.590
0.005

5.593
0.014

5.602
0.007

10 40 1000 6.530
0.003

6.531
0.003

6.531
0.003

6.530
0.004

6.532
0.013

6.568
0.004

Ti
m

e
(s

)

10 20 100 0.073
0.145

0.732
0.246

0.732
0.246

258.227
98.562

0.056
0.017

294.453
17.949

10 40 100 0.143
0.047

1.022
0.395

1.022
0.395

274.088
345.929

0.140
0.050

499.554
68.116

20 60 100 0.314
0.047

2.495
0.395

2.495
0.395

748.504
345.929

0.407
0.145

1435.791
0.145

10 20 400 0.125
0.031

4.265
0.864

4.265
0.864

2586.186
1005.068

0.109
0.030

328.571
18.174

10 40 400 0.235
0.037

4.533
0.765

4.533
0.765

2281.255
804.186

0.214
0.032

507.791
38.694

10 40 1000 0.426
0.066

21.385
1.595

21.385
1.595

14,534.080
21,689.539

0.376
0.107

524.904
26.564

a All initial parameters have average 5.0 and precision 0.2. b Without prior information. Chain size 10,000.

5.2. Experimental Results

Regarding Dδ,δ̂, the results shows that the BmomOPT method is better in all estimated
models. Nevertheless, the high computational cost used by this method could be an
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issue in large problems. In such cases it would be more efficient to use Bayes2S, since
this method obtains good estimation in less time. AICreal shows similar results than Dδ,δ̂.
Regarding estimated measures, AIC does not offer satisfactory results because its values
are not in agreement with the Euclidean distance or with AICreal , which is proposed as a
reformulation that works well. The entropy H(e) has yielded satisfactory results and it
could be considered as a new comparative measurement.

In all methods, when the complexity of model increases, Dδ,δ̂ increases, being the
opposite when the sample size increases. Both BMOMs methods (Goodness of fit and Pre-
cision of estimation) show similar results, having a small difference between them. MCMC
provides estimations with the biggest average of Dδ,δ̂, in which no trend is appreciated
when the number of variables and sample size vary. The minimum average of AICreal is
reached by BmomOPT , with MCMC being the worst method. Regarding the entropy, the
minimum average value has been obtained by BmomOPT , except in the smallest case, where
Bayes2S obtains the minimum value with a small difference. Bayes2S and 2SLS require less
execution time in all cases, with BmomOPT performing the worst.

6. Conclusions and Future Work

In this paper, the estimation of simultaneous equations models was studied through
the comparison of models, carried out through an experimental study using randomly
generated models. A new estimation method was proposed, BmomOPT , based on the
optimization of some parameter of the Bayesian Method of Moments and minimizing the
Akaike Information Criteria. The computational study showed that the proposed method
was the best one regarding the minimum Dδ,δ̂ and entropy. The study also showed that the
AIC parameter presented deficiencies for selecting the estimation method with a minimum
Dδ,δ̂ value and minimum AICreal .

The AIC is one of the most used parameter criteria to compare different methods of
estimation. Nevertheless, in this study, the results showed that using entropy instead of
AIC in the evaluation of the methods provides values according with the quality of the
estimation (similarity with the real value).

In future, the study of information criteria parameters and their application in SEM
problems, the study of use other criteria for optimization, as well as studying how to reduce
the execution costs can be considered.
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