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Abstract: In 1930, Kuratowski showed that K3,3 and K5 are the only two minor-minimal nonplanar
graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface.
Širáň and Kochol showed that there are infinitely many k-crossing-critical graphs for any k ≥ 2, even
if restricted to simple 3-connected graphs. Recently, 2-crossing-critical graphs have been completely
characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large
2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs.
We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus
extending the results of Bodroža-Pantić, Kwong, Doroslovački, and Pantić.

Keywords: crossing number; crossing-critical graph; Hamiltonian cycle

MSC: 05C30; 05C38

1. Introduction

In 1930, Kuratowski characterized graphs that can be drawn in a plane with no cross-
ings [1]. His research was an opening step for several directions characterizing graph
families using forbidden substructures, such as extremal graph theory that forbids any sub-
graph isomorphic from being in a given graph [2], and the related structural graph theory
emanating from forbidding induced subgraphs, for instance, several characterizations of
Trotter and Moore [3] as well as perfect graph theorems [4,5]. Robertson, Seymour, and
others extended these results to graph minor theory [6,7]. While far from complete, a more
detailed review of the related research emanating from Kuratowski theorem is presented in
the next section. In this introduction, we only focus on the two topics that are fundamental
to the results of our paper, crossing-critical graphs and graph Hamiltonicity.

Observe (as is elaborated in the next section), that Kuratowski graphs can be inter-
preted as the only two 3-connected 1-crossing-critical graphs. A parallel theorem describing
all 2-crossing-critical graphs was established by Bokal, Oporowski, Salazar, and Richter [8],
who characterized the complete list of minimal forbidden subdivisions for a graph to
be realizable in a plane with only one crossing. They exhibit a significantly richer struc-
ture: unlike just two 3-connected 1-crossing-critical graphs, the graphs realizable in a
plane with at most one crossing already exhibit infinite families of topologically mini-
mal obstruction graphs. Although it cannot be claimed that all these 2-crossing-critical
graphs are Hamiltonian (with Petersen graph being the most known counterexample),
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the claim is fairly easy to see for large such graphs using the aforementioned character-
ization of 2-crossing-critical graphs. Hence, almost all of these graphs are Hamiltonian.
In this paper, we address a significantly more difficult problem of counting their different
Hamiltonian cycles. The interest in understanding the number of different Hamiltonian
cycles in various graph families originates from biochemical modelling of the polymers [9],
where a collapsed polymer globule is modelled by a Hamiltonian cycle and the number
of Hamiltonian cycles corresponds to the entropy of a polymer system in a collapsed
but disordered phase. This shows an interesting intuitive duality to counting Eulerian
cycles that showed relevance in constructing controlled, de novo protein structure fold-
ing [10,11]. In 1990, a characterization of Hamiltonian cycles of the Cartesian product
P4�Pn was established [12]. In 1994, Kwong and Rogers developed a matrix method for
counting Hamiltonian cycles in Pm�Pn, obtaining exact results for m = 4, 5 [13]. Their
method was extended to arbitrarily large grids by Bodroža-Pantić et al. [14] and by Stoyan
and Strehl [15]. Later, Bodroža-Pantić et al. gave some explicit generating functions for
the number of Hamiltonian cycles in graphs Pm�Pn and Cm�Pn [16,17]. Earlier, Saburo
developed a field theoretic approximation of the number of Hamiltonian cycles in graphs
Cm�Cn in [18] as well as in planar random lattices [19]. Fireze et al. considered generating
and counting Hamiltonian cycles in random regular graphs [20]. Given these results, we
note that our approach renders large 2-crossing-critical graphs to be the first nonplanar
graph family for which the number of Hamiltonian cycles can be exactly determined. It may
be relevant that the dissertation [21] similarly investigates links between 2-crossing-critical
graphs, graph embeddings, and Hamiltonian cycles in higher surfaces.

In addition to an alphabetic description of large 2-crossing-critical graphs that allows
for specifying the above formulae and may inspire further investigation of this graph class
and ease access to graph-theoretic research building in this next step beyond the Kura-
towski theorem, we hence extend this body of research on counting Hamiltonian cycles
by going beyond Cartesian products of paths and cycles and apply the matrix method for
counting Hamiltonian cycles to general 2-tiled graphs, which by the previously mentioned
characterization theorem includes almost all 2-crossing-critical graphs. By allowing for
nonplanar graphs in our approach, a new type of Hamiltonian cycle not observed previ-
ously appears. We complement the previous approaches of devising generating functions
(which is feasible for well-structured graphs, such as aforementioned Cartesian products,
or for the expected number of Hamiltonian cycles in random graphs) by an algorithm,
which is in the case of 2-crossing-critical graphs implementable in linear time. For certain
subfamilies of 2-crossing-critical graphs, the algorithm can even be simplified to a closed
formula, using only the counts of specific letters in our alphabetic representation of the
2-crossing-critical graph, thus rendering these graphs the first nonplanar graphs for which
an exact number of distinct Hamiltonian cycles is known. Specifically, we constructively
prove the following theorems:

Theorem 1. Let G be a 2-connected 2-crossing-critical graph containing a subdivision H ' V10.
There exists an algorithm of linear time complexity in the number of vertices of G that computes the
number of Hamiltonian cycles in G.

The theorem has the following easier-to-state corollary:

Corollary 1. There exists an integer N such that any 2-connected 2-crossing-critical graph G with
at least N vertices is Hamiltonian.

As Petersen graph is a 3-connected 2-crossing-critical graph and is not Hamiltonian,
containing a V10 subdivision (or, equivalently, being large) cannot simply be ommited for
the above conclusions. For a picture of V10, see Figure 1.

The algorithm in Theorem 1 is a special case of the general algorithm from the follow-
ing theorem:
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Theorem 2. Let T be a finite family of 2-tiles, and let G be a family of cyclizations of finite
sequences of such tiles. There exists an algorithm that yields, for each graph G ∈ G, the number of
distinct Hamiltonian cycles in G. For a fixed set T , the run time of the algorithm is quadratic in the
number of tiles (and hence vertices) of G.
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Figure 1. Two pictures of V10. In general, V2n is obtained from a 2n-cycle by adding the n main diagonals.

The rest of the paper is organized as follows. In the next section, we put the central
concept of tiled graphs and crossing-critical graphs into the wider context of graph theory
research. We introduce tiles and tiled graphs in Section 3, where a general algorithm for
counting Hamiltonian cycles in 2-tiled graphs is presented. In Section 4, we introduce
2-crossing-critical graphs and the recent characterization of large such graphs as 2-tiled
graphs. In Section 5, we combine the results by adapting the general counting algorithm to
2-crossing-critical graphs and constructively prove the above key results.

2. Related Research

Kuratowski theorem inspired several characterizations of graph families using for-
bidden subgraphs, which paved paths to significantly different areas of graph theory.
Extremal graph theory is concerned with forbidding any subgraph isomorphic from being
in a given graph [2] and maximizing the number of edges under this constraint. Significant
structural theory was developed when forbidden subgraphs were replaced by forbidden
induced subgraphs, for instance, several characterizations of Trotter and Moore [3] and the
remarkable weak and strong perfect graph theorems [4,5].

Interest has also been shown in finding forbidden subgraphs that imply Hamiltonicity
of graphs. In 1974, Goodman and Hedetniemi showed that a graph not containing induced
K1,3 and K1,3 + e, where e creates a 3-cycle, is Hamiltonian [22]. A series of several similar
results was closed in 1997 by Faudree and Gould, who characterized all pairs of graphs
such that forbidding their induced presence in a graph implies a graph’s Hamiltonicity [23].
This was via several papers extended to a complete characterization of triples of forbidden
graphs implying Hamiltonicity, the final one being [24].

Graph minor theory extended the Kuratowski theorem to higher surfaces, showing
that the set of graphs embeddable into any surface can be characterized by a finite set
of forbidden minors [7]. The exact characterization was devised by Archdeacon for the
projective plane [6], but already on the torus, the number of forbidden minors reached tens
of thousands [25]. Mohar devised algorithms to embed graphs on surfaces [26], which
was later improved by Kawarabayashi, Mohar, and Reed [27]. Characterizations of graph
classes with subdivisions received somewhat less renowned attention. Early on the above
path, Chartrand, Geller, and Hedetniemi pointed at some common generalizations of
forbidding a small complete graph and a corresponding complete bipartite subgraph as a
subdivision, resulting in empty graphs, trees, outerplanar graphs, and planar graphs [28].
That unifying approach apparently did not yield fruitful results, but more recently, Dvořák
established a characterization of several graph classes using forbidden subdivisions [29],
thus reaching even outside of topological graph theory.
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The cornerstone of our contribution is yet another generalization of Kuratowski
theorem. Note that the theorem elementarily implies that the two Kuratowski graphs K5
and K3,3 are the only 3-connected graphs that need at least one crossing to be drawn in a
plane, but each their proper subgraph is planar and hence has a strictly smaller crossing
number. Furthermore, all the graphs with the latter property can be obtained from them by
subdividing their edges. Using the definition from the next section, Kuratowski theorem
characterizes all 3-connected 1-crossing-critical graphs and consequently describes all
1-crossing critical graphs as their subdivisions.

It was already known that, contrary to fixed-genus-embeddable graphs, fixed-crossing-
number realizable graphs exhibit a richer structure of topologically minimal obstruction
graphs, as first demonstrated by Šiřan [30] constructing infinite families of c-crossing-
critical graphs. Kochol extended this result to simple, 3-connected graphs [31].

A parallel to this interpretation of Kuratowski theorem but for 2-crossing-critical
graphs was established recently by Bokal, Oporowski, Salazar, and Richter [8]. They char-
acterized the complete list of minimal forbidden subdivisions for a graph to be realizable
in a plane with only one crossing, i.e., 2-crossing-critical graphs. They showed that all
such graphs are either small or 2-connected and obtained from 3-connected ones using
subdivisions and similar operations, or 3-connected and obtained similarly as Kochol
2-crossing-critical graphs [31] but using 42 different structures (of which Kochol used just
one). Later in this paper, we formalize these structures as tiles.

Tiles as a central tool in graph theory were first formally defined by Pinontoan and
Richter [32], who extended the answer to Salazar’s question on average degrees in infinite
families of c-crossing-critical graphs [33]. Salazar’s question was resolved by Bokal, again
using tiles. They were instrumental in further studies on degrees in crossing critical
graphs by Hliněný [34], whose most complete results so far are published in [35]. Most
of this desire for understanding the degrees in crossing-critical graphs was inspired by a
conjecture of Richter that c-crossing-critical graphs have their maximum degree bounded
from above by a function of c. The conjecture was first existentially disproved by Dvořák
and Mohar [36]. A constructive counterexample was obtained by Bokal et al. [37], who also
showed that bounded degree conjecture holds precisely for c ≤ 12. Instrumental in this
result were wedges, a degenerate form of tiles that has yet to be formalized. Tiles, wedges,
and planar belts were shown to be (in addition to a small connecting graph) the three key
ingredients of large c-crossing-critical graphs by Dvořák, Hliněný, and Mohar [38].

In addition to applications of tiles for studying crossing-critical graphs, Pinontoan and
Richter opened another direction of results. They studied the limit crossing number of tiled
graphs, showing the existence of a limit crossing number for a periodic family of graphs
(in the terms defined later, k-tiled graphs resulting from the cyclizations of repeated joins
of a single tile). Richter later asked whether this limit is computable, which was proven
by Dvořák and Mohar in [39]. Some further graph invariants on 2-crossing-critical graphs
were obtained in parallel with our results and published in [40].

It may be interesting to note that tiles and their joins are a specific kind of labeled
graphs and operations on them, as introduced in Lovász’es seminal book on large networks
and graph limits [41]. Hence, introductory understanding of the conceptspresented here
may motivate researchers in pursuit of that direction. We do not harmonize the notation
here, but it may be feasible to do so when extending the theory of tiles to the theory of
earlier mentioned wedges.

3. Hamiltonian Cycles in 2-Tiled Graphs

In this section, we introduce the concept of a tile that was introduced in [32] and
later redesigned in [42] and applied in [8,35] and the k-tiled graphs. We use the notation
from [8]. To facilitate brevity, we have prepared Table A1 with a summary of frequently
used notation. It is located in the appendix.
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Definition 1. A tile is a triple T = (G, x, y), consisting of a connected graph G and two sequences
x = (x1, x2, . . . , xk) (left wall) and y = (y1, y2, . . . , yl) (right wall) of distinct vertices of G,
with no vertex of G appearing in both x and y. If |x| = |y| = k, we call T a k-tile.

We use the following notation when combining tiles:

Definition 2.

1. The tiles T = (G, x, y) and T′ = (G′, x′, y′) are compatible whenever |y| = |x′|.
2. A sequence T = (T0, T1, . . . , Tm) of tiles is compatible if, for each i ∈ {1, 2, . . . , m}, Ti−1 is

compatible with Ti.
3. The join of compatible tiles (G, x, y) and (G′, x′, y′) is the tile T = (G, x, y)⊗ (G′, x′, y′)

for which the graph is obtained from disjoint union of G and G′ by identifying the sequence y
term by term with the sequence x′.

4. The join of a compatible sequence T = (T0, T1, . . . , Tm) of tiles is defined as ⊗T = T0 ⊗
T1 ⊗ · · · ⊗ Tm.

5. A tile T is cyclically compatible if T is compatible with itself.
6. For a cyclically compatible tile T = (G, x, y), the cyclization of T is the graph ◦T obtained by

identifying the respective vertices of x with y.
7. A cyclization of a cyclically compatible sequence of tiles T is defined as ◦T = ◦(⊗T ).
8. A k-tiled graph is a cyclization of a sequence of at least (k + 1) k-tiles.

Lemma 1. Let C be a Hamiltonian cycle in a 2-tiled graph G = ◦(T0, T1, . . . , Tm). Then, we have
the following:

1. C =
m⋃

i=0
(C ∩ Ti).

2. C ∩ Ti is a union of paths and isolated vertices.
3. Let v be a vertex of a component of C ∩ Ti. Then, v has degree 2 in C ∩ Ti or v is a wall vertex.
4. There are at most two distinct non-degenerate paths in C ∩ Ti.
5. If C ∩ Ti consists of distinct non-degenerate paths P1 and P2, then C ∩ Ti = P1 ⊕ P2.

Proof.

1. C = C ∩ G = C ∩
( m⋃

i=0
Ti
) Distributive law

=
m⋃

i=0
(C ∩ Ti).

2. Let K be a component of C ∩ Ti. As C is a cycle, K is a connected subgraph of C. Then,
K is either equal to C, a path, or a vertex. If K = C, then Ti contains all the vertices of
G, a contradiction to m ≥ 2 (in at least one tile, C does not contain all the vertices).
The claim follows.

3. Let v be a vertex of C ∩ Ti of degree different from 2. As maximum degree in C is 2, v

has degree 1 or 0. If v is an internal vertex of Ti, its degree in C =
m⋃

i=0
(C ∩ Ti) is equal

to its degree in C ∩ Ti. This contradicts C being a cycle and the claim follows.
4. By Claim 3, paths start and end in a wall vertex. Each distinct non-degenerate path

needs two unique wall vertices, and the claim follows.
5. By Claim 4, P1 and P2 contain all the wall vertices. By Claim 3, isolated vertices can

only be wall vertices; hence, there are no isolated vertices and C ∩ Ti = P1 ⊕ P2.

Corollary 2. Let C be a Hamiltonian cycle in a 2-tiled graph G = ◦(T0, T1, . . . , Tm) and Ni be
the set of all isolated vertices in C ∩ Ti. Then, (C ∩ Ti) \ Ni is one of the following:

1. A path that begins in a vertex of the left wall, ends in a vertex of the right wall, and covers all
internal vertices of Ti.

2. A pair of distinct paths for which each begins and ends at opposite walls, span Ti, and respect
the vertex order of the walls.
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3. A pair of distinct paths for which each begins and ends at opposite walls, span Ti, and invert
the vertex order of the walls.

4. An empty set.
5. A pair of distinct paths for which each begins and ends at the same wall and span Ti.
6. A path that begins and ends at the same wall and covers all internal vertices of Ti.

We say that a path “traverses” a 2-tile, if it starts at the left wall and ends at the right
wall of a 2-tile. Based on Corollary 2, we define three groups of C-types of tiles as follows:

Definition 3. Let C be a Hamiltonian cycle in a 2-tiled graph G = ◦(T0, T1, . . . , Tm), x = (x1, x2)
be the left, and y = (y1, y2) be the right wall of Ti.

1. If a cycle C traverses Ti with a single path and covers all internal vertices of Ti, then we say
that Ti is of zigzagging C-type, of which there exist four kinds, relevant for completing the
Hamiltonian cycles between the tiles.
First, Ti is of zigzagging C-type {x3−j}−{y3−k} if C ∩ Ti contains a single path P, the endvertices
of P are vertices xj and yk of distinct walls of Ti, and P contains the non-endvertex wall vertices
x3−j, y3−k. If either wall vertex that is not an endvertex of P is not contained in P, then C ∩ Ti
contains a path P and these vertices as isolated vertex components. We denote such isolated compo-
nents using an overline, leading to zigzagging C-types {x3−j}−{y3−k}, {x3−j}−{y3−k}, {x3−j}−{y3−k}.

2. If a cycle C traverses Ti with a pair of distinct traversing paths that span Ti, then we say that
Ti is of traversing C-type.

(a) Ti is of aligned (Aligned pairs of traversing paths were introduced in [8].) traversing
C-type = if C ∩ Ti contains a pair of distinct paths P1 and P2, the endvertices of P1
are x1 and y1, and the endvertices of P2 are x2 and y2.

(b) Ti is of twisted (Twisted pairs of traversing paths were introduced in [8].) traversing
C-type × if C ∩ Ti contains a pair of distinct paths P1 and P2, the endvertices of P1
are x1 and y2, and the endvertices of P2 are x2 and y1.

3. If a cycle C does not traverse Ti, then we say that Ti is of flanking C-type.

(a) Ti is of flanking C-type ∅ if C ∩ Ti is an empty graph spanned by {x1, x2, y1, y2}.
(b) Ti is of flanking C-type ‖ if C ∩ Ti contains a pair of distinct paths P1 and P2,

the endvertices of P1 are x1 and x2, and the endvertices of P2 are y1 and y2.
(c) Ti is of flanking C-type |{y1,y2} if C ∩ Ti contains a single path P, the endvertices of

P are x1, x2 of the same wall of Ti, and P contains the non-endvertex wall vertices
y1, y2. If either wall vertex that is not endvertex of P is not contained in P, then C∩ Ti
contains a path P and these vertices as isolated components. We denote this using an
overline, leading to flanking C-types |{y1,y2}, |{y1,y2}, |{y1,y2}. The respective notations
for flanking C-types of P with endvertices y1, y2 are {x1,x2}|, {x1,x2}|, {x1,x2}|,{x1,x2}|.

We denote the set of all possible zigzagging C-types using Λz, the set of all possible traversing
C-types using Λt, and the set of all possible flanking C-types using Λ f . Finally, we set Λ=
Λz ∪Λt ∪Λ f .

We refer to C-types by their group name or by their notation. The first type of reference
is used in the case of the reference to the whole group of C-types, the second one is used in
the case of the reference to a specific C-type.

Lemma 2. Let C be a Hamiltonian cycle in a 2-tiled graph G = ◦(T0, T1, . . . , Tm). Then, precisely
one of the following holds:

1. ∀i : Ti is of zigzagging C-type.
2. ∃! i ∈ {0, 1, . . . , m}: Ti is of flanking C-type ‖ and ∀j ∈ {0, 1, . . . , m} \ {i}, Tj is of

traversing C-type.
3. ∃! i ∈ {0, 1, . . . , m}: Ti and Ti+1 are of compatible flanking C-type of form |{x,y} and {z,w}|,

respectively, and ∀j ∈ {0, 1, . . . , m} \ {i, i + 1}, Tj is of traversing C-type.



Mathematics 2021, 9, 693 7 of 27

4. ∃! i ∈ {0, 1, . . . , m}: Ti, Ti+1, andTi+2 are of flanking C-types |{y1,y2}, ∅, {x1,x2}|, respec-
tively, and ∀j ∈ {0, 1, . . . , m} \ {i− 1, i, i + 1}, Tj is of traversing C-type.

5. ∀i : Ti is of traversing C-type, where the number of indices i of tiles of traversing C-type × is
odd.

Proof.

1. We prove that, if Ti is of zigzagging C-type, then the same holds for Ti−1 and Ti+1.
Suppose that Ti is of zigzagging C-type. Then, Ti has the property that exactly one of
its left and one of its right wall vertices have a degree 1 in C ∩ Ti (the ones that are
endvertices of the path from the left to right walls). Because the degree of every vertex
in C is 2, the left wall vertex has degree 1 in C ∩ Ti−1 and the right wall vertex has
degree 1 in C ∩ Ti+1. Because the degree of every vertex in C is 2, other wall vertices
are either of degree 0 (isolated vertex) or 2 (vertex is part of a path) in C ∩ Ti. If a wall
vertex is of degree 0 (2) in C ∩ Ti, then its degree in C ∩ Ti−1 (left wall vertex of Ti) or
in C ∩ Ti+1 (right wall vertex of Ti) is 2 (0). Hence, based on Corollary 2, Ti−1 and Ti+1
are of zigzagging C-type. By extending the argument to their neighbors, we establish
Claim 1 of Lemma 2. For the rest of the proof, we may therefore assume that none of
the tiles are of zigzagging C-type.

2. Let Ti be of C-type ‖. Let P1⊕ P2 be paths in C∩ Ti. Assume without loss of generality
that P1 starts in xi

1 and ends in xi
2 and that P2 starts in yi

1 and ends in yi
2. Because m ≥ 2,

C− P1 ⊕ P2 = Q1 ⊕Q2, where Q1, Q2 are paths in Ti+1 ⊗ · · · ⊗ Tm ⊗ T0 ⊗ · · · ⊗ Ti−1,
which start in yi

1, yi
2 and end in xi

1, xi
2, respectively. Then, ∀j ∈ {0, 1, . . . , m} \ {i},

C ∩ Tj = (C− P1 ⊕ P2)∩ Tj = (Q1 ⊕Q2)∩ Tj
Distributive law

= (Q1 ∩ Tj)⊕ (Q2 ∩ Tj). For k ∈
{1, 2}, Qk ∩ Tj is nontrivial and connected; otherwise, Qk would not be connected.
Hence, (Q1 ∩ Tj), (Q2 ∩ Tj) are vertex disjoint paths in Tj that cover all internal vertices
(C is a Hamiltonian cycle) with endvertices in the opposite walls. Therefore, Tj is of
traversing C-type. We established Claim 2 of Lemma 2, and for the rest of the proof,
we may assume that none of the tiles is of C-type ‖.

3. Let Ti be of C-type λ ∈ {|{y1,y2}, |{y1,y2}, |{y1,y2}}. Then, C∩ Ti consists of some isolated
vertices (candidates are yi

1, yi
2) and path Pi. Because any isolated vertex of C ∩ Ti is

part of a path of a neighbouring tile (in this case, Ti+1) and is not the endvertex of
this path, there is a path Pi+1 in C ∩ Ti+1 for which the endvertices are yi+1

1 , yi+1
2 and

covers possible isolated nodes yi
1 = xi+1

1 , yi
2 = xi+1

2 of a tile Ti. Hence, Ti+1 is of
compatible C-type µ ∈ {{x1,x2}|, {x1,x2}|, {x1,x2}|}.
We now suppose that Ti is of C-type |{y1,y2} and that Ti+1 is not of C-type ∅. Then,
C ∩ Ti+1 consists of isolated nodes yi

1 = xi+1
1 , yi

2 = xi+1
2 , and path Pi+1, where Pi+1 is

a path for which the endvertices are yi+1
1 , yi+1

2 . Hence, Ti+1 is of C-type {x1,x2}|.
Because m ≥ 2, in both cases, C − Pi ⊕ Pi+1 = Q1 ⊕ Q2, where Q1, Q2 are paths in
Ti+2 ⊗ · · · ⊗ Tm ⊗ T0 ⊗ · · · ⊗ Ti−1, which start in yi+1

1 , yi+1
2 and end in xi

1, xi
2. Then,

∀j ∈ {0, 1, . . . , m} \ {i, i + 1}, C∩ Tj = (C− Pi ⊕ Pi+1)∩ Tj = (Q1⊕Q2)∩ Tj
Distributive law

=
(Q1 ∩ Tj)⊕ (Q2 ∩ Tj) and (similarly as in Item 2 of the proof of Lemma 2) Tj is of
traversing C-type. We established Claim 3 of Lemma 2, and for the rest of the proof,
we may assume that each tile of C-type |{y1,y2} has an adjacent tile of C-type ∅.

4. Let Ti be of C-type |{y1,y2} and Ti+1 be of C-type ∅. Then, there exists a path Pi in
C ∩ Ti that covers yi

1, yi
2. Because yi+1

1 , yi+1
2 are isolated vertices in C ∩ Ti+1, there is a

path Pi+2 in C ∩ Ti+2 for which the endvertices are yi+2
1 , yi+2

2 and covers these isolated
nodes yi+1

1 = xi+2
1 , yi+1

2 = xi+2
2 . Hence, Ti+2 is of C-type {x1,x2}|. Because m ≥ 2,

C− Pi ⊕ Pi+2 = Q1⊕Q2, where Q1, Q2 are paths in Ti+3⊗ · · · ⊗ Tm⊗ T0⊗ · · · ⊗ Ti−1,
which start in yi+2

1 , yi+2
2 and end in xi

1, xi
2. Then, ∀j ∈ {0, 1, . . . , m} \ {i, i + 1, i + 2},

C ∩ Tj = (C − Pi ⊕ Pi+2) ∩ Tj = (Q1 ⊕ Q2) ∩ Tj
Distributive law

= (Q1 ∩ Tj)⊕ (Q2 ∩ Tj) and
(similarly as in Item 2 of the proof of Lemma 2) Tj is of traversing C-type. We
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established Claim 4 of Lemma 2, and for the rest of the proof, we may assume that
there are no tiles of C-type of form |{x,y}.

5. Assume now that there is a tile Ti of C-type of form {z,w}|. Then, as we assumed
that there are no tiles of C-type of form |{x,y}, a symmetric argument to Item 3 of the
proof of Lemma 2 implies Ti−1 is of C-type ∅ (hence, Ti can only be of C-type {x1,x2}|).
However, then a symmetric argument to Item 4 of the proof of Lemma 2 implies that
Ti−2 is of C-type |{y1,y2}, a contradiction to the assumption that implies all tiles are
either of C-type ∅ or traversing C-type.
If there is at least one tile Ti of C-type ∅, then C ∩ Ti+1 ⊗ · · · ⊗ Tm ⊗ T0 ⊗ · · · Ti−1
consists of at least two disconnected paths Q1 and Q2. However, as C only intersects
Ti in wall vertices, C is equal to C ∩ Ti+1 ⊗ · · · ⊗ Tm ⊗ T0 ⊗ · · · Ti−1, a contradiction
implying that all the tiles are of traversing C-types.
The remaining case is that ∀i : Ti is of traversing C-type. Therefore, ∀i : C ∩ Ti =
Pi

1 ⊕ Pi
2, where each path starts in a left wall vertex and ends in a right wall vertex.

Without loss of generality, we may assume that, ∀k ∈ {1, 2}, P0
k , P1

k , . . . Pm
k are such

that ∀j ∈ {0, 1, . . . , m}, Pj
k ends in same vertex as Pj+1

k starts (if not, we can reindex
them). Without loss of generality, we may assume that P0

1 starts in x0
1 and P0

2 in x0
2.

Each tile of C-type × implies that the path moves from the top left wall vertex to
the bottom right wall vertex and from the bottom left wall vertex to the top right
wall vertex. In case of an even number of tiles Ti of C-type ×, x0

1P0
1 P1

1 . . . Pm
1 x0

1 and
x0

2P0
2 P1

2 . . . Pm
2 x0

2 are distinct cycles. When this number is odd, x0
1P0

1 P1
1 . . . Pm

1 x0
2P0

2 ,
P1

2 , . . . Pm
2 x0

1 is a Hamiltonian cycle.

Hamiltonian cycles of types 2–4 from Lemma 2 are of similar construction, so we use
the same name for all of them.

Definition 4. We define names for types of Hamiltonian cycle from Lemma 2: zigzagging Hamiltonian
cycles (type 1), flanking Hamiltonian cycles (types 2–4), and traversing Hamiltonian cycles (type 5).

Definition 5. Let {Ti, Ti+1, . . . , Tj} be a sequence of 2-tiles in a 2-tiled graph G = ◦(T0, T1,
. . . , Tm), where indices i and j are considered cyclically. Then,

K({Ti, Ti+1, . . . , Tj}) = {C ∩ Ti ⊗ Ti+1 ⊗ · · · ⊗ Tj | C is a Hamiltonian cycle in G}.

Using Definition 5, we define as follows:

Definition 6. Let G = ◦(T0, T1, . . . , Tm) be a 2-tiled graph. For λ ∈ Λ and i ∈ {0, 1, . . . , m}, let

ai
λ = |{C ∩ Ti ∈ K({Ti}) | Ti be of C-type λ}|.

We prove that the number of Hamiltonian cycles of each type can be counted efficiently.
In the counting of Hamiltonian cycles that follows, index 0 is used for the starting condition
of the recursive counting, i.e., when there are no tiles. We adjust to this notation by using a
one based labelling for tiles throughout the rest of Section 2. By definition of cyclization,
Tm+1 = T1.

3.1. Counting Traversing Hamiltonian Cycles

Lemma 3. Let T be a fixed finite family of 2-tiles, and let G = ◦(T1, T2, . . . , Tm), where ∀i : Ti ∈
T . Traversing Hamiltonian cycles in G can be counted in time O(m).
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Proof. For i ∈ {1, 2, . . . , m}, let

ci
even = |{C ∩ T1 ⊗ T2 ⊗ · · · ⊗ Ti ∈ K({T1, T2, . . . , Ti}) | even number of tiles of

C-type × , all other of C-type =}|,
ci

odd = |{C ∩ T1 ⊗ T2 ⊗ · · · ⊗ Ti ∈ K({T1, T2, . . . , Ti}) | odd number of tiles of

C-type × , all other of C-type =}|.

We define starting condition c0 as

c0 def
= [1 0]T , (1)

because, in an empty graph, there are zero (even number) tiles of C-type ×. Then, for each
i ∈ {1, 2, . . . , m}: [

ci
even

ci
odd

]
=

[
ai
= ai

×
ai
× ai

=

][
ci−1

even
ci−1

odd

]
, (2)

ci = Ri · ci−1.

Hence,
cm = Rm · Rm−1 · · · R1 · c0. (3)

By Lemma 2, the number of traversing Hamiltonian cycles in G is equal to cm
odd (the

combination of tiles with an even number of tiles of C-type × gives us two distinct cycles
that contain all vertices of a 2-tiled graph). For a fixed family of 2-tiles, we precalculate
matrices Ri. The time complexity to compute the product Rm · Rm−1 · · · R1 and then the
number cm

odd is O(m).

3.2. Counting Flanking Hamiltonian Cycles

Definition 7. We say that a cycle turns around in a 2-tile if there exist two vertex disjoint paths,
one with both endvertices in the left wall and the second one with both endvertices in the right wall,
that cover all internal vertices of a 2-tile.

Lemma 4. Let T be a fixed finite family of 2-tiles, and let G = ◦(T1, T2, . . . , Tm), where ∀i :
Ti ∈ T , and l ∈ {0, 1, 2}. Flanking Hamiltonian cycles that turn around in the join of (l + 1)
consecutive tiles can be counted in time O(m2). In the case where the corresponding matrices Rj,
j ∈ {1, 2, . . . , m}, are invertible, we can count them in time O(m).

Proof. For i ∈ {1, 2, . . . , m}, let

• Ti,i+l = Ti ⊗ Ti+1 ⊗ · · · ⊗ Ti+l ,
• ai,i+l be number of distinct possibilities for Ti, Ti+1, . . . , Ti+l to be of compatible flank-

ing C-types to turn around a cycle in Ti,i+l .

To get the number of flanking Hamiltonian cycles that turn around in Ti,i+l , i ∈ {1, . . . , m},
we do the following:

1. We calculate the value ai,i+l .
2. Using the idea from the proof for traversing Hamiltonian cycles over the sequence

(Ti+l+1, . . . , Tm, T1, . . . Ti−1), we get

ci+l+1,i−1 = Ri−1 · · · R1 · Rm · · · Ri+l+1 · c0,

where c0 is as in (1). Then, ci+l+1,i−1
even presents the number of different combinations

of C ∩ Ti+l+1 ⊗ · · · ⊗ Tm ⊗ T1 ⊗ · · · ⊗ Ti−1 with an even number of tiles of traversing
C-type× and ci+l+1,i−1

odd presents the number of different combinations of C∩ Ti+l+1⊗
· · · ⊗ Tm ⊗ T1 ⊗ · · · ⊗ Ti−1 with an odd number of tiles of traversing C-type ×.
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3. The number of Hamiltonian cycles turning around in Ti,i+l is equal to

ai,i+l · (ci+l+1,i−1
even + ci+l+1,i−1

odd ).

Hence, the total number of Hamiltonian cycles turning around in the join of (l + 1)
consecutive tiles in graph G is equal to

m

∑
i=1

ai,i+l · (ci+l+1,i−1
even + ci+l+1,i−1

odd ).

Because there are finitely many different tiles and l is a constant, values ai,i+l and
matrices Ri can be precalculated. The time complexity to compute the product Ri−1 · · · R1 ·
Rm · · · Ri+l+1 and then the number ci+l+1,i−1

even + ci+l+1,i−1
odd isO(m). Hence, to get the number

ai,i+l · (ci+l+1,i−1
even + ci+l+1,i−1

odd ), we need O(m) time. For m such numbers, the total time
complexity is O(m2).

Suppose that every matrix Rj, j ∈ {1, 2, . . . , m}, is invertible ((aj
=)2 − (aj

×)
2 6= 0)

and let
cm = Rm · · · R1 · c0

be as in (3). We can get the value ci+l+1,i−1
even + ci+l+1,i−1

odd by solving the equation

cm = Ri+l · · · Ri+1 · Ri · ci+l+1,i−1.

Because matrices Rj, j ∈ {1, 2, . . . , m} are invertible, we get

ci+l+1,i−1 = R−1
i · R

−1
i+1 · · · R

−1
i+l · c

m.

In this case, we need O(m) time to get cm. We need only O(1) additional time to
compute each ci+l+1,i−1 and then the number ci+l+1,i−1

even + ci+l+1,i−1
odd and hence O(m) to

compute them all. The total time complexity in this case is then O(m).

Lemma 5. Let T be a fixed finite family of 2-tiles, and let G = ◦(T1, T2, . . . , Tm), where ∀i :
Ti ∈ T . Flanking Hamiltonian cycles in G can be counted in time O(m2). In the case where the
corresponding matrices Rj, j ∈ {1, 2, . . . , m}, are invertible, we can count them in time O(m).

Proof. We can get flanking Hamiltonian cycles in three ways:

1. cycle turns around in one tile,
2. cycle turns around in two consecutive tiles, and
3. cycle turns around in three consecutive tiles.

1. Counting flanking Hamiltonian cycles that turn around in one tile:
Flanking Hamiltonian cycles that turn around in one tile consist of two parts. One
tile is of C-type ‖; other tiles are of traversing C-type. Using Lemma 4 with l = 0 and
ai,i+l = ai

‖, we get the desired result.

2. Counting flanking Hamiltonian cycles that turn around in two consecutive tiles:
In consecutive tiles Ti and Ti+1, we have yi

1 = xi+1
1 and yi

2 = xi+1
2 . Let ai,i+1

][
denote the

number of distinct possibilities for Ti and Ti+1 to be of compatible flanking C-types of
the forms |{x,y} and {z,w}|. Then,

ai,i+1
][

= ai
|{y1,y2}

· ai+1
{x1,x2} |

+ ai
|{y1,y2}

· ai+1
{x1,x2} |

+ ai
|{y1,y2}

· ai+1
{x1,x2} |

+ ai
|{y1,y2}

· ai+1
{x1,x2} |

.

Flanking Hamiltonian cycles that turn around in two consecutive tiles consist of two
parts. In consecutive tiles, compatible C-types of forms |{x,y} and {z,w}| are used and
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other tiles are of traversing C-type. Using Lemma 4 with l = 1 and ai,i+l = ai,i+1
][

, we
get the desired result.

3. Counting flanking Hamiltonian cycles that turn around in three consecutive tiles:
Considering three consecutive tiles Ti, Ti+1, and Ti+2 implies yi

1 = xi+1
1 , yi

2 = xi+1
2 ,

yi+1
1 = xi+2

1 , and yi+1
2 = xi+2

2 . Let ai,i+1,i+2
]∅[

denote the number of distinct possibilities
to turn around in three consecutive tiles Ti, Ti+1, and Ti+2. Then,

ai,i+1,i+2
]∅[

= ai
|{y1,y2}

· ai+1
∅ · ai+2

{x1,x2} |
,

where

ai+1
∅ =

{
1; there is no internal vertex in the tile Ti+1

0; there is an internal vertex in the tile Ti+1
.

Flanking Hamiltonian cycles that turn around in three consecutive tiles consist of two
parts. In consecutive tiles Ti, Ti+1, and Ti+2, respectively, the C-types that are used
are |{y1,y2}, ∅, and {x1,x2}|. Other tiles are of traversing C-type. Using Lemma 4 with

l = 2 and ai,i+l = ai,i+1,i+2
]∅[

, we get the desired result.

3.3. Counting Zigzagging Hamiltonian Cycles

Lemma 6. Let T be a fixed finite family of 2-tiles, and let G = ◦(T1, T2, . . . , Tm), where ∀i : Ti ∈
T . Zigzagging Hamiltonian cycles in G can be counted in time O(m).

Proof. We observe that there exist four possibilities for covering wall vertices of the same
wall in a 2-tile of zigzagging C-type from Definition 3:

1. x1 is an endvertex of a path and x2 is part of a path (notation (x1, x2)),
2. x2 is an endvertex of a path and x1 is part of a path (notation (x2, x1)),
3. x1 is an endvertex of a path and x2 is an isolated vertex (notation (x1, x2)),
4. x2 is an endvertex of a path and x1 is an isolated vertex (notation (x2, x1)).

For i ∈ {1, 2, . . . , m} and (k, l) ∈ {(x1, x2), (x2, x1), (x1, x2), (x2, x1)}, let

ci
(k,l) = |{C ∩ T1 ⊗ T2 ⊗ · · · ⊗ Ti ∈ K({T1, T2, . . . , Ti}) | Ti ends with type (k, l)}|.

In adjacent tiles Ti and Ti+1, we have yi
1 = xi+1

1 and yi
2 = xi+1

2 . We define different
starting conditions c0, dependent on the starting type (k, l) in the first tile (in this notation
T1):

• for (k, l) = (x1, x2):

c(x1, x2)
0 =

[
1 0 0 0

]T ,

• for (k, l) = (x2, x1):

c(x2, x1)
0 =

[
0 1 0 0

]T ,

• for (k, l) = (x1, x2):

c(x1, x2)
0 =

[
0 0 1 0

]T ,

• for (k, l) = (x2, x1):

c(x2, x1)
0 =

[
0 0 0 1

]T .
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For each i ∈ {1, 2, . . . , m}, we get
ci
(y1,y2)

ci
(y2,y1)

ci
(y1,y2)

ci
(y2,y1)

 =


ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y1}

ai
{x1}−{y1}

ai
{x2}−{y1}

ai
{x1}−{y1}

ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y1}

ai
{x1}−{y1}

ai
{x2}−{y1}

ai
{x1}−{y1}




ci−1
(x1,x2)

ci−1
(x2,x1)

ci−1
(x1,x2)

ci−1
(x2,x1)

, (4)

ci = Zi · ci−1.

Then,
cm = Zm · Zm−1 · · · Z1 · c0.

For each starting type (k, l), we get the equation

c(k, l)m = Zm · Zm−1 · · · Z1 · c(k, l)0.

Because of the definition of cyclization, we get zigzagging Hamiltonian cycles if we
have a combination of tile types with compatible starting type in tile T1 and ending type in
tile Tm (we can combine them to cycles). Hence, the number of zigzagging Hamiltonian
cycles in a graph G is equal to

c(x1, x2)
m
(x1,x2)

+ c(x2, x1)
m
(x2,x1)

+ c(x1, x2)
m
(x1,x2)

+ c(x2, x1)
m
(x2,x1)

,

which is equal to
tr(Zm · Zm−1 · · · Z1).

To compute this number, we have to efficiently calculate matrices Zi. Because there
is a finite number of different tiles, we can precompute them independently from m.
The time complexity to compute the product Zm · Zm−1 · · · Z1 and then the number tr(Zm ·
Zm−1 · · · Z1) is O(m).

Theorem 2. Let T be a finite family of 2-tiles, and let G be a family of cyclizations of finite
sequences of such tiles. There exists an algorithm that yields, for each graph G ∈ G, the number of
distinct Hamiltonian cycles in G. For a fixed set T , the running time of the algorithm is quadratic
in the number of tiles (and hence vertices) of G.

Proof. By Lemma 2, we know that there exist three types of Hamiltonian cycles in such a
graph (traversing, flanking, and zigzagging). We proved that traversing and zigzagging
Hamiltonian cycles can be counted in time O(m) (Lemma 3 and Lemma 6). Flanking
Hamiltonian cycles can be counted in timeO(m2) (Lemma 5). For adding all three counters,
we need O(1) additional time and the theorem holds.

4. Large 2-Crossing-Critical Graphs as 2-Tiled Graphs

In this section, we introduce 2-crossing-critical graphs and their characterization
from [8]. We continue with the introduction of an alphabet describing the tiles, which are
the construction parts of large 2-crossing-critical graphs.

4.1. Characterization of 2-Crossing-Critical Graphs

Definition 8.

1. Crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing
of the graph G.

2. For a positive integer c, a graph G is c-crossing-critical if the crossing number cr(G) is at
least c but every proper subgraph H of G has cr(H) < c.
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Theorem 3 ([8], Classification of 2-crossing-critical graphs). Let G be a 2-crossing-critical
graph with a minimum degree of at least 3. Then, one of the following holds:

1. G is 3-connected, contains a subdivision of V10, and has a very particular twisted
Möbius band tile structure, with each tile isomorphic to one of 42 possibilities. All
such structures are 3-connected and 2-crossing-critical.

2. G is 3-connected, does not have a subdivision of V10, and has at most 3 million vertices.
3. G is not 3-connected and is one of 49 particular examples.
4. G is 2-but not 3-connected and is obtained from a 3-connected, 2-crossing-critical graph by

replacing digons by digonal paths.

4.2. Construction of Large 2-Crossing-Critical Graphs

Definition 9.

1. For a sequence x, x denotes the reversed sequence.
2. (a) The right-inverted tile of a tile T = (G, x, y) is the tile Tl = (G, x, y).

(b) The left-inverted tile of a tile T = (G, x, y) is the tile lT = (G, x, y).
(c) The inverted tile of a tile T = (G, x, y) is the tile lTl = (G, x, y).

3. The set S of tiles consists of those tiles obtained as combinations of two frames, shown in
Figure 2, and 13 pictures, shown in Figure 3, in such a way that a picture is inserted into
a frame by identifying the two geometric squares. (This typically involves subdividing the
frame’s square.) A given picture may be inserted into a frame either with the given orientation
or with a 180◦ rotation.

4. The set T (S) consists of all graphs of the form ◦((⊗T )l), where T is a sequence (T0, lTl1 , T2,

. . . , lTl2m−1, T2m) such that m ≥ 1 and ∀i : Ti ∈ S .

Figure 2. Two available frames.

Figure 3. Thirteen available pictures to insert into a frame.

Large 2-crossing-critical graphs are described in Item 1 of Theorem 3. Item 3 of
Definition 9 describes the set of tiles (see Figure 4 for example) used in the construction of
large 2-crossing-critical graphs as described in Item 4 (see Figure 5 for example).

+ =

Figure 4. Demonstration of creation of tiles from S .
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T0 T1 T2

a

b

b

a

Figure 5. Example for m = 1. For T = (T0, T1, T2), G = ◦((⊗T )l) is shown. When appropriate
white vertices are identified, they are suppressed (see [8] for details).

4.3. The Alphabet Describing Tiles

In [43], the reader can find an alphabet to describe tiles in large 2-crossing-critical
graphs. There are four attributes that describe a tile:

1. top path Pt: Describes the top path of the tile. Pt ∈ {D, A, V, B, H} (see Figure 6 and 7).
2. identification Id: Describes if top and bottom paths of the tile intersect. Id ∈ {I, ∅}

(see Figure 8).
3. bottom path Pb: Describes the bottom path of the tile. Pb ∈ {D, A, V, B, ∅} (see

Figure 9).
4. frame Fr: Describes the frame used for the tile. Fr ∈ {L, dL} (see Figure 10).

D A V B

Figure 6. Alphabet letters describing top paths in tiles from S .

Figure 7. Additional letter H is used to describe one special picture. In this case, Pt = H, Id =

∅, Pb = ∅.

Figure 8. On the left side, Id = I; on the right side, Id = ∅.

D A V B

Figure 9. Alphabet letters describing bottom paths in tiles from S .

L dL

Figure 10. Alphabet letters describing frames.

Using this notation, each tile T ∈ S has its own signature:

sig(T) = Pt Id Pb Fr.
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If some attribute is equal to ∅, it is omitted in the signature. For a graph G ∈ T (S),
G = ◦((⊗T )l), where T = (T0, lTl1 , T2, . . . , lTl2m−1, T2m), we introduce a signature in a
natural way:

sig(G) = sig(T0) sig(T1) . . . sig(T2m−1) sig(T2m).

In connection with the introduced signature, we later use the following notation:

• for X ∈ {B, D, A, V, H, I, d}, #X is the number of occurrences of X in sig(G);
• for j ∈ {0, 1, . . . , 2m} and X ∈ {B, D, A, V, H, I, d}, #jX is the number of occurrences

of X in sig(Tj); and
• for j ∈ {0, 1, . . . , 2m}, p ∈ {Pt, Pb} and X ∈ {B, D, A, V}, #p

j X is the number of
occurrences of X as sig(Tj)p.

5. Hamiltonian Cycles in Large 2-Crossing-Critical Graphs

In this section, we use the fact that large 2-crossing-critical graphs are a special case of
2-tiled graphs with a finite set of tiles to efficiently count Hamiltonian cycles with the use
of algorithms from Section 3.

Remark 1. In the construction of large 2-crossing-critical graphs, degree one vertices of adjacent
tiles that are to be identified are suppressed after identification so that there is no degree 2 vertex in G
(see [8] for details and Figure 5 for example). Because of this, we define new types of frames, which
are obtained from original frames by removing the tail of a frame (see Figure 11). We use these frames
for constructing tiles in S . Then, the cyclization of old tiles with additional suppression of a vertex
is equivalent to the cyclization of new tiles (see Figure 12 for example). Note that all old graphs are
the same as new ones, but the new tiles are not 2-degenerate; hence, for this method of construction
of large 2-crossing-critical graphs, Theorem 2.18 from [8] does not yield 2-crossing-criticality. Each
tile in a new set S is a 2-tile, and large 2-crossing-critical graphs are obtained by cyclization of at
least three such 2-tiles. Therefore, by Definition 2, they are 2-tiled graphs. Because of that, we can
use the algorithms from Section 3 to count Hamiltonian cycles (efficiently).

Figure 11. Transformation of frames. In transformed frames, white vertices are the left wall vertices
and gray vertices are the right wall vertices of a 2-tile.

T0 T1 T2

a

b

b

a

Figure 12. Graph G from Figure 5 can be obtained using modified tiles T0, T1, T2. The signature
of this graph is sig(G) = DVdL HdL DDL. Later in Example 1, we show that the total number of
Hamiltonian cycles in G is 224.
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Let

R =

[
a= a×
a× a=

]
and

Z =


a{x2}−{y2}

a{x1}−{y2}
a{x2}−{y2}

a{x1}−{y2}

a{x2}−{y1}
a{x1}−{y1}

a{x2}−{y1}
a{x1}−{y1}

a{x2}−{y2}
a{x1}−{y2}

a{x2}−{y2}
a{x1}−{y2}

a{x2}−{y1}
a{x1}−{y1}

a{x2}−{y1}
a{x1}−{y1}


be matrices of tiles from S (R is from Equation (2) and Z from Equation (4)).

Remark 2. In the construction of large 2-crossing-critical graphs, tiles at odd index (even index in
algorithms) are inverted (see Item 4 of Definition 9). The matrices in the algorithms for such tiles
(inverted ones) can be obtained from the original ones in time O(1):

lRl =

[lal= lal×
lal×

lal=

]
=

[
a= a×
a× a=

]
= R,

lZl =



lal
{x2}−{y2}

lal
{x1}−{y2}

lal
{x2}−{y2}

lal
{x1}−{y2}

lal
{x2}−{y1}

lal
{x1}−{y1}

lal
{x2}−{y1}

lal
{x1}−{y1}

lal
{x2}−{y2}

lal
{x1}−{y2}

lal
{x2}−{y2}

lal
{x1}−{y2}

lal
{x2}−{y1}

lal
{x1}−{y1}

lal
{x2}−{y1}

lal
{x1}−{y1}



=


a{x1}−{y1}

a{x2}−{y1}
a{x1}−{y1}

a{x2}−{y1}

a{x1}−{y2}
a{x2}−{y2}

a{x1}−{y2}
a{x2}−{y2}

a{x1}−{y1}
a{x2}−{y1}

a{x1}−{y1}
a{x2}−{y1}

a{x1}−{y2}
a{x2}−{y2}

a{x1}−{y2}
a{x2}−{y2}



=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 · Z ·


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


= X · Z · X.

Remark 3. In the construction of large 2-crossing-critical graphs, there is a twist in connecting
the last and the first tiles (see Item 4 of Definition 9).

The matrices in the algorithms for the last tile (the right-inverted one) can be obtained from the
original one in time O(1):

Rl =

[
al= al×
al× al=

]
=

[
a× a=
a= a×

]
=

[
0 1
1 0

]
· R,
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Zl =


al
{x2}−{y2}

al
{x1}−{y2}

al
{x2}−{y2}

al
{x1}−{y2}

al
{x2}−{y1}

al
{x1}−{y1}

al
{x2}−{y1}

al
{x1}−{y1}

al
{x2}−{y2}

al
{x1}−{y2}

al
{x2}−{y2}

al
{x1}−{y2}

al
{x2}−{y1}

al
{x1}−{y1}

al
{x2}−{y1}

al
{x1}−{y1}



=


a{x2}−{y1}

a{x1}−{y1}
a{x2}−{y1}

a{x1}−{y1}

a{x2}−{y2} a{x1}−{y2}
a{x2}−{y2}

a{x1}−{y2}

a{x2}−{y1}
a{x1}−{y1}

a{x2}−{y1}
a{x1}−{y1}

a{x2}−{y2}
a{x1}−{y2}

a{x2}−{y2}
a{x1}−{y2}



=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 · Z
= X · Z.

Remark 4. As the tiles in S are planar, none of them contain an intertwined pair of disjoint paths;
hence, none of the tiles from the set S is of C-type ×. Using this observation with Remark 2 and
Remark 3, we get that, for each tile in S , the following holds:

R = lRl =
[

a= 0
0 a=

]
and Rl =

[
0 a=

a= 0

]
.

Corollary 3. Let G ∈ T (S). The number of traversing Hamiltonian cycles in G is equal to

THC(G) =
2m+1

∏
i=1

ai
=,

where ai
= is the number of possibilities for Ti to be of C-type =.

Proof. Using Remark 4 in Equation (2), for i ∈ {1, 2, . . . , 2m}, we get

ci = ai
= · I · ci−1

= ai
= · ci−1

and

c2m+1 = a2m+1
= ·

[
0 1
1 0

]
· c2m.

Then,

c2m+1 = a2m+1
= · a2m

= · · · a1
= ·
[

0 1
1 0

][
1
0

]
=

 0
2m+1

∏
i=1

ai
=

.

Hence,

THC(G) =
2m+1

∏
i=1

ai
=.

Corollary 4. Let G ∈ T (S). The number of traversing Hamiltonian cycles in G is equal to

THC(G) = 2#B+#D+#H+#I+#d.
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Proof. We have shown before that THC(G) =
2m+1

∏
i=1

ai
=. Using the alphabet defined above,

we notice that
ai
= = 2#i B+#i D+#i H+#i I+#id.

Then,

THC(G) =
2m+1

∏
i=1

2#i B+#i D+#i H+#i I+#id

= 2

(
2m+1

∑
i=1

#i B
)
+

(
2m+1

∑
i=1

#i D
)
+

(
2m+1

∑
i=1

#i H
)
+

(
2m+1

∑
i=1

#i I
)
+

(
2m+1

∑
i=1

#id
)

= 2#B+#D+#H+#I+#d.

Corollary 5. Let G ∈ T (S). The number of flanking Hamiltonian cycles in G is equal to

FHC(G) = THC(G) ·
2m+1

∑
i=1

ai
‖ · a

i+1
= + ai,i+1

][

ai
= · ai+1

=
,

where

• THC(G) is the number of traversing Hamiltonian cycles in G,
• ai

= is the number of possibilities for Ti to be of C-type =,
• ai

‖ is the number of possibilities for Ti to be of C-type ‖,
• ai,i+1

][
is the number of distinct possibilities for Ti and Ti+1 to be of compatible flanking C-types

of forms |{x,y} and {z,w}|.

Proof. As shown in the proof of Lemma 5,

FHC(G) =
2m+1

∑
i=1

ai
‖ · (c

i+1,i−1
even + ci+1,i−1

odd ) +
2m+1

∑
i=1

ai,i+1
][
· (ci+2,i−1

even + ci+2,i−1
odd )

+
2m+1

∑
i=1

ai,i+1,i+2
]∅[

· (ci+3,i−1
even + ci+3,i−1

odd ).

Because each tile in S contains an internal vertex, for each tile in S , the value a∅ = 0
(see the proof of Lemma 5). Hence, ∀i ∈ {1, 2, . . . , 2m + 1}, ai,i+1,i+2

]∅[
= 0. Using Remark 4

as in the proof of Corollary 3, we get that

[
ci+1,i−1

even

ci+1,i−1
odd

]
=


0

2m+1
∏
j=1
j 6=i

aj
=

 and

[
ci+2,i−1

even

ci+2,i−1
odd

]
=


0

2m+1
∏
j=1

j/∈{i,i+1}

aj
=

.



Mathematics 2021, 9, 693 19 of 27

It is easy to check that, for each tile in S , the value a= > 0. Using observations and

the result from the proof of Corollary 3 that THC(G) =
2m+1

∏
j=1

aj
=, we get

ci+1,i−1
odd =

2m+1

∏
j=1
j 6=i

aj
= =

1
ai
=

2m+1

∏
j=1

aj
= =

1
ai
=
· THC(G),

ci+2,i−1
odd =

2m+1

∏
j=1

j/∈{i,i+1}

aj
= =

1
ai
= · ai+1

=

2m+1

∏
j=1

aj
= =

1
ai
= · ai+1

=
· THC(G).

Hence,

FHC(G) = THC(G) ·
2m+1

∑
i=1

ai
‖ · a

i+1
= + ai,i+1

][

ai
= · ai+1

=
.

Corollary 6. Let G ∈ T (S). The number of flanking Hamiltonian cycles in G is equal to

FHC(G) = THC(G) ·
2m+1

∑
i=1

2#id · 2#i+1B+#i+1D+#i+1 H+#i+1 I+#i+1d + Υ(Ti, Ti+1)

2#i B+#i D+#i H+#i I+#id · 2#i+1B+#i+1D+#i+1 H+#i+1 I+#i+1d ,

where

Υ(Ti, Ti+1) =



(1− #i H) · 2#i B+#i D · (1− #i+1H)·
·2#i+1B+#i+1D+#i+1d; if sig(Ti)Fr = dL

(1− #i H) · 2#i B+#i D · (#Pb
i+1V · 2#Pt

i+1B+#Pt
i+1D+

+2 · #Pb
i+1B · 2#Pt

i+1B+#Pt
i+1D + #Pt

i+1V·
·(1− #Pb

i+1B) + #i+1H − #Pb
i+1V · #Pt

i+1V) · 2#i+1d+

+(#Pt
i V · 2#

Pb
i B+#

Pb
i D + 2 · #Pt

i B · 2#
Pb
i B+#

Pb
i D+

+#Pb
i V · (1− #Pt

i B) + #i H − #Pt
i V · #Pb

i V)·
·(1− #i+1H) · 2#i+1B+#i+1D+#i+1d; if sig(Ti)Fr = L

.

Note that the notation implies the number can be computed solely from the signature
of a 2-crossing-critical graph. The structure of the equation is explained through the proof
that follows.

Proof. We have shown in the proof of Corollary 4 that ai
= = 2#i D+#i B+#i H+#i I+#id. It is easy

to see that

ai
‖ =

{
2; if sig(Ti)Fr = dL
1; if sig(Ti)Fr = L

= 2#id.

It remains to show that ai,i+1
][

= Υ(Ti, Ti+1):

1. Let sig(Ti)Fr = dL. Using Figure 13, it is easy to see that

ai,i+1
][

= ai
|{y1,y2}

· ai+1
{x1,x2} |

.

For ai
|{y1,y2}

, all pictures except H are valid, and paths B and D add a multiplier 2.

Hence,
ai
|{y1,y2}

= (1− #i H) · 2#i B+#i D.
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For ai+1
{x1,x2} |

, all pictures except H are valid, and paths B and D, and the frame dL add

a multiplier 2. Hence,

ai+1
{x1,x2} |

= (1− #i+1H) · 2#i+1B+#i+1D+#i+1d.

(a) (b)

Figure 13. (a) Drawing of Ti ⊗
lTli+1, where sig(Ti)Fr = dL. White vertices are right wall vertices

of tile Ti and left wall vertices of tile Ti+1. (b) Dotted arrows show the only possible combination
for ai,i+1

][
.

2. Let sig(Ti)Fr = L. Using Figure 14, it is easy to see that

ai,i+1
][

= ai
|{y1,y2}

· ai+1
{x1,x2} |

+ ai
|{y1,y2}

· ai+1
{x1,x2} |

.

For ai
|{y1,y2}

, all pictures except H are valid, and paths B and D add a multiplier 2.

Hence,
ai
|{y1,y2}

= (1− #i H) · 2#i B+#i D.

For ai+1
{x1,x2} |

, there are several options:

• The bottom path is V; the top path is any of the possible ones; and top paths B
and D, and the frame dL add a multiplier 2.

• The bottom path is B; the top path is any of the possible ones; and the bottom
path B, top paths B and D, and the frame dL add a multiplier 2.

• The top path is V; the bottom path is any of the possible ones, except B; and the
frame dL adds a multiplier 2.

• The top path is H, and the frame dL adds a multiplier 2.

The first and the third options both cover the picture with the top path V and the
bottom path V. Hence,

ai+1
{x1,x2} |

= (#Pb
i+1V · 2#Pt

i+1B+#Pt
i+1D + 2 · #Pb

i+1B · 2#Pt
i+1B+#Pt

i+1D

+ #Pt
i+1V · (1− #Pb

i+1B) + #i+1H − #Pb
i+1V · #Pt

i+1V) · 2#i+1d.

For ai
|{y1,y2}

, there are several options:

• The top path is V; the bottom path is any of the possible ones; and the bottom
paths B and D add a multiplier 2.

• The top path is B; the bottom path is any of the possible ones; and the top path B
and bottom paths B and D add a multiplier 2.

• The bottom path is V, and the top path is any of the possible ones, except B.
• The top path is H.

The first and the third options both cover the picture with top path V and bottom
path V. Hence,

ai
|{y1,y2}

= #Pt
i V · 2#

Pb
i B+#

Pb
i D + 2 · #Pt

i B · 2#
Pb
i B+#

Pb
i D

+ #Pb
i V · (1− #Pt

i B) + #i H − #Pt
i V · #Pb

i V.
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For ai+1
{x1,x2} |

, all pictures except H are valid, and paths B and D, and the frame dL add

a multiplier 2. Hence,

ai+1
{x1,x2} |

= (1− #i+1H) · 2#i+1B+#i+1D+#i+1d.

(a) (b)

Figure 14. (a) Drawing of Ti ⊗
lTli+1, where sig(Ti)Fr = L. White vertices are right wall vertices of tile

Ti and left wall vertices of tile Ti+1. (b) Dotted and dashed arrows show two possible combinations
for ai,i+1

][
.

Corollary 7. Let G ∈ T (S). The number of zigzagging Hamiltonian cycles in G is bounded by

0 ≤ ZHC(G) ≤ 82m+1.

Proof. To count zigzagging Hamiltonian cycles, the algorithm from the proof of Lemma 6
with a slight difference (explained in Remark 2 and Remark 3) is used:

ZHC(G) = tr(Zl2m+1 ·
lZl2m · Z2m−1 · · · Z3 ·

lZl2 · Z1)

= tr((X · Z2m+1) · (X · Z2m · X) · Z2m−1 · · · Z3 · (X · Z2 · X) · Z1)

= tr((X · Z2m+1) · (X · Z2m) · (X · Z2m−1) · · · (X · Z2) · (X · Z1)), (5)

where X is the matrix from Remark 3.
The lower bound is achieved by a graph G ∈ T (S), where ∀i ∈ {1, 2, . . . , 2m + 1} :

sig(Ti) = DDdL. In this case, the matrices Zi are the following:

Zi =


0 0 4 0
0 0 0 0
4 4 0 0
2 2 0 0

.

Hence,

X · Zi =


0 0 0 0
0 0 4 0
2 2 0 0
4 4 0 0

.

Then,

(X · Z2m+1) · (X · Z2m) · (X · Z2m−1) · · · (X · Z2) · (X · Z1) =


0 0 0 0
0 0 4 · 8m 0

2 · 8m 2 · 8m 0 0
4 · 8m 4 · 8m 0 0


and

ZHC(G) = tr((X · Z2m+1) · (X · Z2m) · (X · Z2m−1) · · · (X · Z2) · (X · Z1)) = 0.

We now study the upper bound for the number of zigzagging Hamiltonian cycles.
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Remark 5. For matrices X, Y ∈ Mn(R+
0 ), let the coefficient K(X, Y) be defined as

K(X, Y) = n−
(
#zero columns in X + #zero rows in Y

− #of indices i so that the Xi column and Yi row are both zero
)
.

If UB(X) and UB(Y) are the upper bounds for elements in matrices X and Y, then

UB(X ·Y) = K(X, Y) ·UB(X) ·UB(Y)

is an upper bound for elements in matrix X ·Y (this is a direct corollary of the definition of matrix
multiplication).

Based on the frame, we get the following two types of matrices:

• Tile with frame L:

ZL =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
a41 a42 a43 0

,

where aij ≤ 2 (frame adds a factor 1 and pictures add a factor 2).
• Tile with frame dL:

ZdL =


a11 a12 a13 0
0 0 0 0

a31 a32 a33 0
a41 a42 a43 0

,

where aij ≤ 4 (frame adds a factor 2 and pictures add a factor 2).

If we use the observation (5), we have two types of matrices in the product:

• Tile with frame L:

X · ZL =


a21 a22 a23 0
a11 a22 a13 0
a41 a42 a43 0
a31 a32 a33 0

,

where aij ≤ 2 and so UB(X · ZL) = 2.
• Tile with frame dL:

X · ZdL =


0 0 0 0

a11 a12 a13 0
a41 a42 a43 0
a31 a32 a33 0

,

where aij ≤ 4 and so UB(X · ZdL) = 4.

We introduce two types of matrices:

R1 =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

 and R2 =


0 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

.

Remark 6. It is obvious that X · ZL is of type R1 and that X · ZdL is of type R2.
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For their product, the following holds:

R1 · R1 is of type R1,

R1 · R2 is of type R1,

R2 · R1 is of type R2,

R2 · R2 is of type R2. (6)

For coefficient defined in Remark 5, the following holds:

K(R1, R1) = 3,

K(R1, R2) = 2,

K(R2, R1) = 3,

K(R2, R2) = 2. (7)

Using Remark 6 and observations (6) and (7), we get the following combinations:

UB((X · ZL) · (X · ZL)) = 3 · 2 · 2 = 12,

UB((X · ZdL) · (X · ZL)) = 3 · 4 · 2 = 24,

UB((X · ZL) · (X · ZdL)) = 2 · 2 · 2 = 8,

UB((X · ZdL) · (X · ZdL)) = 2 · 4 · 4 = 32.

It is easy to check that we get the largest bound by using a combination with all
components of the product (5) equal to Z = X · ZdL. Then,

UB(Z2) = K(Z, Z) ·UB(Z) ·UB(Z) = 2 ·UB(Z)2

UB(Z3) = K(Z, Z2) ·UB(Z) ·UB(Z2) = 2 ·UB(Z) · 2 ·UB(Z)2 = 22 ·UB(Z)3

...

UB(Z2m+1) = K(Z, Z2m) ·UB(Z) ·UB(Z2m) = 2 ·UB(Z) · 22m−1 ·UB(Z)2m

= 22m ·UB(Z)2m+1.

Because UB(Z) = 4, we get

UB(Z2m+1) = 22m · 42m+1.

Because Z2m+1 is of type R2, we get that

ZHC(G) ≤ ZHC(Z2m+1) = tr(Z2m+1) = 2 ·UB(Z2m+1) = 2 · 22m · 42m+1 = 82m+1.
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Example 1. We now compute the number of Hamiltonian cycles for the graph from Figure 12:

THC(G) =
2

∏
i=0

ai
=

= 4 · 4 · 4

= 64,

FHC(G) = THC(G) ·
2

∑
i=0

ai
‖ · a

i+1
= + ai,i+1

][

ai
= · ai+1

=

= 64 ·
(2 · 4 + 0

4 · 4 +
2 · 4 + 0

4 · 4 +
1 · 4 + 16

4 · 4

)
= 144,

ZHC(G) = tr((X · Z2) · (X · Z1) · (X · Z0))

= 16,

because

Z0 =


2 0 2 0
0 0 0 0
0 4 0 0
0 2 0 0

, Z1 =


0 2 2 0
0 0 0 0
2 0 0 0
0 1 1 0

, Z2 =


0 0 2 0
2 2 0 0
2 2 0 0
0 0 2 0


and so

(X · Z2) · (X · Z1) · (X · Z0) =


8 8 8 0
4 4 4 0
4 4 4 0
8 8 8 0

.
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Appendix A

Table A1. Glossary of frequently used symbols.

Notation Description

Λz Set of all possible zigzagging C-types.
Λz = {{x1}−{y1},{x1}−{y1},{x1}−{y1},{x1}−{y1},

{x1}−{y2},{x1}−{y2},{x1}−{y2},{x1}−{y2},

{x2}−{y1},{x2}−{y1},{x2}−{y1},{x2}−{y1},

{x2}−{y2},{x2}−{y2},{x2}−{y2},{x2}−{y2}}.

Λt Set of all possible traversing C-types.
Λt = {=,×}.

Λ f Set of all possible flanking C-types.
Λ f = {∅, ‖, |{y1,y2}, |{y1,y2}, |{y1,y2}, |{y1,y2},{x1,x2} |,{x1,x2} |,{x1,x2} |,{x1,x2} |}.

Λ Set of all possible C-types.
Λ = Λz ∪Λt ∪Λ f .

ai
λ Number of possibilities for tile Ti to be of C-type λ ∈ Λ.

ci
even Number of distinct possibilities in C ∩ T1 ⊗ T2 ⊗ · · · ⊗ Ti with even number of tiles of C-type ×

and all others of C-type =.

ci
odd Number of distinct possibilities in C ∩ T1 ⊗ T2 ⊗ · · · ⊗ Ti with odd number of tiles of C-type ×

and all other of C-type =.

Ri Notation for matrix[
ai
= ai

×
ai
× ai

=

]
.

Ti,i+l Represents the join Ti ⊗ Ti+1 ⊗ · · · ⊗ Ti+l .

ai,i+l Number of distinct possibilities for Ti, Ti+1, . . . , Ti+l to be of compatible flanking C-types to turn
around a cycle in Ti,i+l , l ∈ {0, 1, 2}.

ai,i+1
][

Number of distinct possibilities for Ti and Ti+1 to be of compatible flanking C-types of form |{x,y}
and {z,w}|.

ai,i+1,i+2
]∅[

Number of distinct possibilities to turn around in three consecutive tiles Ti, Ti+1 and Ti+2.

Zi Notation for matrix
ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y1}

ai
{x1}−{y1}

ai
{x2}−{y1}

ai
{x1}−{y1}

ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y2}

ai
{x1}−{y2}

ai
{x2}−{y1}

ai
{x1}−{y1}

ai
{x2}−{y1}

ai
{x1}−{y1}

.

Pt Describes the top path of the tile.
Pt ∈ {A, V, D, B, H}.

Id Describes if the top and bottom paths of the tile intersect.
Id ∈ {I, ∅}.

Pb Describes the bottom path of the tile.
Pb ∈ {A, V, D, B, ∅}.

Fr Describes the frame used for the tile.
Fr ∈ {L, dL}.
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Table A1. Cont.

Notation Description

#X The number of occurences of X in sig(G).

#jX The number of occurences of X in sig(Tj).

#p
j X The number of occurences of X in sig(Tj)p.

THC(G) The number of traversing Hamiltonian cycles in G ∈ T (S).
FHC(G) The number of flanking Hamiltonian cycles in G ∈ T (S).
ZHC(G) The number of zigzagging Hamiltonian cycles in G ∈ T (S).
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