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Abstract: Modern portfolio theory deals with the problem of selecting a portfolio of financial assets
such that the expected return is maximized for a given level of risk. The forecast of the expected
individual assets’ returns and risk is usually based on their historical returns. In this work, we
consider a situation in which the investor has non-historical additional information that is used for
the forecast of the expected returns. This implies that there is no obvious statistical risk measure
any more, and it poses the problem of selecting an adequate set of diversification constraints to
mitigate the risk of the selected portfolio without losing the value of the non-statistical information
owned by the investor. To address this problem, we introduce an indicator, the historical reduction
index, measuring the expected reduction of the expected return due to a given set of diversification
constraints. We show that it can be used to grade the impact of each possible set of diversification
constraints. Hence, the investor can choose from this gradation, the set better fitting his subjective
risk-aversion level.

Keywords: portfolio selection; value of information; diversification

1. Introduction

Harry Markowitz, Nobel Prize in Economics, introduced in 1952 the Modern Portfolio
Theory [1]. In modern portfolio theory (MPT), also known as mean-variance theory,
a portfolio of assets is selected such that the expected return is maximized for a given level
of risk. The main idea behind this mathematical framework is the idea of risk reduction
through diversification, that is, the idea that owning different kinds of financial assets is
less risky than owning only one type. In this framework, assets’ risk and return should not
be assessed by themselves, but by how they contribute to the portfolio’s overall risk and
return [1]. The MPT uses the historical variance of asset prices as a proxy for risk.

Given two portfolios with the same expected return, investors are supposed to be
risk averse, preferring always the less risky portfolio. Higher risk is assumed only if it
is compensated with higher expected returns. Diversification may allow for the same
portfolio expected return with reduced risk.

A large number of mathematical models for portfolio selection have been proposed
over the last decades trying to improve or enrich the classical mean–variance model.
However, this model, as stated by Markowitz (see [1,2]), can be still considered, despite its
weaknesses, the predominant model in portfolio selection [3]. Specification of the expected
returns of the assets is, however, still a controversial question. Risk, return, and correlation
measures used by the mean-variance model are based on expected values, being therefore
statistical statements about the future. Investors use predictions based on historical data
in their portfolio selection models. However, in many occasions these predictions cannot
reflect all the real statistical characteristics of returns and risk. In general, predictions based
on historical data, expected values, are not able to incorporate and take into account new
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circumstances that did not exist when the historical data were generated [4]. Estimation of
return and risk based on historical data leads to a situation where risk measurements are
probabilistic and not structural.

Under the MPT framework, the modeling of risk is performed in terms of likelihood
of losses not explaining the reasons behind a potential loose. This is one of the principal
criticisms to Markowitz’s portfolio selection framework and several alternatives mathe-
matical risk measurements have been proposed in the last years generating a debate about
their properties [5]. Another criticism is related to the assumption of Gaussian distribu-
tions for returns (see for instance, [6–8]). Post-modern portfolio theory (PMPT) tries to
overcome some of the MPT limitations considering non-normally distributed, asymmetric,
and fat-tailed measures of risk. Both, MPT and PMPT, theories describe evaluation of risky
assets and show how rational investors should use diversification in order to optimize their
portfolios. However, they define risk differently and they differ in the way risk influences
expected returns [9,10].

In this paper, we focus on the problematic associated to the determination of expected
returns. Forecasting techniques for expected returns on financial products is a topic that
has attracted the interest of researches, not only in Finance, but in many different areas,
from Econometrics (see, for instance [11]) to Artificial Intelligence [12]. Mathematical
forecasting models are often tried to be enriched with information coming from experts,
which in turn can be the result of processing financial information [13] or even psychological
techniques, as in [14].

In the context of portfolio selection, an investor must select a portfolio from forecasted
values of the expected returns on the possible assets to be included in the portfolio. In this
context, as described in [15], two situations can be distinguished. The most usual one, is
a situation in which the investor has to completely rely on mean returns derived from
historical data to calculate the expected individual assets’ returns for the upcoming holding
period. In this case, the investor has not access to additional particular information about
the assets which could be used in the forecasting of their expected returns.

In the other situation, the investor has access to additional extra information, different
than that provided by the historical returns of the assets that takes into account in the
forecast of the expected returns of the assets for the upcoming period. This is the situation
considered in this paper. The forecast of the expected returns and, therefore risk, for the
upcoming holding period, does not completely rely on the historical returns of the assets
but on additional extra information.

The best investment policy for an investor persuaded that some forecasted returns are
absolutely trustworthy would be investing all the available capital in the most profitable
asset. However, this kind of absolute confidence is unattainable in practice and hence,
and in order to try to reduce risk, some diversification constraints must be incorporated
into the portfolio selection process.

However, when the forecasted expected returns are based on additional non-historical
information, such as subjective expert opinions, psychological inferences, or other non-
quantifiable or ad hoc information not allowing the use of statistical tools in order to
measure its reliability or to provide a quantitative estimate of the risk of a possible port-
folio. Hence, selecting diversification constraints becomes more problematic. Together
with more sophisticated diversification policies, simpler—but a priori, not less effective—
diversification constraints can be used, as imposing upper bounds to the capital to be
invested in each asset, or a lower bound to the total number of assets to be included in
the portfolio, etc. However, an excess of diversification could significantly reduce the
performance of a portfolio, so it is important for an investor to select an adequate level of
diversification, and this poses the problem of determining what such an adequate level
is. We must impose a level of diversification avoiding both too risky portfolios exceeding
investor’s risk aversion and too conservative ones canceling the advantage provided by
the non-historical forecasting of the expected returns. We must do this in absence of an
appropriate measure of the risk.
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This has both a subjective and an objective side: the subjective one is due to the fact that
“adequate” is related to the investor’s preferences about the desired return, the acceptable
risk and the reliability of the forecasted expected returns, and the objective one is that, even
having outlined somehow the investor’s profile with regard to these subjective parameters,
it is not clear at all which diversification constraints would fit such profile.

This is the contribution of this work. We show how to grade different diversification
constraints in order to try to mitigate the portfolio’s risk. The purpose of this paper is
then, to propose a general way to quantify the impact of any possible set of diversifi-
cation constraints. This allows the investor to easily decide which set of diversification
constraints better fits the subjective criteria he wishes to impose to his investment, mainly
the portfolio desirable expected return and risk. Our starting point is the concept of Value
of Information as treated by Kao and Steuer in [15], which we use to define a histori-
cal reduction index measuring the impact on the expected return of each possible set of
diversification constraints.

An empirical analysis of this index shows that it provides a gradation of such sets
of constraints that can be used as a useful decision-aid tool in order to select a specific
diversification level for a portfolio selection.

2. Value of Information

In this work emphasis is placed on the expected returns of the individual assets. Sev-
eral authors as Chopra and Ziemba [16], Best and Grauer [17], DeMiguel and Nogales [18],
Kan and Smith [19], or Siegal and Woodgate [20], among others, pointed out how errors
in the variances and covariances tend to be smaller than the errors in expected returns.
In a context in which the investor possesses a forecast of expected returns based on addi-
tional non-historical information, the measurement of the value of this usually expensive
information, becomes a key question. Copeland and Weston [21] and recently Kao and
Steuer [15] introduced the concept of value of the information in the context of financial
portfolio selection problems. In what follows, we review some of the main ideas around
this concept that will be crucial to our proposal.

Consider n assets and, for each i = 1, . . . , n, let (r1
i , . . . , rk

i ) the vector of historical
returns on the i-th asset provided in k successive investment periods. Let r = (r1, . . . , rn)
be the vector of mean returns and let V be the covariance matrix of those historical returns.

From those data, we can construct an instance of the classical portfolio selection
problem, as stated by Markowitz (see [1,2]), namely:

Max. rx
s.t. xtVx ≤ R

1x = 1
xi ≥ 0

(1)

Here 1 = (1, . . . , 1), x = (x1, . . . , xn) is the vector of the decision variables, represent-
ing the weight of the i-th asset in the portfolio, and R is the level of risk accepted by the
investor. Solving the problem as R varies we obtain the efficient frontier of the problem,
consisting of the pairs (R, r), where r is the maximum return attainable with a portfolio
with risk at most R. Following [15], we call it the historical efficient frontier. As pointed out by
Kao and Steuer [15], Markowitz portfolio selection problem is a bi-objective optimization
problem. This problem can be handled as a single-objective problem in two different ways
as to compute the efficient frontier: maximizing portfolio’s expected return for a given level
of risk or minimizing risk for a given level of expected return. In this paper, we express
our portfolio selection model in the second way as this formulation shows the expected
portfolio return at each specific level of risk, which is more meaningful in expressing the
value of information.

Now let rk+1 = (rk+1
1 , . . . , rk+1

n ) be the vector of historical returns provided by the n
assets in the k + 1-th period and, for each level of risk R, let r′ = rk+1x be the true return
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provided by the efficient portfolio corresponding to R in the k + 1-th period. The set of
pairs (R, r′) form the so called resulting curve (which, of course, is only known a posteriori).

On the other hand, for each level of risk R, we solve the portfolio selection problem
with r′′ = rk+1x instead of rx in the objective function. The pairs (R, r′′) give rise to the
true efficient frontier, which indicates the return we could have obtained if we had known a
priori the returns of the k + 1-th period.

Figure 1 illustrates these concepts. The value of information for a given level of risk is
the difference between the “true return” obtained from the true returns on the assets minus
the resulting return. It represents the money the investor would have obtained if he had
known a priori the true returns of the assets.
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Figure 1. An instance of a historical frontier, a resulting curve, and a true frontier.

In [22], we use the value of information to define an index measuring the financial
impact of each possible set of diversification constraints when it is incorporated into a
portfolio selection model, but, to this purpose, the above defined value of information
has an obvious drawback, namely, that it takes as ideal reference an exact forecasting of
the return of each asset, and hence the index defined in [22] does not take into account
the possible effects that a good—but not exact—forecast would produce. This is not
important in order to establish a relative ranking of several alternative sets of diversification
constraints, as we did in [22], but in order to select the most adequate one in a particular
context, it is desirable to somehow include into our analysis the reliability of the forecasted
returns the investor is considering. Thus, in the next section we revisit the reduction index
introduced in [22].

3. The Historical Reduction Index of a Set of Diversification Constraints

Consider an investor wishing to select a portfolio from a set of n possible assets by
using a given vector of forecasted returns. If the forecast comes from non-statistical sources
(expert opinions, ad hoc information about the market, etc.) the main problem is that in
this context we do not have any statistical measure of the risk of any possible portfolio.
The risk is very related with the reliability of the forecasting, since, as we have commented,
if the investor could be sure that the forecasted values are exact, risk would be null, and the
best investment policy would be putting all the available capital in the asset with greater
forecasted return. This means investing with no diversification. Of course, this will never
happen in the real world, and the less reliable the forecast is, the more diversification
should be introduced in the selection criterion. But, how can we determine how much
diversification is desirable? How can we quantify “the diversification” of a portfolio?

In short, our proposal consists of simulating forecasts with a given degree of reliability
from the historical returns of the assets and measuring the financial impact of a given set of
diversification constraints. First, we precise the idea of “degree of reliability”.

Consider a set of n assets whose historical returns are known in T consecutive periods
(the T-th period corresponding to the time at which the investment is to be decided). Let rk

i
be the historical return of the i-th asset in the k-th period.
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We fix a length t for a rolling window, which will vary from the period t to the period
T − 1. This means that we consider the mean return r̄k

i for the i-th asset at period k defined
as the mean of the historical returns rk−t+1

i , . . . , rk
i . Similarly, the covariance matrix Vk is

defined as the covariance matrix of the historical returns in the same t periods.
A simulated forecast for n assets at the k-th period with reliability 0 ≤ α < 1 will

be a (computer generated) random variate Fk = (r̃k
1, . . . , r̃k

n) of a normal distribution
N(rk+1

i , (1− α)2σ2
i ), where σi is the (sample) standard deviation of the historical returns

provided by the i-th asset from period k− t+ 1 to k. We also consider as the only “simulated
forecast” with reliability α = 1 the one consisting of the returns Fk = (rk+1

1 , . . . , rk+1
n ).

Thus, a “simulated forecast” of reliability α = 1 is the exact forecast consisting of the
true returns provided by each asset in the k + 1-th period, whereas a simulated forecast
of reliability 0 ≤ α < 1 is the result of a (pseudo)-random experiment corresponding to a
random variable with mean rk+1

i (the true return of the next period) and standard deviation
varying from the historical one (corresponding to α = 0) to 0 (as α tends to 1).

In this approach, we are conceiving forecasts as measures of objective values (the
returns of the next investment period) subjected to measurement errors, and we deal with
those errors in the standard way, namely, by means of a normal distribution.

Now, following [22], we fix a historical base portfolio selection problem (HPk) that
maximizes the expected return at the k-th period (calculated as r̄ · x̄) subject to the capital
constraint ∑

i
xi = 1 and any other constraint considered by the investor not related to risk

aversion. The simplest possibility is:

(HPk) Max. r̄k · x
s.t. 1 · x = 1

x ≥ 0.
(2)

If S is a set of diversification constraints, let HPk
S be the problem consisting of HPk plus

the constraints in S. Let S0 be the set of diversification constraints that the investor would
consider adequate if they would be willing to use the historical means as expected returns.
For instance, if we take the simplest version of HPk and S0 = {xtVkx ≤ R0}, where R0 is a
given level of admissible risk, then HPk

S0
is the classical Markowitz problem.

For a simulated forecast Fk corresponding to the k-th period, the forecasting problem
FP[Fk] (resp. FPS[Fk]) is defined as the problem obtained by changing the objective function
of HPk (resp. HPk

S) from r̄k · x to Fk · x.
If x∗ is the optimal solution of a problem HPk, HPk

S or FPS[Fk], we define the true
return of the corresponding problem as rk+1 · x∗, i.e., the return that portfolio x provides at
period k + 1.

Now, for a fixed 0 ≤ α < 1, we define the historical reduction index associated to α
and to a set S of diversification constraints with regard to a base set S0 of diversification
constraints as the real number HRIα

S calculated with the following procedure:

Step 1 Generate a large number N of simulated forecasts {Fk
j }N

j=1 at the k-th period with
reliability α for k = t, . . . T − 1.

Step 2 Calculate the true return rk
j (α) of the problem FPk[Fk

j ], the true return rk
j (S, α) of the

problem FPk
S[F

k
j ] and the true return rk

0 of the problem HPk
S0

.

Step 3 Compute the absolute and the relative mean true returns

µk
a(α) =

∑N
j=1 rk

j (α)

N
, µk

r (S, α) =
∑N

j=1 rk
j (S, α)

N
. (3)

Step 4 Compute the absolute and the relative value of each forecast as:

Vk
a (α) = µk

a(α)− rk
0, Vk

r (S, α) = µk
r (S, α)− rk

0. (4)
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Step 5 Compute the mean absolute and relative value of the forecasts as

V̄a(α) =
∑T−1

k=t Vk
a (α)

T − t− 1
, V̄r(S, α) =

∑T−1
k=t Vk

r (S, α)

T − t− 1
. (5)

Step 6 Calculate the historical reduction index as

HRIα
S = 1− V̄r(S, α)

V̄a(α)
. (6)

The definition for α = 1 is the same, except that in the first step there is just one
simulated forecast F = rk+1 and hence no average is calculated in Step 3. The interpretation
of the concepts we have introduced is clear:

• µk
a and µk

r are the mean returns provided by the portfolio selected from a forecast
with reliability α with no diversification constraint or with the set S of diversification
constraints, respectively, at period k.

• Vk
a (α) and Vk

r (S, α) are the net profit provided by a forecast with reliability α with
regard to the profit attained when the historical mean returns are taken as expected
returns (they generalize the concept of value of information of [22], which in turn
generalize that of [15]).

• V̄a(α) and V̄r(α) are the mean value of a forecast of reliability α in the period un-
der consideration (without diversification constraints and with those in the set S,
respectively).

• The quotient 100V̄r(S, α)/V̄a(α) represents the percentage of profit that is preserved
after imposing the set S of diversification constraints, and hence 100HRIα

S is the
percentage in which the constraints S reduce the profit.

4. Empirical Analysis of the Behavior of the Index

We have considered the monthly historical returns of 30 assets (those identified by
the tickers ABE, ANA, ACS, AMS, BBVA, SAB, SAN, BKT, BME, CABK, DIA, ENG, ELE,
FER, FCC, GAM, GAS, GRF, IBE, IDR, ITX, IAG, JAZ, MAP, TL5, OHL REE, REP, TRE, and
TEF.) from the Spanish IBEX35 index in the period ranging from August 2011 to July 2015
(we have chosen those included in the index through the whole period). More specifically,
we have considered a rolling window giving rise to 12 data sets corresponding to each
month from August 2014 to July 2015 with the expected returns and the covariance matrix
calculated from the previous 36 months.

We set as a base problem:

(HP) Max. r̄ · x
s.t. 1 · x = 1

x ≥ 0,
(7)

and take S0 = {xtVx ≤ 0.062}. We have computed HRIα
S for several sets of constraints

by using a set of 50 simulated forecasts for each period and each level of reliability α =
0, 0.1, 0.2, . . . , 0.9.

Case 1: Diversification by bounding standard deviation

The first family of sets of diversification constraints that we have considered are those
based in bounding the standard deviation of the expected return of the portfolio based on
the historical data, namely:

Ssd
j = {xtVx ≤ (0.06 + 0.01j)2} (8)

Figure 2 shows the true returns provided by the 50 simulated forecasts for each level
of reliability α in the first period (August 2014) for the set Ssd

0 . Notice that they are bounded
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by the single true return corresponding to α = 1, since no forecast can provide a better true
return than the exact one. Figure 3 shows the relative value Vk

r (Ssd
0 , α) for each period k.

Notice that the data contained in Figure 2 determine a single curve in Figure 3, namely, that
taking the least value at α = 1. It is calculated as the average of the corresponding values
shown in Figure 2 minus the true return provided by HP1

S0
, which in this case is r1

0 = 0.03.

0.2 0.4 0.6 0.8 1.0

-0.02

0.02

0.04

0.06

α0.2 0.4 0.6 0.8 1

−0.02

−0.02

−0.04

−0.06

Figure 2. True returns r1
j (S

sd
0 , α) for j = 1, . . . , 50.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

α

Figure 3. Relative values Vk
r (Ssd

0 , α) for k = 1, . . . , 12.

To that extent, we are facing the unpredictable nature of portfolio selection (of course,
for a particular case, not in the statistical sense): different simulated forecasts with the
same reliability provide quite different true returns and the relative (mean) value of a
forecast with reliability α can be quite different at each period. Even some of them (for
lower levels of reliability) can provide worse true returns than the selection criterion based
on the historical data.

However, Figure 4 shows that these irregular data are hiding a quite regular pattern.
The bottom-most curve in this figure is the average of the curves shown in Figure 3, i.e., the
curve V̄r(Ssd

0 , α). As the risk constraint is weakened, i.e., as we consider the constraint sets
Ssd

j , for greater values of j, we obtain a strictly increasing sequence of curves approaching
the top-most one, which is the absolute value V̄a(α) of the simulated forecasts of level α.

We can see that, with a conservative risk constraint xtVx ≤ 0.062, the true return can
exceed the one provided by the selection based in the historical data in an amount ranging
from 0.046 for α = 0 to 0.085 for α = 1. This difference increases as the risk constraint is
weakened. We say that 0.06 is a conservative level of risk because we are assuming that
this is the level of risk that the investor considers adequate for selecting a portfolio with the
expected returns provided by the historical data, and one can assume that an investor who
considers quite reliable a given forecast should accept a greater level of risk when selecting
a portfolio from his forecast than just from the historical data.

Finally, Figure 5 shows the historical reduction index of the sets Ssd
j for each j and

α. Again the curves are strictly monotonic: the higher j, the lower curve. We remark
again that the regularity shown in Figures 4 and 5 reveal that the means we have taken to
calculate them make sense: from a random set of values, one can always take their mean
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for obtaining a single value, but if the means we have taken had not an intrinsic meaning,
the curves in Figures 4 and 5 would be expected to intersect themselves randomly instead
of exhibiting such a regular pattern. Hence, we get a strict grading of the considered sets of
diversification constraints that is independent of α. Thus, we conclude that the index HRIα

S
contains sound financial information about the set S.

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

α

Figure 4. Mean values V̄a(α) (top-most curve) and V̄r(Ssd
j , α) for j = 0, . . . , 6.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

α

Figure 5. HRIα
Ssd

j
for j = 0, . . . , 6.

Notice also that each curve in Figure 5 is quite chaotic for small levels of reliability,
but stabilizes for α ≥ 0.4, becoming quite insensitive to the specific level of reliability fixed
by the investor. This plays down the importance of obtaining a precise estimate of this
level. Table 1 contains the values plotted in Figure 5.

Table 1. Historical reduction index for upper bounds in the risk R (the standard deviation) from 0.06
to 0.12 and levels of reliability from α = 0 to α = 1.

R\α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.06 0.166 0.195 0.205 0.193 0.215 0.213 0.216 0.219 0.225 0.227 0.226
0.07 0.087 0.114 0.121 0.114 0.135 0.133 0.139 0.143 0.148 0.151 0.15
0.08 0.063 0.084 0.085 0.076 0.094 0.095 0.097 0.099 0.1 0.103 0.103
0.09 0.046 0.064 0.067 0.058 0.065 0.07 0.071 0.07 0.07 0.072 0.073
0.10 0.032 0.048 0.054 0.043 0.047 0.051 0.05 0.049 0.048 0.05 0.051
0.11 0.019 0.032 0.034 0.028 0.03 0.03 0.029 0.029 0.027 0.029 0.03
0.12 0.002 0.01 0.01 0.007 0.009 0.008 0.007 0.009 0.008 0.01 0.01

Case 2: Diversification by bounding the weights

Consider now the sets of diversification constraints consisting of imposing an upper
bound to each weight, namely:

Sc
j = {xi ≤ 0.1j, for i = 1, . . . , n}, j = 1, . . . , 9. (9)
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Figure 6 shows the corresponding historical reduction index. We see again a strictly
regular pattern providing a grading of the diversification constraints: the greater bounds,
the less reduction index, but we should emphasize that this seemingly obvious relation
only holds in the average, since for each particular forecast and each particular period we
obtain graphs as irregular as those in Figures 2 and 3. Table 2 contains the values shown in
Figure 6.

We observe that the reduction index for upper bounds on the weights are even less
sensitive to the level of reliability than that for bounds on the standard deviation. On the
other hand, considering, for instance α = 0.7, we see that the impact of an upper bound
u = 0.1 is quite stronger than u = 0.2 (the HRI changes from a 73.3% to a 53.2%, much more
than the next step, which leads to a 41.5%). But the most remarkable fact is that now we
can compare the impact of the two types of diversification constraints. For instance, Table 3
contains the historical reduction index for α = 0.7 corresponding to the upper bounds
on the weights and on the standard deviation. We see that upper bounds on the weights
less than 0.5 are stronger than all the risk constraints we are considering, whereas u = 0.6
is almost equivalent to R = 0.06. It should be remarked that those comparisons heavily
depend on the total number of considered assets.

In the same way, any other set of diversification constraints can be compared with
those we have considered by means of the HRI, including, for instance, simultaneous
bounds on the weight and on the standard deviation.
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Table 2. Historical reduction index for upper bounds in the weights from u = 0.1 to 1 and levels of
reliability from α = 0 to α = 1.

u\α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.839 0.828 0.812 0.784 0.77 0.76 0.739 0.733 0.722 0.712 0.708
0.2 0.603 0.603 0.594 0.554 0.555 0.549 0.534 0.532 0.523 0.514 0.51
0.3 0.464 0.483 0.463 0.441 0.445 0.436 0.415 0.415 0.4 0.395 0.391
0.4 0.374 0.393 0.377 0.359 0.359 0.353 0.332 0.336 0.322 0.319 0.315
0.5 0.299 0.312 0.307 0.287 0.281 0.277 0.26 0.268 0.256 0.255 0.249
0.6 0.239 0.25 0.245 0.229 0.225 0.221 0.208 0.214 0.205 0.204 0.199
0.7 0.18 0.187 0.184 0.172 0.169 0.166 0.156 0.161 0.154 0.153 0.15
0.8 0.12 0.125 0.123 0.115 0.112 0.111 0.104 0.107 0.103 0.102 0.1
0.9 0.06 0.062 0.061 0.057 0.056 0.055 0.052 0.054 0.051 0.051 0.05

Table 3. Comparison of diversification with bounds on the weights (u) and bounds on the standard
deviation (R) by means of the historical reduction index for reliability α = 0.7.

u 0.5 0.6 0.7 0.8 0.9

R 0.06 0.07 0.08 0.09 0.10

HRI 0.268 0.219 0.214 0.161 0.143 0.107 0.099 0.07 0.054 0.049
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5. Conclusions

In this paper we have considered the problem derived from the inclusion of additional
non-historical information in the forecasting of the expected returns of financial assets,
in portfolio selection problems. We have introduced an index measuring the impact of
each possible set of diversification constraints depending on a parameter α estimating the
subjective reliability of the forecast. Our empirical analysis shows that the index is suitable
for the purpose it has been designed for. Namely:

The reduction index is sound, in the sense that it reveals an absolute grading between
different possible sets of diversification constraints which gives the investor a clear pic-
ture of which sets of constraints are more or less constraining, even if they are of very
different nature.

It is robust, in the sense that, as we have seen, the gradings it produces are only a little
sensitive to the precise value of α (which could be hard to determine with accuracy because
of its highly subjective nature). Incidentally, this justifies that the analysis done by Kao and
Steuer [15] is not unrealistic for having considered exact forecasts, since the results having
considered enough reliable ones would have been the same.

It is very versatile, since it does not depend on the nature of the considered diversifi-
cation constraints, and hence the proposed technique for grading and selecting alternative
sets of constraints can be applied to any kind of such constraints.

However, at the same time, it is rather specific, since it adjusts to each set of assets
under consideration and each specific considered date since it takes into account the
previous historical information about the returns provided by the assets.
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