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Abstract: The present work is inspired by the recent developments in laboratory experiments made
on chips, where the culturing of multiple cell species was possible. The model is based on coupled
reaction-diffusion-transport equations with chemotaxis and takes into account the interactions among
cell populations and the possibility of drug administration for drug testing effects. Our effort is
devoted to the development of a simulation tool that is able to reproduce the chemotactic movement
and the interactions between different cell species (immune and cancer cells) living in a microfluidic
chip environment. The main issues faced in this work are the introduction of mass-preserving and
positivity-preserving conditions, involving the balancing of incoming and outgoing fluxes passing
through interfaces between 2D and 1D domains of the chip and the development of mass-preserving
and positivity preserving numerical conditions at the external boundaries and at the interfaces
between 2D and 1D domains.

Keywords: multi-domain network; transmission conditions; finite difference schemes; chemotaxis;
reaction-diffusion models

MSC: 65M06; 35L50; 92B05; 92C17; 92C42

1. Introduction

The aim of the present work is to study both the modelling and numerical approxi-
mation of a chemotaxis-reaction-diffusion mathematical system describing the qualitative
behavior of different cell species living in a confined environment. This work is inspired
by laboratory experiments made on microfluidic chip [1], where some populations cohex-
ist and interact. In recent years, there has been the development of a new approach to
biological studies aimed at reconstructing organs and complex biological processes on a
chip [2]. The fundamental idea is that the comprehension of the sophisticated physiology
of organisms, based on the complex behavior and interaction of cell populations, tissues,
and organs, needs interdisciplinary contributions from biology to mathematics.

Motivated by the laboratory setting of the experiment in microfluidic chips [1–3]—see
also the short description of the experiments reported in Section 2.1.1—we introduce a
model mimicking the interactions between two cell populations—namely, immune and
cancer cells.

The mathematical model, proposed in Section 2.2, is a reaction-diffusion system with
chemotaxis and describes birth and death processes, the migration of immune cells driven
by chemical signals produced by tumor cells, and interactions between different cell species.
We underline that, since the chemical gradients are not measured experimentally, by using
the simulation algorithm based on the mathematical model proposed here, the chemical
concentration gradients in the chip can be obtained by solving the inverse problem of
minimizing the residuals between the measured trajectories and the simulated ones; see
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also the discussion in Section 5 about the future developments of our work. From a
mathematical point of view, we follow the framework of the classical macroscopic models
of chemotaxis; see, for instance, [4], where the evolution of the density of cells is described
by a parabolic equation and the concentration of a chemoattractant can be given by a
parabolic or elliptic equation, depending on the different regimes to be described and on
the authors’ choices. The choice of a continuous model to reproduce an experiment in a
confined environment, with a relatively small number of cells, is motivated by the fact
that we aim at developing a simulation tool which is able to describe the phenomena of
immunosorveillance of cancer in tissues, where billions of cells are present. For this reason,
a macroscopic model is more suitable respect a particle model.

In the chamber,s we consider a 2D doubly parabolic model which is a modification
of the Keller–Segel model [4] to take into account the presence of two populations both
producing chemical signal which are interacting each other. We remark that we consider
only the 2D case, since the experimental data do not take into account the height of the
chip. Clearly, in principle, our framework (model and numerical algorithm) could be easily
extended to the third dimension and we remark that, analogously to the 2D-1D case here
considered, mass-preserving and positivity preserving numerical conditions at the external
boundaries and at the interfaces between 3D and channels still hold.

We consider the microchannels connecting the 2D chambers as 1D lines for modelling
and computational reasons, as explained in Section 1.1. In order to model the dynamics
on the microchannels, we choose two different approaches: we can assign a 1D version
of the doubly parabolic model used in the chambers; otherwise, we can assign a model
derived from a 1D-GA model [5], being characterized by the more realistic feature that the
speed of propagation of cells in the channels is finite, which seems the dominant property
at this scale. On the other hand, other models based on hyperbolic/kinetic equations for
the evolution of the density of individuals can be assigned, characterized by a finite speed
of propagation [6–10].

1.1. The Geometry of the Microfluidic Chip and of the Related Computational Domain

The microfluidic chip is represented as a network of channels connecting two boxes (the
microfluidic chambers); see Figure 1 and a schematic picture of the related computational
domain is depicted in Figure 2. Here, we refer to the experiment of two main culture chambers
(a tumor and an immune cell compartment) connected via narrow capillary migration micro-
channels with, respectively, width and length of 12 µm and 500 µm. Moreover, the channels
height is of 10 µm; however, since in the video footage the experiments is recorded at a
fixed height, the third spatial dimension in our framework is neglected. The cross-sectional
dimensions of culture chambers are 1 mm (width) × 100 µm (height).

A simplified schematization of the bounded surface where the experiment is per-
formed is reported in Figure 2. We have two microfluidic chambers of the same size, one
on the left and the other on the right, defined, respectively, as Ωl = [0, Lx]× [0, Ly] and
Ωr := [Lx + L, 2Lx + L] × [0, Ly]. They are connected by microchannels, each of them
schematized as rectangles R = [0, L]× [a, b]. In order to ease the reading, we point out that
in the sequel we approximate the rectangular microchannels as 1D intervals C = [0, L] with
zero thickness for the following reasons:

- modelling reason the width of microchannels (12 µm) is comparable to the size of cells
(for instance, immune cells measure about 8–10 µm of diameter);

- computational reason to reduce the running time of the simulation algorithm, since
otherwise we should consider a 2D meshgrid for each microchannel.

Then, the link between the box on the left and the corridor is schematized as a junction
(node 1L) and analogously the link between the corridor and the box on the right as node
2L. The two junctions are not really a single point, therefore they are parametrized as an
interval for node 1L and node 2L—namely, [a, b] of length σ := b− a.
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We remark that for the sake of simplicity, the numerical treatment is developed for a
simpler geometry composed by 2D chambers connected through a single 1D channel. The
extension to multiple 1D channels is done in Section 3.2.2.

Figure 1. Microfluidic chip environment: two chambers connected by multiple channels. Credits by
Vacchelli et al. [1] edited by AAAS.
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Figure 1. Microfluidic chip environment: two chambers connected by multiple channels. Credits by
Vacchelli et al [47] edited by AAAS.
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Figure 2. Simplified schematization of the chip geometry depicted in Fig. 1.
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φt = D∆φ + au − bφ,
(1)

with u the density of individuals in the considered medium, ν the diffusion rate of the organism
according to Fick’s Law and φ the density of chemoattractant. The positive constant D is the diffusion
coefficient of the chemoattractant; the positive coefficients a and b, are respectively its production and
degradation rates, and χ is the chemotactic sensitivity, depending on the density of the considered
quantities. In the 2D domains given by the microfluidic chambers we apply a reaction-diffusion
chemotaxis KS-like model inspired by (1) and described in paragraph 2.2.1.
In the 1D microfluidic channels, we use the one-dimensional version of the KS-like model used in
the chambers, but we also study the behavior of individuals when a hyperbolic-parabolic model,
characterized by finite speed of propagation is assigned. Such hyperbolic-parabolic model, described

Figure 2. Simplified schematization of the chip geometry depicted in Figure 1.

1.2. Original Contribution of the Present Paper

From the mathematical and numerical viewpoint, here we deal with a challenging
issue arising in the chemotaxis modelling of cell interaction. The problem involves doubly
parabolic models in 2D domains (microfluifidic chambers) that are connected with 1D do-
mains represented by channels, where either a doubly parabolic or a hyperbolic-parabolic
model can be assigned.

The classical doubly parabolic Keller–Segel (KS) model [4] of chemotaxis reads as:
{

ut = div(ν∇u− χ(φ)u∇φ)
φt = D∆φ + au− bφ,

(1)

with u the density of individuals in the considered medium, ν the diffusion rate of the
organism according to Fick’s Law, and φ the density of the chemoattractant. The positive
constant D is the diffusion coefficient of the chemoattractant; the positive coefficients a
and b are, respectively, its production and degradation rates; and χ is the chemotactic
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sensitivity, depending on the density of the considered quantities. In the 2D domains given
by the microfluidic chambers, we apply a reaction-diffusion chemotaxis KS-like model
inspired by (1) and described in Section 2.2.1.

In the 1D microfluidic channels, we use the one-dimensional version of the KS-like
model used in the chambers, but we also study the behavior of individuals when a
hyperbolic-parabolic model, characterized by finite speed of propagation, is assigned.
Such a hyperbolic-parabolic model, described in 2.2.1, is inspired by the Greeberg–Alt (GA)
model, arising as a simple model for chemotaxis on a line:





∂tu + ∂xv = 0,
∂tv + λ2∂xu = −v + χ(φ)u∂xφ,
∂tφ = D∂xxφ + au− bφ.

(2)

Note that here v is the averaged flux. Let us underline that the flux v in model (2)
corresponds to v = −λ2∇u + χ(φ)u∇φ for the KS system.

We remark that here we do not consider the GA model on the 2D domain, since in
this case the derivation of the monotonicity condition, easily computed in 1D, it is not
straightforward, due to the oscillations brought by 2D wave equation. One possibility to
overcome this problem should be to consider the macroscopic hyperbolic model proposed
by Preziosi in [9,11]. Alternatively, a kinetic 2D model of chemotaxis and its numerical
approximation is studied in [12].

This system was analytically studied on the whole line and on bounded intervals
in [13], while an effective numerical approximation, the Asymptotic High Order (AHO)
scheme, was introduced in [14]—see also [15,16]—and extended on networks with general
boundary conditions in [17,18].

Here, in the numerical treatment for the computation of numerical solutions one has
to take care of what happens at the interface when switching from 2D-doubly parabolic
models to 1D-doubly parabolic or 1D-hyperbolic-parabolic ones and vice versa.

Since we aim at reproducing the numerical solutions of such models, we need to
deal with a multi-domain problem given by the passage from a 2D domain represented
by the chambers of the chip to 1D domains given by the channels. For this reason we
need to develop ad hoc transmission conditions to ensure mass conservation at the 2D-1D
interfaces. From the numerical viewpoint, here we consider numerical boundary conditions
including in the stencil a ghost cell value taken from the neighbouring domain, as we
will show in the numerical Section 3. The approximation of doubly parabolic chemotaxis
models for the 1D-KS model (1) on networks was already considered in [19]. However, in
that case the transmission conditions were between 1D–1D interfaces and on each arc of
the network the same fully parabolic model was considered. We also underline that in such
work, transmission conditions required to impose the continuity of the density of both cells
u and chemoattractant φ, while we only impose the continuity of the fluxes, which seems
to be more realistic when dealing with flux of individuals or molecules.

For the numerical approximation of the GA system (2), we refer to our previous
papers [14] for a single line. In particular, the numerical treatment of the hyperbolic part of
the system is based on the finite difference AHO scheme with the development of mass-
preserving numerical scheme at outer boundaries, while the parabolic part is approximated
by finite difference and Crank–Nicolson scheme.

In [17,18] the GA system was solved on networks, thus making it necessary to de-
velop mass-preserving transmission conditions at inner nodes (interfaces) and suitable
boundary conditions at outer nodes. However, rgw transmission conditions considered
there involved the mass exchange only between 1D–1D interfaces; moreover, on each arc of
the network, the same model was considered. Furthermore, the second-order numerical
approximation of the boundary conditions developed in such papers did not ensure the
posivity preserving property in the case of oscillating functions.

The numerical approximation of permeability Kedem–Katchalsky [20] conditions
describing the conservation of the flux through a node was already considered in [21],
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but we underline that in the mentioned paper the study was done for the approximation
with finite elements methods of linear problems. For reaction-diffusion problems the
approximation of permeability conditions was studied in [22] for finite difference schemes
and in [23] for discontinuous Galerkin methods. The numerical treatment of permeability
conditions for chemotaxis problems was presented for the first time in [24] for the 1D
parabolic–parabolic interface, and a finite difference approximation was developed without
taking into consideration the mass preservation nor the positivity-preservation properties
at the interfaces.

Therefore, to the best of our knowledge the present paper is the first numerical work
where this new technique of switching the size of the domains and type of equations
(parabolic vs. hyperbolic approach) is introduced, in order to develop mass-preserving and
positivity preserving schemes. We point out that in the present paper the approximation
method—based on finite difference schemes—involves the derivation of suitable zero-flux
boundary conditions. The motivation for our framework based on finite difference methods
seems to be a natural choice when dealing with hyperbolic models of transmission.

1.3. Main Contents and Plan of the Paper

In the present paper, a positivity-preserving and mass-preserving numerical discretiza-
tion of Neumann boundary conditions at the corners and at the bottom and top boundaries
of the 2D domain for a 2D-doubly parabolic reaction-diffusion problem are presented.
Moreover, a positivity-preserving and mass-preserving numerical scheme at the interfaces
of the network connecting the 2D chambers with the 1D channels (where the 1D-doubly
parabolic or 1D-hyperbolic-parabolic problem can be assigned) is developed. To summa-
rize the main contents of the present work, the mathematical issues faced in this study are
categorized into two aspects:

• the study of the behavior of two different modelling of the dynamics in the channels:
the parabolic model describing the dynamics inside the chambers was coupled both
with KS-like and GA-like models;

• the numerical approximation of equations defined in a heterogeneous domain, char-
acterized by the switch from 2D domains, represented by microfluidic left and right
chambers, to 1D domains, given by the channels connecting them.

Then, the numerical questions arising in the mentioned issues and here addressed are:

• the study of positivity and mass-preserving external boundary conditions for 2D-
doubly parabolic model (3);

• the introduction of mass-preserving and positivity-preserving permeability conditions
at the interfaces between 2D and 1D parabolic models—see Section 2.3.2;

• the introduction of mass-preserving and positivity-preserving permeability conditions
at the interfaces between the 2D-fully parabolic model and 1D-hyperbolic-parabolic
model—see Section 2.3.3.

The plan of the paper is as follows. In Section 2 we describe the biological framework
that inspired our study and we introduce the mathematical formulation of biologically
inspired models and we introduce the adopted model. Section 3 is devoted to the numerical
techniques used to approximate the problem and in Section 4 some numerical tests showing
the qualitative behavior of cells in the designed environment are presented. Finally, in
Section 5 a discussion on the results and the future developments of our work is presented.

2. Materials and Methods

The present Section is devoted to:

1. the description of the biological framework and the laboratory experiment that in-
spired our work—see Section 2.1;

2. the mathematical methods—see Section 2.2—bringing us to the development of
a simulation algorithm designed for qualitatively reproducing the experimental
observations.
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2.1. Biological Framework

The control of immune cells migration and interaction with tumor cells living inside
the chambers of the microfluidic chip, represent a new and attractive approach for the
clinical management of tumor diseases. Furthermore, in the chip environment also drug
testing can be exploited. Then, the quantitative assessment of immune cell migration ability
to recognize and attack the tumor cells for each patient could provide a new potential
parameter predictive of patient outcomes in the future.

Migrating cells respond to complex chemical stimuli (as a mixture of growth factors,
cytokines, and chemokines), representing a source of chemoattractants. These chemoat-
tractants, through the interaction with their receptors, allow cells to acquire a polarized
morphology and to perform the action of immunosurveillance.

The development of lab-on-chip technologies has made it possible to realize a repro-
ducible tailoring of the cellular microenvironment, thus allowing the continuous mon-
itoring of experiments and the accurate control of experimental parameters. Recently,
the development of microengineering has provided the possibility to realize culturing of
multiple cell types and made it possible to observe cell-cell interactions and to transpose in
vivo studies to a second generation of in vitro smart environments. The main advantages of
this new technological tool are a close control over local experimental conditions and lower
costs with respect to the use of animals in laboratory experiments for efficacy and toxicity
testing. Some results obtained with on-chip experiments are presented in [1,2,25–27].

Regarding the structure of microfluidic devices, they are designed to allow chemical
and physical contacts between tumor cells and non-adherent immune cells (i.e., murine
splenocytes or human peripheral blood mononuclear cells). The microfluidic co-culture
platforms are fabricated in polydimethylsiloxane (PDMS, Silgard 184), a biocompatible
optically transparent silicone elastomer.

2.1.1. Setting of the Laboratory Experiments

Here, we shortly describe the laboratory experiments inspiring our work (see [1]) and
carried out in the microfluidic chip environment; see Figure 1. Two populations, immune
cells of wild type and cancer cells, are initially put into two separate chambers and can
have physical and chemical contact through the microchannels. In more detail, rgw cells
are loaded into the reservoirs as follows: the left chambers are filled with about 2× 106

human peripheral blood mononuclear cells and the right chambers with about 5× 104

breast cancer cells, pre-treated or not with doxorubicin hydrochloride, all immersed in a
suitable culture medium. Time-lapse recordings are performed over a period of 72 h (1
microphotograph every 2 min) by means of a microscope placed directly inside the CO2
incubator for the duration of the recording.

We consider two different scenarios:

• first scenario (treated case): before enabling cells to migrate, tumor cells are previously
treated with a chemoterapy drug. Afterwards, we observe immune cells migrating
towards the left chamber where the tumor remains confined, but expresses the chemi-
cal stimuli attracting immune cells. Mainly, the dynamics observed in this case is the
migration of immune cells from the right to the left in order to attack the tumor cells.

• second scenario (untreated case): tumor cells migrate in the right chamber and prolif-
erate. In this case, the tumor cells do not produce chemoattractant, thus immune cells
move in the environment without recognizing and attacking tumor cells.

The culture medium in both cases is neutral, thus meaning that no exogenous sub-
stances are introduced. Our aim is then to build a simulation algorithm based on the
mathematical model, which is able to reproduce the main features of the observed phe-
nomena in the two scenarios.

2.2. Mathematical Framework

For the development of the mathematical modelling explained in the next section,
we remark that we neglect the third dimension, since we do not have laboratory measure-
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ments of the movement of cells in the vertical direction. For this reason we consider the
microfluidic chambers as 2D objects. Nowadays, the mathematical analysis of biological
phenomena has become an important tool to explore complex processes and to detect
mechanisms that might not be evident to the experimenters. Although a mathematical
model cannot replace a real experiment, it may represent a support tool to explain acquired
biological data and it may allow to gain a deeper understanding of the interactions between
cancer cells and the immune system. More generally, mathematical models can describe a
broad variety of biological phenomena, including cell dynamics and cancer [28–32].

The movement of bacteria under the effect of a chemical substance has been widely
studied in the last few decades, and numerous mathematical models have been proposed.
As shown in [33], chemotaxis is decisive in biological processes. For instance, the formation
of cells aggregations (amoebae, bacteria, etc) occurs during the response of the different
species to the change of the chemical gradients in the environment. Moreover it is possi-
ble to describe this biological phenomenon at different scales: particles models, hybrid
(multiscale) models and macroscopic models.

In the present paper, the population density is assumed to be as a whole, thus macro-
scopic models of partial differential equations are considered. In particular, in order to describe
the dynamics of cells in the 2D chambers we use a KS-like model, while in the microchannels
we compare the behavior between two different modelization: a 1D KS-like model and a 1D
GA-like model. The modelling here applied is described in the next Section 2.2.1.

2.2.1. The Model

Here, we introduce a mathematical model that aims at describing the behavior of two
populations of cells coexisting together: tumoral cells T and immune cells (macrophages)
M. We underline that the setting here considered can be made more complex with the
introduction of a greater number of cell species and with the presence of an exogenous
substance in the environment.

The model consists of a reaction-diffusion system with chemotaxis that it is able to
describe birth and death processes, interactions with chemoattractants, interactions and
competition between different cell species. The microfluidic chip is schematized as a
network of channels connecting two boxes (the microfluidic chambers), then, following the
ideas in [17], ad hoc transmission conditions were introduced to ensure mass conservation.
The parameters of the model, such as the velocity of different cell populations, the turning
rates, and the decay rates, will be calibrated with rgw observed data.

Cancer cells T produce chemical signals, called ϕ, activating the immune response of
M and influencing their behavior. Moreover, we take into account the presence of cytokines
ω (produced by M), acting as a chemical killer of cancer cells. Mainly referring to the KS
model, the model here considered in the 2D chambers reads as:





∂
∂t T = DT∆T − λT(ω)T,
∂
∂t M = DM∆M− div(χ(ϕ)M∇ϕ),

∂
∂t ϕ = Dϕ∆ϕ + αφT − βϕ ϕ,

∂
∂t ω = Dω∆ω + αω M− βωω.

(3)

The system above describes the dynamics of the two cell species and the diffusion
of the chemoattractant, and it needs to be complemented with suitable initial conditions
and boundary conditions for the cells and the chemoattractant concentrations, as will be
specified in the following paragraphs.

In particular, bearing in mind the first scenario (treated tumor), the system above
describes the following situation: tumor cells T produce a chemical substance ϕ attracting
immune cells M, that start migrating towards them. In this case, the tumor does not
proliferate, since it is treated by a chemotherapy medicine, thus we do not include this
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feature in the model. Immune cells do not seem to proliferate during the experiment,
thus we neglect this feature in the model. Note that, although here we are neglecting the
proliferation of tumor, a tumor growth is observed experimentally in the second scenario
(untreated tumor). This feature can be easily added to the model by putting a linear or
logistic source term in the equation for the tumor.

Immune cells also produce a chemical substance ω which should be responsible for
tumor killing. Therefore, in the first equation of the system (3), besides the diffusion term
we can find −λT(ω)T, representing the tumor suppression operated by immune cells. We
underline that at the moment we have no information from the biologists about the real
killing rate in the microchip environment induced by ω, but we decided to introduce it in
order to include this phenomenon in the model qualitatively.

In the second equation, in addition to the diffusion term we have the chemotactic term
f = χ(ϕ)∇ϕ due to the presence of the chemical substance ϕ produced by the tumor.

In order to define the action of the cytotoxin ω produced by immune cells (which
determines the death of cancer cells), we introduce the function λT(ω):

λT(ω) =
Sω

γ + ω
, (4)

where S is the maximum secretion rate of the cytotoxin by the immune cells and γ the
equivalent Michaelis constant associated with the production, as described in [33]. A lot of
effort has been devoted to finding a biologically accurate expression for the chemotaxis
function χ(ϕ) representing the chemotactic sensitivity of immune cells; here, we refer the
form suggested in [34] by Lapidis and Schiller:

χ(ϕ) =
k1

(k2 + ϕ)2 , (5)

where k1 represents the cellular drift velocity, while k2 is the receptor dissociation constant,
which says how many molecules are necessary to bind the receptors. Note that we mainly
refer to [33] for the values of the parameters k1, k2, and all the parameters of the model are
reported in Table 1.

Now, in order to describe the dynamics of cells in the microchannels connecting
the two boxes, we introduce the following 1D models for the dynamics, with the label
c indicating the channels. Then, we consider two possible models in the channels: a
diffusive one:





∂
∂t Tc = DT∂xxTc − λT(ω)Tc,

∂
∂t Mc = DM∂xx Mc − ∂x(Mc fc),

∂
∂t ϕc = Dϕ∂xx ϕc + αϕTc − βϕ ϕc,

∂
∂t ωc = Dω∂xxωc + αω Mc − βωωc,

(6)
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and a hyperbolic one:




∂tTc + ∂xvT
c = −λT(ω)Tc,

∂tvT
c + DT∂xTc = −vT

c ,

∂tωc = Dω∂xxωc + αωTc − βcωc,

∂x Mc + ∂tvM
c = 0,

∂tvM
c + DM∂x Mc = Mc fc − vM

c ,

∂t ϕc = Dϕ∂xx ϕc + αϕTc − βϕ ϕc,

(7)

with Tc and Mc, respectively, as the density of tumor and immune cells; fc = χ(ϕc)∂x ϕc
and vT

c and vM
c , respectively, as the average flux of tumor cells Tc and immune cells Mc in

the channels. Note that the 1D-doubly parabolic model (6) is the one-dimensional version
of the system (3), while (7) is the 1D-hyperbolic-parabolic model inspired by GA model [5].
We remark that, for the hyperbolic-parabolic system (7), we also need to assign initial and
boundary conditions for the flux v.

2.2.2. The Simplified Model

To present the numerical scheme, we write a simpler model with respect to (3) but
share the main features of it:

{
∂tu = Du∆u− divF + g(x, y, t, u),
∂tφ = Dφ∆φ + au− bφ,

(8)

with u as the density of individuals, φ as the density of chemoattractant, and with F = u f .
From now on, the two components of the drift term f = χ(φ)∇φ will be indicated as:

f(x, y, t) :=
(

f x(x, y, t)
f y(x, y, t)

)
.

For the mono-dimensional channel, in order to make the explanation of the numerical
approximation easier, we consider simpler models sharing the same characteristics of the
models in (6) and (7), which read as:

{
∂tuc = Duc ∂xxu− ∂xFc + g(x, t, u),
∂tφc = Dφc ∂xxφc + acuc − bcφc

(9)

or




∂tuc + ∂xvc = g(x, t, uc),
∂tvc + λ2

c ∂xuc = Fc − vc,
∂tφc = Dφc ∂xxφc + acuc − bcφc,

(10)

with Fc = uc fc. The systems above have to be complemented with smooth initial conditions
for the unknowns u, φ and also v for system (10); initial data will be specified in Section 3.3.
On the boundary, we consider for all the quantities homogeneous Neumann conditions, so
we assume no-flux boundary conditions.

Monotonicity conditions. We also mention at this point that model (10) requires an
analytical monotonicity criteria; see [35]. For a linear convection term Auc and a linear
source term g = Buc, the sub-characteristic criteria

∣∣∣∣
A
λc

∣∣∣∣− B ≤ 1,
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must be satisfied in order for the quantity uc to be non-negative. Otherwise, having a
negative uc would lead to unphysical solutions.

With regard to our former model (7), that would mean we have for the immune cell
density M the monotonicity condition:

k1

(k2 + ϕc)
2 |∂x ϕc| ≤

√
DM. (11)

This needs to be verified in the computational domain in order to ensure non-negative
solutions.

Remark 1. We remark that the no-flux conditions boundary conditions used in our simulations
are needed to have the mass-conservation of all the quantities. However, they are not realistic, since
in the laboratory experiment there is an inflow of cells from the outer boundaries. Then, we aim at
extending the no-flux boundary conditions to more general ones.

In the following section, in order to discuss mass-conservation we restrict our study
on a 2D closed rectangular domain named Ωnc (i.e., box without the channels) and on
single lines not connected at the outer boundaries, as indicated by Cnc.

2.3. Outer Boundary and Interface Conditions for the Models with Null Source Term G

From now on, we consider a further simplified version of the models presented above
putting the source term g equal to zero to discuss mass conservation.

2.3.1. Boundary Conditions for the 2d Doubly Parabolic Model (8) with G = 0.

Here, we consider the mass conservation of cell density u for zero-flux conditions at
the outer boundaries of a rectangular closed domain Ωnc for the 2D model (8) with a null
source term.

Indeed, since our model describes the migration of cells by both diffusion and chemoat-
tractant effects, physically speaking the mass of cells must be preserved in the absence of
the creation and destruction of cells.

For this reason, we assume a no-flux condition for the density u and the chemoattrac-
tant φ. Since we define the source term f as a product function of Oφ, we get the no-flux
conditions:

F(x, y, t)n|∂Ωnc = 0, OOOu(x, y, t)n |δΩnc
= 0, (x, y) ∈ ∂Ωnc, (12)

These guarantee mass conservation.

2.3.2. Interface between 2D-1D Models in (8) and (9)

We remark that, for simplicity, the following description focuses on the left part of the
domain—i.e., Ωl and its connection with a single microchannel represented by the interval
[0, L]. However, the numerical treatment holds analogously on the right side of the domain
and also to multiple channels.

In the 2D left box Ωl , the position of node 1L is at x = Ly, y ∈ [a, b] and for the 1D
domain, represented by a given number of channels C, node 1L is placed at x = 0 (left
endpoint of the channel); see Figure 2.

In order to ensure the conservation of the total mass when the mass-exchange occurs,
we introduce suitable transmission conditions at the interface between 2D and 1D domains.
Then, we consider the simplified models (9) or (10) for 1D channels, with g = 0.

In particular, we have to prescribe the flux conservation at the 2D-1D interfaces, since
we cannot lose or gain any cells during the passage through a node.

The conservation condition for u reads as:

d
dt

∫

Ωl

u(x, y, t)dΩl +
d
dt

∫ L

0
uc(x, t)dx = 0,
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and it rewrites as:

0 =
∮

∂Ωl

(DuOOOu(x, y, t)− F(x, y, t))ndS

+(Duc ∂xuc − Fc(x, t))|0L
by using the divergence theorem in the first integral. With our analytical boundary condi-
tions, the integral vanishes, except at the boundary where the node is positioned.

We remark that attention has to be paid to n being the outer normal of the domain.
Thanks to the boundary conditions (12), we get the condition:

∫ b

a
(Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t))dy = Duc ∂xuc(0, t)− Fc(0, t). (13)

Note that in this case, the evaluation of the integrand at the right endpoint L is
discarded, since we are only considering the junction connecting Ωl with the left endpoint
x = 0 of the microchannel (see Figure 2).

Now, we impose Kedem–Katchalsky (KK) [20] conditions describing the conservation
of the flux through a node (see also [21] for the numerical treatment of these conditions). In
particular, at the interface between the left chamber and the channels, we have (on the left
of node 1L in Figure 2):

Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t) = K(uc(0, t)− u(Lx, y, t)) for y ∈ [a, b] (14)

On the right of node 1L, we have:

Duc ∂xuc(0, t)− Fc(0, t) = Kuc(0, t)(b− a)−
∫ b

a
u(Lx, y, t)dy. (15)

Thanks to conditions (14) and (15), we are guaranteed to have the flux conservation
(13), and we will use such conditions to obtain numerical boundary conditions for the
boundary values at the nodes on both sides, as shown in Section 3 and in Section 3.1.2.

2.3.3. Interface between 2D-1D Models in (8)–(10)

In this section, we describe the combination of 2D parabolic-1D hyperbolic model in
order to describe the dynamics with a hyperbolic model in the channels. Further care has
to be given in order to keep some important properties which ensure the consistency and
non-negativity of numerical solutions when connecting both models.

Now, the transmission conditions for the switch from Ωl to C = [0, L] are derived in
this case. For the mass conservation of u, we impose the condition:

0 =
d
dt

∫

Ωl

u(x, y, t)dΩl +
d
dt

∫ L

0
uc(x, t)dx

=
∫

Ωl

(Du4u(x, y, t)− divF(x, y, t))dΩl +
∫ L

0
−∂xv(x, t)dx

=⇒
∮

∂Ωl

(DuOOOu(x, y, t)− F(x, y, t)n)dS + v(0, t) = 0.

Note that in the above formula, we have v(L, t) = 0 because we are looking at left
interface (node 1L). Then, we finally get:

∫ b1

a1

(Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t))dy = −v(0, t). (16)

Now, we impose the KK-condition at the interface:

Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t) = K(uc(0, t)− u(Lx, y, t)) for y ∈ [a, b]
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Then, (16) reads as:

v(0, t) = −K(b− a)uc(0, t) + K
∫ b

a
u(Lx, y, t)dy. (17)

3. Numerical Approximation

In this section, we describe the numerical approximation of the adopted models:
2D-doubly parabolic, 1D-doubly parabolicm and 1D-hyperbolic-parabolic. We define
equispaced xi := i4x, yj := j4y, and tn := n4t with4x,4y,4t > 0, and i = 0, . . . , Nx +
1, j = 0, . . . , Ny + 1; for channel [0, L], we discretize it as xi = i4x, with i = 0, . . . , N. For a
more structured presentation, we introduce the operators:

δ2
xun

i,j := un
i+1,j − 2un

i,j + un
i−1,j, δ2

yun
i,j := un

i,j+1 − 2un
i,j + un

i,j−1,
δ0

xun
i,j := un

i+1,j − un
i−1,j, δ0

yun
i,j := un

i,j+1 − un
i,j−1,

δ1
xun

i,j := un
i+1,j − un

i,j, δ1
yun

i,j := un
i,j+1 − un

i,j.

Remark 2. Note that special attention has to be paid also to the stiffness induced by the source
term g(x, y, t, u). To overcome this issue, implicit methods can be used, such as the Crank–Nicolson
method, which is associated with a ∆t that is small enough.

Mass-preserving and (numerically)-positivity-preserving approximations will be de-
veloped in the present section. In the following, we will neglect the label c to make the
reading easier and we will make distinctions only when necessary.

3.1. the Parabolic-Parabolic Case

Here, we introduce a numerical scheme for the doubly parabolic systems (8) and (9)
for g = 0.

For the discretization of equations in a 2D system (8) in the interior points of the
domain—i.e., for i = 1, . . . , Nx, j = 1, . . . , Ny, we define a finite difference discretization
both for u and φ:

un+1
i,j = un

i,j + Du
4t
2

[
δ2

x(un
i,j+un+1

i,j )

4x2 +
δ2

y(un
i,j+un+1

i,j )

4y2

]

−4t(δ0
xFx,n

i,j + δ0
y Fy,n

i,j ),
(18)

φn+1
i,j = φn

i,j + Dφ
4t
2

[
δ2

x

(
φn

i,j+φn+1
i,j

)

4x2 +
δ2

y

(
φn

i,j+φn+1
i,j

)

4y2

]

+4t
2 a(un

i,j + un+1
i,j )− 4t

2 b(φn
i,j + φn+1

i,j ).
(19)

Note that Fx,n
i = χ(φn

i,j)u
n
i,jδ

0
xφn

i,j with δ0
xφn

i,j a centered second order approximation of φx.
For a 1D system (9), in the interior points of the channel C we apply the Crank–

Nicolson scheme, as above:

uc,n+1
i = uc,n

i + Duc
∆t
2

δ2
x

(
uc,n

i +uc,n+1
i

)

4x2 − ∆tδ0
xFn

c,i,
(20)

φc,n+1
i = φc,n

i + Dφc
4t
2

δ2
x

(
φc,n

i +φc,n+1
i

)

4x2

+4t
2 ac(uc,n

i + uc,n+1
i )− 4t

2 bc(φ
c,n
i + φc,n+1

i ).
(21)

Remark 3. We remark that here, for simplicity, upwinding terms needed to avoid meshgrid restrictions
caused by a large Péclet number—see, for instance [36]—are not included in the schemes (18) and (20).
In this case, assuming a small ∆x and ∆y will be enough to avoid oscillations.

The upwinding be added in the implemented scheme described in Section 3.3.
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Stability condition. By using the Von-Neumann stability analysis on the linearized
problem, we derive the following condition for the Crank–Nicolson schemes above, [37]:

Du
4t
4x2 ≤ 1 for 1D, Du

4t
4x2 + Du

4t
4y2 ≤ 1 for 2D. (22)

In the following, we present the discretization of the boundary and transmission
conditions to complete the numerical schemes.

3.1.1. Discretization of the Outer Boundary Conditions for the Doubly Parabolic Problem

Since a qualitative characteristic of the model is the preservation of total mass for
zero-flux boundary conditions, the first step is to ensure the mass preservation at each
time step in a closed 1D line Cnc and, analogously, in a closed 2D chamber, namely Ωnc.
To this aim, we have to choose discrete boundary conditions that both are consistent with
the analytical boundary conditions and preserve the mass in the numerical method. We
remark that we present the computations without source term g, and we will add it in the
following to complete the equations.

Boundary conditions for the density of individuals u in 1D model (9).
Here, we consider Neumann boundary conditions ∂u

∂x (x, t) = 0. If we discretized it
with a (standard) forward finite difference scheme:

∂xu(0) =
uc,n

1 − uc,n
0

∆x
, (23)

the mass will not be preserved over time, as shown in the numerical Example 1. Therefore,
in order to have mass preservation, we use the central finite difference approximation with
a ghost cell:

∂xu(0) =
uc,n

1 − uc,n
−1

2∆x
. (24)

At the outer boundaries at the first (x0 = 0) and last (xN+1 = L) endpoint of the
channels, we assign the numerical schemes:

uc,n+1
0 = uc,n

0 + Duc

4t
4x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− 4t
4x

(Fn
c,1 + Fn

c,0) (25)

and
uc,n+1

N+1 = uc,n
N+1 − Duc

4t
4x2 δ1

x

(
uc,n

N + uc,n+1
N

)
+
4t
4x

(Fn
c,N + Fn

c,N+1), (26)

with Fn
c,0 = 0 in (25) and Fn

c,N+1 = 0 in (26), since we are imposing zero flux at the
boundaries. The boundary conditions above are mass-preserving by construction, as stated
in the following proposition.

Proposition 1. The 1D numerical scheme at the internal points introduced above, namely:

uc,n+1
i = uc,n

i + Duc

4t
24x2 δ2

x(u
c,n
i + uc,n+1

i )− 4t
24x

δ0
xFn

c,i, (27)

endowed with boundary conditions (25) and (26), is mass-preserving by construction, since it is
obtained by imposing In+1 − In = 0.

Proof. The mass conservation over time on the closed domain Ωnc reads as:

I(t) =
∫

Ωnc
u(t, x, y)dΩnc =

∫

Ωnc
u(0, x, y)dΩnc = I(0). (28)
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Now, applying a quadrature rule for the numerical integration:

In ≈
∫

Ωnc
u(t, x, y)dΩnc. (29)

We need to ensure that In+1 = In.
For the numerical integration, different quadrature formulas can be used; in particular,

we applied closed Newton–Cotes formulas to take into account the values at the boundaries.
By using the trapezoidal rule with an integration error of O

(
4x2) and imposing the

equality In+1 − In = 0 in the 1D case, one obtains:

4x

(
uc,n+1

0
2
− uc,n

0
2

+
N

∑
i=1

(
uc,n+1

i − uc,n
i

)
+

uc,n+1
N+1
2
− uc,n

N+1
2

)
= 0.

Using the numerical scheme (20) for uc,n+1
i in (30) for i = 1, . . . , N we have:

4x
(

uc,n+1
0 −uc,n

0
2 +Duc4t

24x2 ∑N
i=1 δ2

x

(
uc,n

i + uc,n+1
i

)

− 4t
24x

N

∑
i=1

δ0
xFn

c,i +
uc,n+1

N+1 − uc,n
N+1

2

)
= 0.

Now, using the definition of δ0
xFn

c,i in the sum, the above formula becomes:

uc,n+1
0 − uc,n

0 − Duc
4t
4x2

(
uc,n

1 + uc,n+1
1 − (uc,n

0 + uc,n+1
0 )

)
+ 4t
4x

(
Fn

c,0 + Fn
c,1

)

+uc,n+1
N+1 − uc,n

N+1 − Duc
4t
4x2

(
uc,n

N + uc,n+1
N − (uc,n

N+1 + uc,n+1
N+1 )

)

− 4t
4x

(
Fn

c,N + Fn
c,N+1

)
= 0.

We can now compute the values for both un+1
0 and un+1

N+1 so that the term equals zero.
By collecting values from nearby stencils together (otherwise we obtain an error of O(4x),
which can be verified by Taylor expansion), at the outer boundaries of 1D domain we obtain
the schemes (25) and (26). Note that in the formula above, by imposing homogeneous
Neumann boundary conditions we have f n

0 = 0 and f n
N+1 = 0.

We also remark that besides imposing the stability condition (22), ∆x has to be small
enough in order to ensure the positivity of the scheme for taking into account the possibility
of having a negative term brought by f n

1 or f n
N in (25) and (26), respectively.

Remark 4. Although here we are not proving that, the scheme (27) is in practice second order
in the space up to the boundaries, since it can be equivalently obtained using the second-order
approximation of the first derivative including a ghost cell reported in (24).

We underline that for f 6= 0, even using formula (24), the approach with the discrete
integral equation is necessary for ensuring the mass preservation. Furthermore, by using a
different numerical integration scheme, we can achieve different mass-preserving boundary
conditions of a higher order.

Boundary conditions for the density of individuals u in 2D model (8).
Let us assume there are no-flux conditions at the boundaries. Then, in this case we

consider the 2D closed domain Ωnc.
Using the mass-preserving property argument, we compute boundary conditions

for the corners and the top and bottom boundaries of Ωnc. By applying them with the
numerical method (18) into In+1 − In = 0, we obtain the expression:

4t4x
4

(
−44t

Nx

∑
i=1

Ny

∑
j=1

(
δ0

xFx
i,j + δ0

y Fy
i,j

))
= 0,
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since the terms in u cancel. By plugging in it the expression of the central in rgw space
second-order finite difference scheme δ0

x f x,n
j for div(f), we obtain:

1
4y

Nx

∑
i=1

(
Fy,n

i,Ny+1 + Fy,n
i,Ny
− Fy,n

i,1 − Fy,n
i,0

)

+ 1
4x

Ny

∑
j=1

(
Fx,n

Nx+1,j + Fx,n
Nx ,j − Fx,n

1,j − Fx,n
0,j

)
= 0.

Now, we can distribute the remaining values to the boundaries in the same way
as above for the 1D-parabolic case. Therefore, we obtain the following mass-preserving
boundary conditions for the corners:




un+1
0,0 = un

0,0 + Du
4t

24x2 δ1
x

(
un

0,0 + un+1
0,0

)
+ Du

4t
24y2 δ1

y

(
un

0,0 + un+1
0,0

)
,

un+1
Nx+1,0 = un

Nx+1,0 − Du
4t

24x2 δ1
x

(
un

Nx ,0 + un+1
Nx ,0

)

+Du
4t

24y2 δ1
y

(
un

Nx+1,0 + un+1
Nx+1,0

)
,

un+1
0,Ny+1 = un

0,Ny+1 + Du
4t

24x2 δ1
x

(
un

0,Ny+1 + un+1
0,Ny+1

)

−Du
4t

24y2 δ1
y

(
un

0,Ny
+ un+1

0,Ny

)
,

un+1
Nx+1,Ny+1 = un

Nx+1,Ny+1 − Du
4t

24x2 δ1
x

(
un

Nx ,Ny+1 + un+1
Nx ,Ny+1

)

−Du
4t

24y2 δ1
y

(
un

Nx+1,Ny
+ un+1

Nx+1,Ny

)
.

(30)

For the edges of the box Ωnc, i = 1, . . . , Nx and j = 1, . . . , Ny, we have:





un+1
i,0 = un

i,0 + Du
4t

24x2 δ2
x

(
un

i,0 + un+1
i,0

)
+ Du

4t
4y2 δ1

y

(
un

i,0 + un+1
i,0

)

−4t
4y Fy,n

i,1 ,

un+1
i,Ny+1 = un

i,Ny+1 + Du
4t

24x2 δ2
x

(
un

i,Ny+1 + un+1
i,Ny+1

)

−Du
4t
4y2 δ1

y

(
un

i,Ny
+ un+1

i,Ny

)
+ 4t
4y Fy,n

i,Ny
,

un+1
0,j = un

0,j + Du
4t
4x2 δ1

x

(
un

0,j + un+1
0,j

)
+ Du

4t
24y2 δ2

y

(
un

0,j + un+1
0,j

)

− 4t
4x Fx,n

1,j ,

un+1
Nx+1,j = un

Nx+1,j − Du
4t
4x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)

+Du
4t

24y2 δ2
y

(
un

Nx+1,j + un+1
Nx+1,j

)
+ 4t
4x Fy,n

i,Ny
.

(31)

We underline that in the above formulas the terms Fx,n and Fy,n on the edges of the
domain cancel because of the homogeneous Neumann boundary condition on φx and φy.

Boundary conditions for the density of chemoattractant φ in 1D model (9).
For the computation of the conditions at the outer boundaries for the chemoattractant

φc in the 1D-doubly parabolic model we proceed as above, but neglect the source term
acuc − bcφc to obtain boundary conditions that are mass-preserving.

Proceeding as above, we achieve the following mass-preserving boundary conditions
for the chemoattractant:





φc,n+1
0 = φc,n

0 + Dφc
4t
4x2

(
δ1

xφc,n
0 + δ1

xφc,n+1
0

)

φc,n+1
N+1 = φc,n

N+1 − Dφc
4t
4x2

(
δ1

xφc,n
N + δ1

xφc,n+1
N

) (32)
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This, under the CFL condition (22), is second-order accurate and positivity-preserving
up to the boundaries. The parabolic equation in the interior points is solved using an
implicit-explicit method:

φc,n+1
i = φc,n

i + Dφc

4t
24x2 δ2

x

(
φc,n

i + φc,n+1
i

)
. (33)

Boundary conditions for the density of chemoattractant φ in 2D model (8).
Reasoning as above, by applying the numerical method (19) we obtain the following

boundary condition for the chemoattractant at the corners:





φn+1
0,0 = φn

0,0 + Dφ
4t
4x2 δ1

x(φ
n
0,0 + φn+1

0,0 ) + 2Dφ
4t
4y2 δ1

y(φ
n
0,0 + φn+1

0,0 )

φn+1
Nx+1,0 = φn

Nx+1,0 − Dφ
4t
4x2 δ1

x(φ
n
Nx+1,0 + φn+1

Nx+1,0)

+Dφ
4t
4y2 δ1

y(φ
n
Nx+1,0 + φn

Nx+1,0)

φn+1
Nx+1,Ny+1 = φn

Nx+1,Ny+1 − Dφ
4t
4x2 δ1

x(φ
n
Nx ,Ny+1 + φn+1

Nx ,Ny+1)

−Dφ
4t
4y2 δ1

x(φ
n
Nx+1,Ny+1 + φn

Nx+1,Ny
)

φn+1
0,Ny+1 = φn

0,0 + Dφ
4t
4x2 δ1

x(φ
n
1,Ny+1 + φn+1

1,Ny+1)

−Dφ
4t
4y2 δ1

y(φ
n
0,Ny

+ φn+1
0,Ny

)

(34)

and 



φn+1
i,0 = φn

i,0 + Dφ
4t
4x2 δ2

x(φ
n
i,0 + φn+1

i,0 ) + 2Dφ
4t
4y2 δ1

y(φ
n
i,0 + φn+1

i,0 )

φn+1
i,Ny+1 = φn

i,Ny+1 + Dφ
4t
4x2 δ2

x(φ
n
i,Ny+1 + φn+1

i,Ny+1)

−2Dφ
4t
4y2 δ1

y(φ
n
i,Ny

+ φn+1
i,Ny

)

φn+1
0,j = φn

0,j + Dφ
4t
4y2 δ2

y(φ
n
0,j + φn+1

0,j ) + 2Dφ
4t
4x2 δ1

x(φ
n
0,j + φn+1

0,j )

φn+1
Nx+1,j = φn

Nx+1,j + Dφ
4t
4y2 δ2

y(φ
n
Nx+1,j + φn+1

Nx+1,j).

−2Dφ
4t
4x2 δ1

x(φ
n
Nx ,j + φn+1

Nx ,j )

(35)

We now have a complete numerical method to solve the system (8) on Ωnc and the 1D
version of it (9) on Cnc.

Let us now turn to the complete domain depicted in Figure 2 in order to develop
mass-preserving transmission conditions at the nodes of the network. We remark that for
the sake of clarity, for the development of the numerical transmission conditions here we
consider just the junction—indicated as node 1L—connecting the left box Ωl and a single
channel parametrized as an interval C = [a, b].

3.1.2. Discretization of the Transmission Conditions for the 2D-1D Doubly Parabolic Case

The choice of suitable transmission conditions is crucial, since it should reflect the
qualitative attributes of the analytical model.

Here, we use ghost values (24) in order to obtain the numerical boundary conditions,
since in such a way mass-preserving and positivity-preserving properties are ensured.

By using the central approximation formula for div f in the condition (14) on the left
of node 1L, we have:

Du∂xu(Lx, y, t)− Fx(Lx, y, t) = K(uc(0, t)− u(Lx, y, t)) for y ∈ [a, b].
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Then we have:

Du
un

Nx+2,j−un
Nx ,j

24x = K
(

uc,n
0 − un

Nx+1,j

)
+ Fx,n

Nx+1,j

and we get:

un
Nx+2,j = un

Nx ,j + K 24x
D

(
uc,n

0 − un
Nx+1,j

)
+ 24x

Du
Fx,n

Nx+1,j (36)

for j = ja, . . . , jb.
Moreover, using the central approximation for ∂xuc in (15),
we finally get the formula:

uc,n
−1 = uc,n

1 − K
24x
Duc

(b− a)uc,n
0 +

24x
Duc

∆y
jb

∑
j=ja

K(un
Nx+1,j + un+1

Nx+1,j)−
24x
Duc

Fn
c,0. (37)

We now use the Ansatz to apply the ghost values into the 1D (27) and 2D (18) numerical
schemes without specific chemotactic approximation, and use the discrete integral equation
to determine the chemotactic term discretization.

Since we need to conserve the mass in each domain, but also in both connected ones,
the expanded discrete integral equation is needed to compute the total mass over both
domains.

Plugging the ghost values (36) and (37), respectively, into the numerical schemes (18)
and (27), we get the conditions at the interface (node 1L):

un+1
Nx+1,j = un

Nx+1,j − Du
4t
4x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)
+ 2K 4t

4x

(
uc,n

0 − un
Nx+1,j

)

+Du
4t

24y2 δ2
y

(
un

Nx+1,j + un+1
Nx+1,j

)

+24t
4x Fx,n

Nx+1,j −4tδ0
xFx,n

Nx+1,j −4tδ0
y Fy,n

Nx+1,

(38)

and
uc,n+1

0 = uc,n
0 + Duc

4t
4x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− 2K 4t

4x (b− a)uc,n
0

+2K4t4y
4x

jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)

−24t
4x Fn

c,0 − 4t
2∆x δ0

xFn
c,0.

(39)

In particular, the conservation of the discrete total mass reads as:

In+1
1D + In+1

2D − In
1D − In

2D = 0, (40)

Now, applying the conditions (38) and (39) with the other boundary conditions (31)
and (25), we get:

4x( − K 4t
4x (b− a)uc,n

0 + K4t4y
4x

jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)

− 4t
4x Fn

c,0 − 4t
2 δ0

xFn
c,0 +

4t
24x

(
Fn

c,0 + Fn
c,1

))

+ 4x4y
4 ( 2

jb

∑
j=ja

(
2K
4t
4x

(
uc,n

0 − un
Nx+1,j

)
+ 2
4t
4x

Fx,n
Nx+1,j −4tδ0

xFx,n
Nx+1,j

−4tδ0
y Fy,n

Nx+1,j

)

− 24t
4x

jb1

∑
j=ja1

(
Fx,n

Nx+1,j + Fx,n
Nx ,j

)
− 24t
4y

jb

∑
j=ja

(
Fy,n

Nx+1,j + Fy,n
Nx ,j

))
= 0,

We can then obtain the following transmission conditions:
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uc,n+1
0 = uc,n

0 + Duc

4t
4x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− 4t
4x

(Fn
c,1 + Fn

c,0)

︸ ︷︷ ︸
same as for BC without transmission condition

−2K 4t
4x (b− a)uc,n

0 + 2K 4t
4x

jb

∑
j=ja

un
Nx+1,j + un+1

Nx+1,j,

(41)

un+1
Nx+1,j = un

Nx+1,j − Du
4t
4x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)

+Du
4t

24y2 δ2
y

(
un

Nx+1,j + un+1
Nx+1,j

)

+ 4t
4x

(
Fx,n

Nx+1,j + Fx,n
Nx ,j

)
− 4t

24y

(
Fy,n

Nx+1,j+1 − Fy,n
Nx+1,j−1

)

+ 2K
4t
4x

(
uc,n

0 − un
Nx+1,j

)

︸ ︷︷ ︸
additional term for transmission condition,

(42)

for j = ja, . . . , jb.
Proceeding analogously as above, this approach leads to mass-preserving and positivity-

preserving transmission conditions for the chemoattractant φ as well. In particular, we
have at the first and last endpoint, respectively:

φc,n+1
0 = φc,n

0 + Dφc
4t
4x2

(
δ1

xφc,n
0 + δ1

xφc,n+1
0

)
+4tacuc,n

0 −4tbcφc,n
0

−2K 4t
4x (b− a)φc,n

0 + 2K 4t
4x

∫ b

a
φ(Lx, y, tn)dy

and

φn+1
Nx+1,j = φn

Nx+1,j + Dφ
4t
4y2 δ2

y(φ
n
Nx+1,j + φn+1

Nx+1,j)

−2Dφ
4t
4x2 δ1

x(φ
n
Nx ,j + φn+1

Nx ,j )

+a4tun
Nx+1,j − b4tφn

Nx+1,j + 2K 4t
4x

(
φc,n

0 − φn
Nx+1,j

)
.

(43)

We have finally developed a complete numerical scheme to treat doubly parabolic
partial differential equations systems in two domains, 1D and 2D, connected through a
node, which ensures by construction the mass conservation as the original PDE. Numeri-
cally, the scheme also ensures the positivity preserving property under the monotonicity
conditions discussed in Section 3.3.1.

3.2. The Hyperbolic-Parabolic Case

The second-order AHO scheme on a line was introduced in [14] for the 1D hyperbolic
system (2). Here, considering the presence of the source term g on the right hand side of
the equation for the density of cells, the AHO scheme of second order reads as:





uc,n+1
i = uc,n

i + λ 4t
24x δ2

xuc,n
i −

(
4t

24x −
4t
4λ

)
δ0

xvc,n
i + 4t

4λ δ0
xFn

c,i

+4t
4
(

gn
i−1 + 2gn

i + gn
i+1
)
,

vc,n+1
i = vc,n

i − λ2 4t
24x δ0

xuc,n
i +

(
λ4t
24x −

4t
4

)
δ2

xvc,n
i + 4t

4 δ2
xFn

c,i

+λ4t
4
(

gn
i−1 − gn

i+1
)
,

(44)

with mass-preserving boundary conditions (including the additional source term g) at the
external boundaries.

We remark that for the hyperbolic-parabolic model not only mass must be preserved
as the in the fully parabolic model, but also the flux v needs to converge towards the steady
state v = 0. Since here we have the 1D domain connected at both the endpoints, we do not
need to use numerical boundary conditions for the outer boundaries. However, for the
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details and the description of the AHO numerical scheme at the outer boundaries, see [14].
For this reason we use the so-called AHO (Asymptotic Higher Order) schemes (see [18] for
the study of AHO scheme at interfaces including mass-preserving transmission conditions)
with source term g, for which the approximation of the stationary solutions is up to the
third order of accuracy and converges towards a numerical solution with v = 0, while
preserving the mass.

3.2.1. Discretization of Transmission Conditions for the 2D-Doubly Parabolic and
1D-Hyperbolic-Parabolic Case

The first equation is the same as for the interface between the 2D-doubly parabolic
and 1D-doubly parabolic case. Hence, we derive the same transmission condition reported
in (42) for un+1

Nx+1,j for j = ja, . . . , jb.
For the flux, the transmission condition (17) gives us

vc,n+1
0 = −K(b− a)uc,n+1

0 + K4y
jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)
, (45)

This can be computed explicitly with the numerically computed values of uc,n+1
0 and

un+1
Nx+1,j.

Then, imposing the mass conservation:

In+1
2D + In+1

2D − In
1D − In

1D = 0

we get:

4x
2

[
uc,n+1

0 − uc,n
0 + λ 4t

4x

(
uc,n+1

0 − uc,n+1
1

)
−
(
4t
4x −

4t
2λ

)(
−vc,n+1

0 − vc,n+1
1

)]

+4x4t
4λ

(
Fn+1

c,0 + Fn+1
c,1

)

+4x4y
4

[
4

jb

∑
j=ja

4tK
4x

(
uc,n+1

0 + uc,n
0 − un+1

Nx+1,j − un
Nx+1,j

)]
= 0

We thus finally obtain the mass-preserving transmission condition, where we finally
add the source term g, as:

uc,n+1
0 = uc,n

0 + λ 4t
4x δ1

xuc,n+1
0 −

(
4t
4x −

4t
2λ

)(
vc,n+1

0 + vc,n+1
1

)

−K 4t
4x4y

jb

∑
j=ja

(
uc,n+1

0 + uc,n
0 − un+1

Nx+1,j − un
Nx+1,j

)

−4t
2λ

(
Fn+1

c,0 + Fn+1
c,1

)
+ 4t

2

(
gn+1

0 + gn+1
1

)
.

(46)

Proposition 2. The complete numerical scheme derived for the 2D-doubly parabolic-1D-hyperbolic-
parabolic model is mass-preserving—by construction—across the transmission conditions in absence
of source terms.

Remark 5. Note that the chemoattractant equation is the same as for the 1D-doubly parabolic and
2D-doubly parabolic case. Hence, the numerical schemes (33) and (19) with boundary conditions
(32) and (43) can be used.

3.2.2. Multiple Channels

In the previous paragraphs, we connected the two-dimensional domain Ωl with a
single one-dimensional channel C at (Lx, y) ∈ Ωl with y ∈ [a1, b1], and ja1 and jb1 , the
positions of the endpoints of the corridor on the numerical grid. Of course, this can be
extended to more channels.
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Let Cm, with m = 1, . . . ,M beM corridors, connected to the two-dimensional domain
Ωl at (Lx, ym) with ym ∈ [am, bm] and a1 > 0, bm < am+1, for m = 1, . . . ,M− 1, and
bM < Ly to avoid intersections of the corridors, with equal width k4y, k ∈ N.

3.3. Implemented Algorithm.

Before presenting the numerical tests in the next Section 4, we adapt the approximation
scheme for the density u, also including the source term g, implemented to solve the
problem in the 2D-1D domain. As underlined before, it is necessary to use implicit schemes
to consider the presence of stiff source terms. For this reason, for the approximation of the
time derivatives we use the Crank–Nicolson (CN) method on the diffusion and source term,
which is a second-order implicit method and the explicit central method for the convection
term. Moreover, since CN is only A-stable but not L-stable [38], we also need to choose a
∆t that is small enough to avoid spurious oscillations of the solution during transience.

Because of the explicit term, we have numerical restrictions on the mesh grid and
time step. Furthermore, as discussed previously, we introduce artificial viscosity to avoid
oscillations due to not suitable mesh grid size in dominant convection regime, which is
often the case in chemotaxis models. Finally, the implicit-explicit numerical method used
to compute the solutions for the density u in (8) inside the 2D domain Ωl is:

un+1
i,j = un

i,j + Du
4t
2

[
δ2

x(un
i,j+un+1

i,j )

4x2 +
δ2

y(un
i,j+un+1

i,j )

4y2

]

−4t
4

[
δ0

x Fx,n
i,j
4x +

δ0
y Fy,n

i,j
4y

]
+ 4t

2

(
gn

i,j + gn+1
i,j

)

−4t
[ δ2

xθn
i,j

24x
+

δ2
yθn

i,j

24y

]

︸ ︷︷ ︸
artificial viscosity

,

(47)

with: θn
i,j := χ(ϕn

i,k)u
n
i,j|∇ϕn

i,j| for i = 1, . . . , Nx, j = 1, . . . , Ny. As can be seen, the function
θ used for the artificial viscosity is almost identical to f , with the exception of using the
absolute value of∇ϕ. By using this, we increase artificial viscosity only where the gradient
of the chemoattractant increases. This reduces the restriction on the meshgrid due to the
condition induced by the cell Péclet number, [36]. The numerical transmission condition
on the left of node 1L (i = Nx + 1, j = ja, . . . , jb) is:

un+1
Nx+1,j = un

Nx+1,j − Du
4t
4x2 δ1

x(un
Nx ,j + un+1

Nx ,j)

+Du
4t

24y2 δ2
y

(
un

Nx+1,j + un+1
Nx+1,j

)

+ 4t
4x

(
Fx,n

Nx+1,j + Fx,n
Nx ,j

)
− 4t
4y

(
Fy,n

Nx+1,j+1 − Fy,n
Nx+1,j−1

)

+4t
2

(
gn

Nx+1,j + gn+1
Nx+1,j

)
−4t

(
δ1

xθn
Nx ,j
4x +

δ2
yθn

Nx+1,j
24y

)

+

(additional term for transmission condition)

K
4t
4x

(
uc,n

0 − un
Nx+1,j + uc,n+1

0 − un+1
Nx+1,j

)

︸ ︷︷ ︸
.

(48)

The role of permeability coefficient K in the positivity of (48) is discussed in Section 3.3.1.
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For the external boundaries (the edges of the chamber Ωl except at the junctions
j = ja, . . . , jb), we use:





un+1
i,0 = un

i,0 + Du
4t

24x2 δ2
x

(
un

i,0 + un+1
i,0

)
+ Du

4t
4y2 δ1

y

(
un

i,0 + un+1
i,0

)

− 4t
24x δ0

xFx,n
i,0 −

4t
4y

(
Fy,n

i,0 + Fy,n
i,1

)

+4t
2

(
gn

i,0 + gn+1
i,0

)
−4t

(
δ2

xθn
i,0

24x +
δ1

yθn
i,0
4y

)
, i = 1, . . . , Nx,

un+1
i,Ny+1 = un

i,Ny+1 + Du
4t

24x2 δ2
x

(
un

i,Ny+1 + un+1
i,Ny+1

)

−Du
4t
4y2 δ1

y

(
un

i,Ny
+ un+1

i,Ny

)

− 4t
24x δ0

xFx,n
i,Ny+1 +

4t
4y

(
Fy,n

i,Ny
+ Fy,n

i,Ny+1

)

+4t
2

(
gn

i,Ny+1 + gn+1
i,Ny+1

)
−4t

(
δ2

xθn
i,Ny+1

24x +
δ1

yθn
i,Ny
4y

)
, i = 1, . . . , Nx,

un+1
0,j = un

0,j + Du
4t
4x2 δ1

x

(
un

0,j + un+1
0,j

)
+ Du

4t
24y2 δ2

y

(
un

0,j + un+1
0,j

)

− 4t
4x

(
Fx,n

0,j + Fx,n
1,j

)
− 4t

24y δ0
y Fy,n

0,j

+4t
2

(
gn

0,j + gn+1
0,j

)
−4t

(
δ1

xθn
0,j
4x +

δ2
yθn

0,j
24y

)
, j = 1, . . . , Ny,

un+1
Nx+1,j = un

Nx+1,j − Du
4t
4x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)

+D 4t
24y2 δ2

y

(
un

Nx+1,j + un+1
Nx+1,j

)

− 4t
24x δ0

xFx,n
i,Ny+1 +

4t
4x

(
Fy,n

i,Ny
+ Fy,n

i,Ny+1

)

+4t
2

(
gn

Nx+1,j + gn+1
Nx+1,j

)
−4t

(
δ1

xθn
Nx ,j
4x +

δ2
yθn

Nx+1,j
24y

)
, j = 1, . . . , Ny,

j 6= ja, . . . , jb.

(49)

For the corners, we use the following boundary conditions:




un+1
0,0 = un

0,0 + Du
4t
4x2 δ1

x

(
un

0,0 + un+1
0,0

)
+ Du

4t
4y2 δ1

y

(
un

0,0 + un+1
0,0

)

− 4t
4x

(
Fx,n

0,0 + Fx,n
1,0

)
− 4t
4y

(
Fy,n

0,0 + Fy,n
0,1

)

+4t
2

(
gn

0,0 + gn+1
0,0

)

−4t
(

δ1
xθn

0,0
4x +

δ0
yθn

0,0
4y

)
,

un+1
Nx+1,0 = un

Nx+1,0 − Du
4t
4x2 δ1

x

(
un

Nx ,0 + un+1
Nx ,0

)

+Du
4t
4y2 δ1

y

(
un

Nx+1,0 + un+1
Nx+1,0

)

− 4t
4x

(
Fx,n

Nx+1,0 + Fx,n
Nx ,0

)
− 4t
4y

(
Fy,n

Nx+1,0 + Fy,n
Nx+1,1

)

+4t
2

(
gn

Nx+1,0 + gn+1
Nx+1,0

)

−4t
(

δ1
xθn

Nx ,0
4x +

δ1
yθn

Nx+1,0
4y

)
,

un+1
0,Ny+1 = un

0,Ny+1 + Du
4t
4x2 δ1

x

(
un

0,Ny+1 + un+1
0,Ny+1

)

−Du
4t
4y2 δ1

y

(
un

0,Ny
+ un+1

0,Ny

)

− 4t
4x

(
Fx,n

0,Ny+1 + Fx,n
1,Ny+1

)
− 4t
4y

(
Fy,n

0,Ny+1 + Fy,n
0,Ny

)

+4t
2

(
gn

0,Ny+1 + gn+1
0,Ny+1

)

−4t
(

δ1
xθn

0,Ny+1

4x +
δ1

yθn
0,Ny
4y

)
,

un+1
Nx+1,Ny+1 = un

Nx+1,Ny+1 − Du
4t
4x2 δ1

x

(
un

Nx ,Ny+1 + un+1
Nx ,Ny+1

)

−Du
4t
4y2 δ1

y

(
un

Nx+1,Ny
+ un+1

Nx+1,Ny

)

− 4t
4x

(
Fx,n

Nx+1,Ny+1 + Fx,n
Nx ,Ny+1

)

−4t
4y

(
Fy,n

Nx+1,Ny+1 + Fy,n
Nx+1,Ny

)

+4t
2

(
gn

Nx+1,Ny+1 + gn+1
Nx+1,Ny+1

)

−4t
(

δ1
xθn

Nx ,Ny+1

4x +
δ1

yθn
Nx+1,Ny
4y

)
.

(50)
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Similarly, for the chemoattractant φ, we have the implicit-explicit scheme in the interior
points of the 2D domain:

φn+1
i,j = φn

i,j + Dφ
4t
2

[
δ2

x

(
φn

i,j+φn+1
i,j

)

4x2 +
δ2

y

(
φn

i,j+φn+1
i,j

)

4y2

]

4t
2 (a(un

i,j + un+1
i,j )− 4t

2 (b(φn
i,j + φn+1

i,j )

(51)

At the boundaries and the corners of the numerical schemes for φ, we use, respectively,
conditions:





φn+1
0,0 = φn

0,0 + Dφ
4t
4x2 δ1

x(φ
n
0,0 + φn+1

0,0 ) + 2Dφ
4t
4y2 δ1

y(φ
n
0,0 + φn+1

0,0 )

+a4t(un
0,0 + un+1

0,0 )− b4t(φn
0,0 + φn+1

0,0 ),
φn+1

Nx+1,0 = φn
Nx+1,0 − Dφ

4t
4x2 δ1

x(φ
n
Nx+1,0 + φn+1

Nx+1,0)

+Dφ
4t
4y2 δ1

y(φ
n
Nx+1,0 + φn

Nx+1,0)

+a4t(un
Nx+1,0 + un+1

Nx+1,0)− b4t(φn
Nx+1,0 + φn+1

Nx+1,0),
φn+1

Nx+1,Ny+1 = φn
Nx+1,Ny+1 − Dφ

4t
4x2 δ1

x(φ
n
Nx ,Ny+1 + φn+1

Nx ,Ny+1)

−Dφ
4t
4y2 δ1

x(φ
n
Nx+1,Ny+1 + φn

Nx+1,Ny
)

+a4tun
Nx+1,Ny+1 − b4tφn

Nx+1,Ny+1,

φn+1
0,Ny+1 = φn

0,0 + Dφ
4t
4x2 δ1

x(φ
n
1,Ny+1 + φn+1

1,Ny+1)

−Dφ
4t
4y2 δ1

y(φ
n
0,Ny

+ φn+1
0,Ny

) + a4tun
0,Ny+1 − b4tφn

0,Ny+1,

(52)

For the borders, we use:




φn+1
i,0 = φn

i,0 + Dφ
4t
4x2 δ2

x(φ
n
i,0 + φn+1

i,0 ) + 2Dφ
4t
4y2 δ1

y(φ
n
i,0 + φn+1

i,0 )

+a4tun
i,0 − b4tφn

i,0,
φn+1

i,Ny+1 = φn
i,Ny+1 + Dφ

4t
4x2 δ2

x(φ
n
i,Ny+1 + φn+1

i,Ny+1)

−2Dφ
4t
4y2 δ1

y(φ
n
i,Ny

+ φn+1
i,Ny

) + a4tun
i,Ny+1 − b4tφn

i,Ny+1,

φn+1
0,j = φn

0,j + Dφ
4t
4y2 δ2

y(φ
n
0,j + φn+1

0,j ) + 2Dφ
4t
4x2 δ1

x(φ
n
0,j + φn+1

0,j )

+a4tun
0,j − b4tφn

0,j,

φn+1
Nx+1,j = φn

Nx+1,j + Dφ
4t
4y2 δ2

y(φ
n
Nx+1,j + φn+1

Nx+1,j)

−2Dφ
4t
4x2 δ1

x(φ
n
Nx ,j + φn+1

Nx ,j ) + a4tun
Nx+1,j − b4tφn

Nx+1,j.

(53)

Note that for i = Nx + 1 the last formula in (53) is applied for j = 1, . . . , Ny, j 6=
ja, . . . , jb.

Remark 6. If we consider a two-dimensional domain Ωr connected to the right endpoint of the
one-dimensional corridor C, the complete numerical scheme for the left domain Ωl described above
can be considered.

The main difference is that the transmission conditions at the interface between the box and the
channel (the left for the box Ωl and the right for the corridor) are reversed to the left for the corridor
and the right for the box Ωr. In the numerical scheme, the change only affects the channel C, where
we have transmission conditions also for uc,n

N+1 (resp. vc,n
N+1). The same boundary condition can be

used without transmission conditions, with only the additional term derived from the KK-condition
and it must be added as well for uc,n

0 (resp. vc,n
0 ).

For the computation of solutions on the one-dimensional channel C, we have two
different approximations depending on the choice of the model we assign to it. If we solve
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the doubly parabolic problem (9), the approximation scheme used is the Crank–Nicolson
scheme, as above:

uc,n+1
i = un

i + Duc
4t
2

[
δ2

x

(
uc,n

i +uc,n+1
i

)

4x2

]
−4tδ0

xFn
c,i

+4t
2

(
gn

i + gn+1
i

)
−4t

(
δ2

xθn
i

24x

)
,

(54)

with the transmission condition on the left of node 1L (i = 0) given by:

uc,n+1
0 = uc,n

0 + Duc
4t
4x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− 4t
4x

(
Fn

c,0 + Fn
c,1

)
−4t δ1

xθn
0

4x

−K 4t
4x

{
(b− a)(uc,n

0 + uc,n+1
0 ) +

jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)}

+4t
2

(
gn

0 + gn+1
0

)
.

(55)

If, instead, we need to solve the hyperbolic-parabolic problem (7), an implicit version
of the second-order AHO scheme is applied—see the scheme reported in (44)—in order to
ensure the stability of numerical solutions in the channels.

The scheme (44) is endowed with transmission conditions (45) and (46).

3.3.1. Stability at Interfaces

Note that, in order to ensure the positivity of the quantities in the above formulas
deriving from the KK conditions—i.e., (48) for the 2D domain and (55) or (45) for the 1D
domain—we also need to take care of the ratio between the KK coefficient K and the space
discretization steps. In particular, for (48) and (45), one needs to ensure that K 4t

4x and,

respectively, K 4t
4x4y is not too big in order to damp possible high oscillations produced

by the term in parentheses. Similarly, in (55) we need to check that K 4t
4x (b− a) is small in

order to prevent the growth of the negative term.
Moreover, as previously discussed, we need to check that the numerical monotonicity

condition is satisfied:

k1(
k2 + ϕn

i,j

)2 |∂
n
x,i,j ϕ

n
i,j| ≤

√
DM (56)

in the computational domain in order to ensure non-negative solutions.
Now, we consider the interface between the 2D and 1D domains. If we assume g = 0

and f = χ(φ)∇φ, the first equation in the 2D parabolic system, (8), rewrites as:

∂tu = D4u− div(u · f ). (57)

The transmission condition (48) reads as:

un+1
Nx+1,j = un

Nx+1,j − Du
4t
4x2 δ1

x(un
Nx ,j + un+1

Nx ,j) + Du
4t

24y2 δ2
y

(
un

Nx+1,j + un+1
Nx+1,j

)

+ 4t
4x

(
f x,n
Nx ,ju

n
Nx ,j + f x,n

Nx+1,ju
n
Nx+1,j

)

− 4t
24y

(
f y,n
Nx+1,j+1un

Nx+1,j+1 − f y,n
Nx+1,j−1uNx+1,j−1

)

+ 4t
4x

(
| f x,n

Nx ,j|un
Nx ,j − | f x,n

Nx+1,j|un
Nx+1,j

)

+ 4t
24y

(
| f y,n

Nx+1,j+1|un
Nx+1,j+1 − 2| f y,n

Nx+1,j|un
Nx+1,j

+ | f y,n
Nx+1,j−1|un

Nx+1,j−1

)

+
4x
4t

K
((

uc,n
0 − vn

Nx+1,j

)
+
(

uc,n+1
0 − un+1

Nx+1,j

))

︸ ︷︷ ︸
KK-transmission term

.

(58)
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Then, the transmission condition (55) for g = 0 and f = χ(φ)φx now reads as:

uc,n+1
0 = uc,n

0 + Duc
4t
4x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− 4t
4x
(
uc,n

0 f n
0 + uc,n

1 f n
1
)

+ 4t
4x
(
uc,n

1 | f n
1 | − uc,n

0 | f n
0 |
)

+
4x
4t

K

(
jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)
− (b− a)

(
un

0 + un+1
0

))

︸ ︷︷ ︸
KK-transmission term

(59)

for j = ja, . . . jb. For the transmission condition (58), we see that monotonicity is preserved
when:

1− Du
4t
4x2 − Du

4t
4y2 +

4t
4x f x,n

Nx+1,j −
4t
4x | f

x,n
Nx+1,j| −

4t
4y | f

y,n
Ny+1,j| −

4t
4x K > 0, (60)

which gives us the stability condition for the left side of the interface.
For the right side of the interface, if we assign the doubly parabolic 1D system (9), we

have the stability condition:

1− Duc
4t
4x2 + λ f n

c,0 − 4t
4x | f n

0 | − 4t
4x K(b− a). (61)

We underline that (61) is not only influenced by the KK-constant K but also by the
channel width σ := (b− a), which must be taken care of accordingly.

Analogously, we conduct the derivation of stability conditions for the transmission
conditions in the case where we assign the 2D parabolic model (57) on the left part of the
interface and the hyperbolic system (10) on the right. For the sake of clarity, we rewrite
the hyperbolic part of the system (10) for the density flux of individuals when we assume
g = 0: {

∂tuc + ∂xvc = 0,
∂tvc + λ2

c ∂xuc = Fc.
(62)

The KK-transmission explicit version of conditions (46) and (45) in this case read as:

uc,n+1
0 = uc,n

0 + λ 4t
4x
(
uc,n

1 − uc,n
0
)
−
(
4t
4x −

4t
2λ

)(
vc,n

0 + vc,n
1
)
− 4t

2λ

(
Fn

c,0 + Fn
c,1

)

−K 4t
4x4y

jb

∑
j=ja

(
uc,n

0 − un
Nx+1,j + uc,n+1

0 − un+1
Nx+1,j

)
,

uc,n+1
N+1 = uc,n

N+1 + λ 4t
4x
(
uc,n

N − uc,n
N+1

)
+
(
4t
4x −

4t
2λ

)(
vc,n

N + vc,n
N+1

)
+ 4t

2λ

(
Fn

c,N + Fn
c,N+1

)

−K 4t
4x4y

jb

∑
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(
uc,n

N+1 − uc,n
0,j + uc,n+1

N+1 − uc,n+1
0,j

)
,

vc,n
0 = −K(b− a)uc,n

0 + K4y ∑
jb
j=ja

(
ul,n

Nx+1,j + ul,n+1
Nx+1,j

)
,

vc,n
N+1 = −K(b− a)uc,n

N+1 + K4y ∑
jb
j=ja

(
ur,n

Nx+1,j + ur,n+1
Nx+1,j

)
.

(63)
In order to establish the monotonicity condition, as in [39], we need to diagonalize the

boundary conditions above into the diagonal variables wn+1
0 , zn+1

0 , wn+1
N+1, zn+1

N+1 with the
relation u = w + z and v = λ(z− w).

We have:

vc,n+1
0 = λ

(
zc,n+1

0 − wc,n+1
0

)
= −K(b− a)(zc,n+1

0 + wc,n+1
0 )

+K4y ∑
jb
j=ja

(
ul,n+2

Nx+1,j + ul,n+1
Nx+1,j

)
.
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If we set ρ := λ−(b−a)K
λ+(b−a)K ,ςn+1 := + K

λ+(b−a)K ∑
jb
j=ja

(
ul,n+2

Nx+1,j + ul,n+1
Nx+1,j

)
we find

zn+1
0 = ρwn+1

0 +4yςn+1

and

wn+1
0 + ρwn+1

0 + ςn+1 = (1 + ρ)wn
0 + ςn + 2λ 4t

4x
(
wn

1 − ρwn
0 − ςn)

+4t
2
(
(ρ− 1)wn

0 + ςn + zn
1 − wn

1
)
− 4t

2λ

(
Fn

c,0 + Fn
c,1

)

− 4t
4x Kk

(
(b− a)(1 + ρ)

(
wn

0 + wn+1
0

)
+ (b− a)

(
ςn + ςn+1)

−∑
jbk
j=jak

(
un

Nx+1,j + un+1
Nx+1,j

))
.

Now, by applying the monotonicity condition we get the following inequality:

(1 + ρ)− 2λ 4t
4x ρ + 4t

2 (ρ− 1)− 4t
4x K(b− a)(1 + ρ)− 4t

2λ Fn
c,0 > 0

⇔ 4t ≤ 1+ρ

2λ
4x ρ− ρ−1

2 +K (b−a)(1+ρ)
4x +

Fn
c,0
2λ

(64)

For the implicit AHO, the condition above reads as:

4t ≤ 1 + ρ

K (b−a)(1+ρ)
4x +

Fn
c,0

2λ

.

In Figure 3, the time step restriction (64) is depicted for a qualitative understanding
of the effect of the Kedem–Katchalsky constant K and of the channel width σ on the
time step 4t. As expected, the time step 4t must be chosen smaller when either K or σ
increases. Furthermore for K = 0 we recover the time step restriction of the AHO2-scheme
4t ≤ 44x

4x+4λ = 2 · 10−3. Since the values of K are typically of similar magnitude to the
diffusion coefficients, the additional stability restrictions caused by the hyperbolic part of
the transmission conditions are minimal.

Finally, we also point out that the time step restriction for the transmission condition
for the one-dimensional parabolic Equation (61) is much more severe than for the one-
dimensional hyperbolic (64), which can also be seen qualitatively in the steepness of
Figures 3 and 4.

(a) (b)

Figure 3. Time step restriction (64)4t for the hyperbolic transmission condition with4x = 0.01,4y = 0.1 and λ = 5 for
different K and channel widths (b− a) for the transmission between the two-dimensional parabolic Equation (57) with the
one-dimensional hyperbolic Equation (62) with f = 0.
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(a) (b)

Figure 4. Time step restriction (61)4t for the one-dimensional parabolic transmission condition with4x = 0.01,4y = 0.1
and D = 5 for different K and channel width σ = b− a, f = 0. As expected, the time step4t must be chosen smaller when
either K or the channel width σ increases.

Comparing all time step restrictions (61) and (64) with each other, it is evident that
the restriction for the two-dimensional parabolic transmission condition dominates the
full model.

For the sake of completeness, we underline that at each time step a non-linear equation
system must be solved, for which Newton–Krylov subspace methods [40] can be used,
which take advantage of the mostly sparse structure of the Jacobian matrix.

4. Numerical Tests and Results

We start this section with a preliminary test on mass-preserving properties at the
boundaries. Indeed, in absence of source terms, the masses of cells and chemical substances
are preserved. Then, in order to perform a numerical verification of this property, we
consider the numerical approximation at the interface between 1D-1D models in the next
numerical example.

Example 1. In Figure 5, a comparison between the central mass-preserving (24) and standard
finite difference (23) boundary conditions is depicted, for the 1D-doubly parabolic case on both
sides of the interface (on the left) and for the 1D-doubly parabolic-1D-hyperbolic-parabolic interface
(on the right). From this 1D numerical example, the necessity of developing modified boundary
conditions which are consistent and preserve the mass correctly is evident. We also underline that
for the discretization of the Neumann condition, the forward scheme is first-order accurate, while
the central scheme is second-order accurate; for more details, see [41].

From now on, this section is devoted to the presentation of the numerical tests and
the parameters of the problem are reported in Table 1. Our aim is to show the ability of
the simulation algorithm based on the model (3)–(7) to reproduce the qualitative behavior
of the two population sharing the same habitat as observed in the videos of laboratory
experiments, [1,2,25].

We remark that we decided to perform numerical simulations of the chip geometry by
assigning the 1D-hyperbolic-parabolic model on channels, since it seems more realistic.
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Table 1. Parameters of the problem.

Parameter Description Units Value Ref.

DM Diffusivity of cells µm2/s 9× 102 [33]
DT Diffusivity of T -scenario 2 µm2/s 56× 101 empirical
DT Diffusivity of T -scenario 1 µm2/s 5.6× 101 [33]
Dϕ, Dω Diffusivity of chemoattractants µm2/s 2× 102 [33]
αϕ growth rate of ϕ in scenario 2 s−1/cell 0 empirical
αϕ growth rate of ϕ for scenario 1 s−1/cell 0.5× 10−1 [42]
βϕ consumption rate of ϕ s−1 10−4 [42]
αω growth rate of ω for scenario 1 s−1/cell 10−1 [42]
αω growth rate of ω for scenario 2 s−1/cell 0 empirical
βω consumption rate of ω s−1 10−4 [42]
k1 cellular drift velocity mol cm2s−1 3.9× 10−9 [33]
k2 receptor dissociation constant mol 5× 10−6 [33]
S maximum secretion rate of the chemicals g/µm3 1.9676× 10−11 [33]
γ equivalent Michaelis constant cells/µm3 10−4 [33]
L length of the corridor µm 500 datum
Lx horizontal size of the box µm 100 datum
Ly vertical size of the box µm 1000 datum
K Kedem–Katchalsky constant - 500 empirical
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Figure 5. (left) evolution of total mass for 1D-1D-doubly parabolic model with standard vs. mass-preserving boundary
conditions. (right) evolution of total mass for 1D-1D-hyperbolic-parabolic model with standard vs. mass-preserving
boundary conditions.

Example 2. Before we numerically simulate the laboratory experiment with the algorithm, we
conduct a simple numerical test in order to prove its accuracy. We assumed the following setting:
a left squared chamber Ωl with one corridor positioned in the middle and only one cell family
with initial distribution u(x, y, 0) = 5e−

1
2 ((x−0.5)2+(y−0.5)2). Since we do not have any analytical

solution for this problem, we choose ∆t and ∆x = ∆y, which are small enough to obtain reasonable
error estimations. In this case, we use dt = 10−4 and ∆x = ∆y = 5× 10−4 for the approximation
ue at time t = 100 and calculate the error as the quantity ‖ue − uapprox‖ in L1-norm.

In order to confirm the order of our scheme, we use a log-log-plot with constant and small
enough ∆t (resp. ∆x) and decreasing ∆x (resp. ∆t). As shown in Figures 6 and 7, the time order



Mathematics 2021, 9, 688 28 of 34

and space order are equal to line with slope 2 in the log-log plot, which corresponds to our scheme of
order 2 in time and space.
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Figure 6. Log-log plot of the error—namely, the quantity ‖ue − uapprox‖ in L1-norm as a function of
the space step, with fixed ∆t = 10−3 and decreasing ∆x = 0.5, 0.1, 0.05, 0.001 at time t = 100. We
depict in blue the obtained error and in red a line with slope 2 for comparison.
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Figure 7. Log-log plot of the error, namely the quantity ‖ue − uapprox‖ in L1-norm as a function of the
time step, with fixed ∆x = 10−3 and decreasing ∆t = 0.5, 0.1, 0.05, 0.001 at time t = 100. We depict in
blue the obtained error and in red a line with slope 2 for comparison.

Now, we describe the simulation of the chip environment. All the simulations were
performed in MATLAB c©. The computational time for a simulation on the complete
geometry until time t = 50,000 took about 400 s on an Intel(R) Core(TM) i7-3630 QM CPU
2.4 GHz. The computational domain is schematized in Figure 2 with the two chambers and
5 corridors Cm := [0, L], m = 1, . . . , 5 with the same width = 12 µm and equispaced from
each other. The numerical method implemented is listed in Section 3.3; for the 1D channels,
the AHO2-scheme (of second order) is implemented, since there we are considering the
hyperbolic-parabolic model. The discretization grid has time step size 4t = 100 s and
space size4x = 2.5 µm,4y = 25 µm.

For the examples below, we assume the following initial condition (time t = 0) for the
tumor cells distribution on the chip for (x, y) ∈ Ωl :

T(x, y, 0) = 5e−10−4(x2+(y−500)2) + 5e−10−4(x2+(y−5)2) + 5e−10−4(x2+(y−1000)2), (65)
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Whereas, in the corridors and the right chamber, no tumor cells are present.
For the immune cells distribution on the chip for (x, y) ∈ Ωr, we assign:

M(x, y, 0) = 5, for x, y ∈ Ωr, (66)

to mean that macrophages are disposed in the right chamber, whereas no immune cells are
present in the left chamber nor in the corridors at the beginning.

For the chemoattractants, we set a constantly null initial density for ω and ϕ in both
the chambers and also in the channels.

Example 3. First scenario: treated case. For the following numerical simulation, we replicate
the laboratory experiment of the first scenario (treated case) described in Section 2.1; see also [1].
All the parameters are reported in Table 1.

The results are depicted in the following Figures 8 and 9.

Figure 8. Treated case. Initial distribution for the model (3)–(7) at time t = 0.

In Figures 8 and 9, we can see the density of the tumor cells T and macrophages M for different
times t = 0, t = 10000s, and t = 50,000 s. Note that at time t = 0 tumor cells are present in the
left chamber only and immune cells are present in the right chamber only.

Since tumor cells are previously treated by a chemoterapy drug, they slowly diffuse around and
stay confined in the left chamber Ωl during all the simulation time; in the meanwhile they produce
chemoattractant ϕ attracting immune cells. Immune cells M, instead, diffuse around in Ωr, cross the
channels, and after a certain time they enter the left chamber Ωl while creating chemoattractant ω.

This is due to the fact that the chemoattractant ϕ produced by cancer cells travels through
channels and induces a migration of the immune cells M towards the tumor cells T, causing a
higher migration towards the center of the left chamber where the initial distribution of tumor cells
was closest to the chambers, as we observe from the laboratory experiment.

At the final time t = 50,000 s, we can see that the quantity of tumor cells is decreasing under
the action of immune cells producing chemokine ω.



Mathematics 2021, 9, 688 30 of 34

Figure 9. Treated case. Evolution of the model (3)–(7) at time t = 10,000 s (top) and at time t = 50,000 s
(bottom).

Example 4. Second scenario: untreated case. In this numerical test, we consider the second
scenario where the tumor is not treated with any medicine. Therefore, in this case we assume a
higher diffusion coefficient for the tumor, but the initial conditions are the same as those used above.
The results are depicted in the following Figure 10.

In Figure 10, we can see the density of the tumor cells T and macrophages M for times
t = 10,000 s and t = 50,000 s. Note that at time t = 0 tumor cells are present in the left chamber
only and immune cells are present in the right chamber only.

Since, in the laboratory experiment, untreated tumor cells diffuse around, cross the channels,
and enter the right chamber Ωr after some time, we try to reproduce such behavior by using a
diffusion coefficient DT of a order of magnitude higher respect to the one used in the first scenario.
Moreover, in this case the tumor cells do not produce chemoattractant ϕ; for this reason, here we set
αφ = 0. Immune cells M diffuse around in Ωr and do not cross the channels, since the chemical
stimulus is not secreted by T cells. Moreover, the production of the chemical substance w is neglected
in this case, thus tumor cells are not killed.
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We only mention that we tested the 1D-doubly parabolic model on channels and
compared it with the hyperbolic-parabolic model used in the previous examples. By using
the same initial data as for the other examples, we notice that the doubly parabolic model
seems to have a similar pattern as for the hyperbolic-parabolic model depicted above, but
the scale of the quantities differs a lot between these models.

In particular, for the doubly parabolic model the concentration of the tumor cells T is
two or three order of magnitude higher. This is due to the much slower movement of the
immune cells through the channels. This also explains the much higher concentration of
the chemoattractant φ because of the much higher concentration of T compared to in the
other models.

Figure 10. Untreated case. Evolution of the model (3)-(7) at time t = 10,000 s (top) and at time
t = 50,000 s (bottom).

In the following Figure 11, we represent the density of tumor cells and immune cells
as particles, by randomly placing them according to their density. The higher the density at
a given point, the more cells will be distributed randomly around that area. If the density
is lower than a chosen threshold in a certain point, no cells will be represented around it.
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(a) Visualization for time t = 0

(b) Visualization for time t = 5

(c) Visualization for time t = 50

Figure 11. Visualization of immune cells (blue dots) and tumor cells (red squares) for times t = 0,
t = 5, and t = 50 using the density of each quantity and representing them as cells.

5. Conclusions and Future Perspectives

The principal feature of the present work has been the development of a simulation
tool to describe cell movements and interactions inside a microfluidic chip environment.
Our study focused on both the modelling and the numerical point of view. Indeed,
schematizing the chip geometry as two 2D boxes connected by a network of 1D channels,
the main issues were:

• the introduction of mass-preserving conditions involving the balancing of incoming
and outgoing fluxes passing through interfaces between 2D and 1D domains;

• the development of mass-preserving numerical schemes at the boundaries of the 2D
domain and the mass-preserving transmission conditions at the 2D–1D interfaces.

Furthermore, from the modelling point of view, we studied the dynamics in the channels
in the case of a doubly parabolic model and a hyperbolic-parabolic model. Since we obtained
comparable asymptotic states, we decided to apply the hyperbolic-parabolic model in order to
obtain a finite speed of propagation in the channels, which seems to be more realistic. In this
framework, bearing in mind the laboratory experiments on a chip described in Section 2.1, it
was possible to simulate the chip environment with two species of living cell moving in it.
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Moreover, we remark that we can simulate more complicated situations where more than two
cell species are present.

As a further development of the present study, we will work on the calibration of the
model against experimental data obtained from cell tracking in a microfluidic chip [1,2,25].
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