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Abstract: Machine learning techniques have been used to develop many regression models to make
predictions based on experience and historical data. They might be used singly or in ensembles.
Single models are either classification or regression models that use one technique, while ensemble
models combine various single models. To construct or find the best model is very complex and
time-consuming, so this study develops a new platform, called intelligent Machine Learner (iML), to
automatically build popular models and identify the best one. The iML platform is benchmarked
with WEKA by analyzing publicly available datasets. After that, four industrial experiments are
conducted to evaluate the performance of iML. In all cases, the best models determined by iML are
superior to prior studies in terms of accuracy and computation time. Thus, the iML is a powerful
and efficient tool for solving regression problems in engineering informatics.

Keywords: applied machine learning; classification and regression; data mining; ensemble model;
engineering informatics

1. Introduction

Machine Learning (ML)-based methods for building prediction models have attracted
abundant scientific attention and are extensively used in industrial engineering [1–3], de-
sign optimization of electromagnetic devices, and other areas [4,5]. The ML-based methods
have been confirmed to be effective for solving real-world engineering problems [6–8].
Various supervised ML techniques (e.g., artificial neural network, support vector machine,
classification and regression tree, linear (ridge) regression, and logistic regression) are typi-
cally used individually to construct single models and ensemble models [9,10]. To construct
a series of models and identify the best one among these ML techniques, users need a
comprehensive knowledge of ML and spend a significant effort building advanced models.

The primary objective of this research is to develop a user-friendly and powerful ML
platform, called intelligent Machine Learner (iML), to help its users to solve real-world
engineering problems with a shorter training time and greater accuracy than before. The
iML can automatically build and scan all regression models, and then identify the best one.
Novice users with no experience of ML can easily use this system. Briefly, the iML (1) helps
users to make prediction model easily; (2) provides an overview of the parameter settings
for the purpose of making objective choices; and (3) yields clear performance indicators,
facilitating reading and understanding of the results, on which decisions can be based.

Four experiments were carried out to evaluate the performance of iML and were
compared with previous studies. In the first experiment, empirical data concerning enter-
prise resource planning (ERP) for software projects by a leading Taiwan software provider
over the last five years were collected and analyzed [1]. The datasets in the other three
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experiments were published on the UCI website [11–13]. Specifically, the purpose of the
second experiment was to train a regression model of comparing the performance of CPU
processors by using some characteristics as input. The third experiment involved forecast-
ing the demand supporting structured productivity and high levels of customer service,
and the fourth experiment involved estimating the total bikes rented per day.

The rest of this paper is organized as follows. Section 2 reviews application of machine
learning techniques in various disciplines. Section 3 presents the proposed methodology
and iML framework. Section 4 introduces the evaluation metrics to measure accuracy of
the developed system. Section 5 demonstrates iML’s interface. Section 6 shows benchmarks
between iML and WEKA (a free, open source program). Section 7 exhibits the applicability
of iML in numerical experiments. Section 8 draws conclusions, and provides managerial
implications and suggestions for future research.

2. Literature Review

Numerous researchers in various fields, such as ecology [14,15], materials proper-
ties [16–18], water resource [19], energy management [20], and decision support [21,22],
use data-mining techniques to solve regression problems, and especially project-related
problems [23,24]. Artificial neural network (ANN), support vector machine/regression
(SVM/SVR) classification and regression tree (CART), linear ridge regression (LRR), and
logistic regression (LgR) are the most commonly used methods for this purpose and are
all considered to be among the best machine learning techniques [25–27]. Similarly, four
popular ensemble models, including voting, bagging, stacking and tiering [28–30], can be
built based on the meta-combination rules of aforementioned single models.

Chou (2009) [31] developed a generalized linear model-based expert system for es-
timating the cost of transportation projects. Dandikas et al. (2018) [32] assessed the
advantages and disadvantages of regression models for predicting potential of biomethane.
The results indicated that the regression method could predict variations in the methane
yield and could be used to rank substrates for production quality. However, least squares-
based regression usually leads to overfitting a model, failure to find unique solutions, and
issues dealing with multicollinearity among the predictors [33], so ridge regression, another
type of regularized regression, is favorably integrated in this study to avoid the above
problems. Additionally, Sentas and Angelis (2006) [34] investigated the possibility of using
some machine learning methods for estimating categorical missing values in software cost
databases. They concluded that multinomial logistic regression was the best for imputation
owing to its superior accuracy.

The general regression neural network was originally designed chiefly to solve re-
gression problems [24,35]. Caputo and Pelagagge (2008) [36] compared the ANN with the
parametric methods for estimating the cost of manufacturing large, complex-shaped pres-
sure vessels in engineer-to-order manufacturing systems. Their comparison demonstrated
that the ANN was more effective than the parametric models, presumably because of its
better mapping capabilities. Rocabruno-Valdés et al. (2015) [37] developed models based
on ANN for predicting the density, dynamic viscosity, and cetane number of methyl esters
and biodiesel. Similarly, Ganesan et al. (2015) [38] used ANN to predict the performance
and exhaust emissions of a diesel electricity generator.

SVM was originally developed by Vapnik (1999) for classification (SVM) and regres-
sion (SVR) [39,40]. Jing et al. (2018) [41] used SVM to classify air balancing, which is a key
element for heating, ventilating, air-conditioning (HAVC), and variable air volume (VAV)
system installation, and is useful for improving the energy efficiency by minimizing unnec-
essary fresh air to the air-conditioned zones. The results demonstrated that SVM achieved
4.6% of relative error value and is a promising approach for air balancing. García-Floriano
et al. (2018) [42] used SVR to model software maintenance (SM) effort prediction. The SVR
model was superior to regression, neural networks, association rules and decision trees,
with 95% confidence level.
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The classification and regression tree method (CART), introduced by Breiman et al.
(2017) [43], is an effective method to solve classification and regression problems [42]. Choi
and Seo (2018) [44] predicted the fecal coliform in the North Han River, South Korea by
CART models, the test results showed the total correct classification rates of the four models
ranged from 83.7% to 93.0%. Ru et al. (2016) [45] used the CART model to predict cadmium
enrichment levels in reclaimed coastal soils. The results showed that cadmium enrichment
levels had an accuracy of 78.0%. Similarly, Li (2006) [16] used CART to predict materials
properties and behavior. Chou et al. (2014, 2017) [26,46] utilized the CART method to
modeling steel pitting risk and corrosion rate and forecasting project dispute resolutions.

In addition to the aforementioned single models, Elish (2013) [47] used voting ensem-
ble for estimating software development effort. The ensemble model outperformed all
the single models in terms of Mean Magnitude of Relative Error (MMRE), and achieved
competitive percentage of observations whose Magnitude of Relative Error (MRE) is less
than 0.25 (PRED (25)) and recently proposed Evaluation Function (EF) results. Wang at
el. (2018) demonstrated that ensemble bagging tree (EBT) model could accurately predict
hourly building energy usage with MAPE ranging from 2.97% to 4.63% [48]. Comparing
to the conventional single prediction model, EBT is superior in prediction accuracy and
stability. However, it requires more computation time and is short of interpretability owing
to its sophisticated model structure.

Chen et al. (2019) [49] showed that the stacking model outperformed the individual
models, achieving the highest R2 of 0.85, followed by XGBoost (0.84), AdaBoost (0.84) and
random forest (0.82). For the estimation of hourly PM2.5 in China, the stacking model
exhibited relatively high stability, with R2 ranging from 0.79 to 0.92. Basant at el. (2016) [50]
proposed a three-tier quantitative structure-activity relationship (QSAR) model. This model
can be used for the screening of chemicals for future drug design and development process
and safety assessment of the chemicals. In comparison with previously studies, the QSAR
models on the same endpoint property showed the encouraging statistical quality of the
proposed models.

According to the reviewed literature, various machine learning platforms have been
developed for the past decades, such as the Scikit-Learn Python libraries, Google’s Ten-
sorFlow, WEKA and Microsoft Research’s CNTK. Users can find it easy to use a machine
learning tool and/or framework to solve numerous problems as per their needs [51]. ML-
based approaches have been confirmed to be effective in providing decisive information.
Since there is no best model suitable to predict all problems (the “No Free Lunch” the-
orem [52,53]), a comprehensive comparison of single and ensemble models embedded
within an efficient forecasting platform for solving real-world engineering problems is
imperatively needed. The iML platform proposed in this study can efficiently address
this issue.

3. Applied Machine Learning
3.1. Classification and Regression Model
3.1.1. Artificial Neural Network (ANN)

Neural networks (or artificial neural networks) comprise information-processing
units, which are similar to the neurons in the human brain, except that a neural network
is composed of artificial neurons (Figure 1) [54]. Particular, back-propagation networks
(BPNNs) are widely used, and are known to be the most effective network models [55,56].
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Figure 1. Artificial neural network (ANN) model. 

Equation (1) uses sigmoid function to activate each neuron in a hidden output layer, 

and the Scaled Conjugate Gradient Algorithm is used to calculate the weights of the 

network. BPNNs will be trained until the stopping criteria is reached by default settings 

in MATLAB. 
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layer; 𝑤𝑘𝑗 is the weight of the connection between neuron k and neuron j; 𝑂𝑗  is the 

output neuron j; and 𝑦𝑘 is the sigmoid or logistic transfer function. 

3.1.2. Support Vector Machine (SVM) and Support Vector Regression (SVR) 

Developed by Cortes and Vapnik (1995) [57], SVM is used for binary classification 

problems. The SVM was created based on decision hyper-planes that determine decision 

boundaries in an input space or a high-dimensional feature space [40,58]. Binary 

classification can only classify samples into negative and positive while multi-class 

classification problems are complex (Figure 2). In this study, One Against All (OAA) is 

used to solve multiple classification problems. 
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Figure 2. Support Vector Machine (SVM) and Support Vector Regression (SVR) models. 

Figure 1. Artificial neural network (ANN) model.

Equation (1) uses sigmoid function to activate each neuron in a hidden output layer,
and the Scaled Conjugate Gradient Algorithm is used to calculate the weights of the
network. BPNNs will be trained until the stopping criteria is reached by default settings
in MATLAB.

netk = ∑ wkjOj and yk = f (netk) =
1

1 + e−netk
(1)

where netk is the activation of the kth neuron; j is the set of neurons in the preceding layer;
wkj is the weight of the connection between neuron k and neuron j; Oj is the output neuron
j; and yk is the sigmoid or logistic transfer function.

3.1.2. Support Vector Machine (SVM) and Support Vector Regression (SVR)

Developed by Cortes and Vapnik (1995) [57], SVM is used for binary classification
problems. The SVM was created based on decision hyper-planes that determine decision
boundaries in an input space or a high-dimensional feature space [40,58]. Binary classifica-
tion can only classify samples into negative and positive while multi-class classification
problems are complex (Figure 2). In this study, One Against All (OAA) is used to solve
multiple classification problems.
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The OAA-SVM constructs m SVM models for m-class classification problems, and the
ith SVM model is trained based on the dataset of the ith class which includes a positive
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class and a negative class. In training, a set of l data points (xi, yi)
l
i=1, where xi ∈ Rn the

input data, and yi ∈ (1, 2, . . . , m) is the class label of xi; the ith SVM model is solved using
the following optimization problem equation [59].

min
wi ,b,ξ

J
(

wi, b, ξ
)
=

1
2

(
wi
)T

wi + C
l

∑
i=1

ξ i
j (2)

subject to :


(
wi)T

ϕ
(

xj
)
+ bi ≥ 1− ξ i

j, yj = i,(
wi)T

ϕ
(
xj
)
+ bi ≤ −1 + ξ i

j, yj 6= i,
ξ i

j ≥ 0, j = 1, . . . , l.

(3)

When the SVM models have been solved, the class label of example x is predicted
as follows:

y(x) = arg max
i=1...m

((
wi
)T

ϕ(x) + bi
)

(4)

where i is the ith SVM model; wi is a vector normal to the hyper-plane; bi is a bias, ϕ(x)
is a nonlinear function that maps x to a high-dimension feature space, ξ i is the error
in misclassification, and C ≥ 0 is a constant that specifies the trade-off between the
classification margin and the cost of misclassification.

To train the SVM model, radial basic function (RBF) kernel maps samples non-linearly
into a feature space with more dimensions. In this study, the RBF kernel is used as SVM
kernel function.

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(5)

where σ is a positive parameter that controls the radius of RBF kernel function.
Support vector regression (SVR) [40] is one version of SVM. SVR computes a linear

regression function for the new higher-dimensional feature space using ε-insensitive loss
while simultaneously reducing model complexity of the model by minimizing ‖w‖2. This
process can be implemented by introducing (non-negative) slack variables ξi, ξ∗i to measure
the deviation in training samples outside the ε-insensitive zone. The SVR can be formulated
as the minimization of the following equation:

min
w,b,ξ

J(w, b, ξ) =
1
2
(w)Tw + C

l

∑
i=1

(ξi + ξ∗i ) (6)

subject to :


yi − f (xi, w) ≤ ε + ξ∗i
f (xi, w)− yi ≤ ε + ξi

ξ∗i , ξi ≥ 0, i = 1, . . . , n
(7)

When SVR model has been solved, the value of example x is predicted as follows.

f (x) = ∑(αi − α∗i )K(xi, x) + b (8)

where K(xi, x) is the kernel function and α∗i , αi are Lagrange multipliers in the dual function.

3.1.3. Classification and Regression Tree (CART)

Classification and regression tree technique is described as a tree on which each
internal (non-leaf) node represents a test of an attribute, each branch represents the test
result, and each leaf (or terminal) node has a class label and class result (Figure 3) [60]. The
tree is “trimmed” until total error is minimized to optimize the predictive accuracy of the
tree by minimizing the number of branches. The training CART is constructed through the
Gini index. The formulas are as follows.
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g(t) = ∑
j 6=i

p(j|t)p(i|t) (9)

p(j|t) = p(j, t)
p(t)

(10)

p(j, t) =
p(j)Nj(t)

Nj
(11)

p(t) = ∑
j

p(j, t) (12)

Gini index = 1−∑ p(j, t)2 (13)

where i and j are the categorical variables in each item; Nj(t) is the recorded number of
nodes t in category j; and Nj. is the recorded number of the root nodes in category j; and
p(j) is the prior probability value for category j.

3.1.4. Linear Ridge Regression (LRR) and Logistic Regression (LgR)

Statistical models of the relationship between dependent variables (response variables)
and independent variables (explanatory variables) are developed using linear regression
(Figure 4). The general formula for multiple regression models is as follows.

y = f (x) = βo +
n

∑
j=1

β jxj + ε (14)

where y is a dependent variable; βo is a constant; β j is a regression coefficient (j =
1, 2, . . . , n), and ε is an error term.

Linear ridge regression (LRR) is a regularization technique that can be used together
with generic regression algorithms to model highly correlated data [61,62]. Least squares
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method is a powerful technique for training the LRR model, which denotes β to minimize
the Residual Sum Squares (RSS)-function. Therefore, the cost function is presented as below.

Cost(β) = RSS(β) =
l

∑
i=1

(
y− y′

)2
+ λ

(
n

∑
j=1

β2
j

)
(15)

y′ = β0 + ∑ β jxj (16)

where λ is a pre-chosen constant, which is the product of a penalty term and the squared
norm in the β vector of regression method, and y′ is the predicted values.
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Statistician David Cox developed logistic regression in 1958 [63]. An explanation of
logistic regression begins with an explanation of the standard logistic function. Equation
(17) mathematically represents the logistic regression model.

p(x) =
1

1 + e−(βo+∑n
j=1 β jxj)

(17)

where p(x) is the probability that the dependent variable equals a “success” or “case”
rather than a failure or non-case. βo and β j are found by minimizing cost function defined
in Equation (18).

Cost(β) = −
(

l

∑
i=1

(yi ln(p(xi)) + (1− yi) ln(1− p(xi)))

)
+

λ

2

n

∑
j=1

β2
j (18)

where yi is the observed outcome of case xi, having 0 or 1 as possible values [64]

3.2. Ensemble Regression Model

In this study, several ensemble schemes, including voting, bagging, stacking, and
tiering were investigated using the input data and described as below.

• Voting: The voting ensemble model combines the outputs of the single models using
a meta-rule. The mean of the output values is used in this study. According to the
adopted ML models, 11 voting models are trained in this study, including (1) ANN +
SVR, (2) ANN + CART, (3) ANN + LRR, (4) SVR + CART, (5) SVR + LRR, (6) CART +
LRR, (7) ANN + SVR + CART, (8) ANN + CART + LRR, (9) ANN + CART + LRR, (10)
SVR + CART + LRR, (11) ANN + SVR + CART + LRR. Figure 5a presents the voting
ensemble model.

• Bagging: The bagging ensemble model duplicates samples at random, and each
regression model predicts values from the samples independently. The meta-rule is
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applied to all of the outputs in this study. Bagging ensemble model is depicted at
Figure 5b.

• Stacking: The stacking ensemble model is a two-stage model, and Figure 5c describes
the principle of the model. In stage 1, each single model predicts one output value.
Then, these outputs are used as inputs to train a model by these machine learning
techniques again to make a meta-prediction in stage 2. There are four stacking models
herein, including ANN (ANN, SVR, CART, LRR); SVR (ANN, SVR, CART, LRR);
CART (ANN, SVR, CART, LRR); LRR (ANN, SVR, CART, LRR).
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• Tiering: Figure 5d illustrates the tiering ensemble model. There are two tiers inside a
tiering ensemble model in this study. The first tier is to classify data into k classes on
the basis of T value [18]. Machine learning technique in the first tier for classifying
data needs to be identified. After classifying the data, the regression machine learning
is used to train each data (Sub Data) of each class (second tier) to predict results. In
the iML, we developed three types of models, including 2-class, 3-class, and 4-class.
The equation for calculating T value is:

T =
ymax + ymin

k
(19)

where T is standard value, k is the number of classes, and ymax and ymin are the
maximum and minimum of actual values, respectively.

3.3. K-Fold Cross Validation

K-fold cross validation is used to compare two or more prediction models. This
method randomly divides a sample into a training sample and a test sample by splitting
into K subsets. K-1 subsets are selected to train the model while the other is used to test,
and this training process is repeated K times (Figure 6). To compare models, the average of
performance results (e.g., RMSE, and MAPE) is computed. Kohavi (1995) stated that K =
10 provides analytical validity, computational efficiency, and optimal deviation [65]. Thus,
K = 10 is used in this study. Performance metrics will be explained in details Section 4.

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 25 
 

 

• Tiering: Figure 5d illustrates the tiering ensemble model. There are two tiers inside a 

tiering ensemble model in this study. The first tier is to classify data into k classes 

on the basis of T  value [18]. Machine learning technique in the first tier for 

classifying data needs to be identified. After classifying the data, the regression 

machine learning is used to train each data (Sub Data) of each class (second tier) to 

predict results. In the iML, we developed three types of models, including 2-class, 3-

class, and 4-class. The equation for calculating T value is: 

T =
𝑦𝑚𝑎𝑥+𝑦𝑚𝑖𝑛

𝑘
  (19) 

where T is standard value, 𝑘  is the number of classes, and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛  are the 

maximum and minimum of actual values, respectively. 

3.3. K-Fold Cross Validation 

K-fold cross validation is used to compare two or more prediction models. This 

method randomly divides a sample into a training sample and a test sample by splitting 

into K subsets. K-1 subsets are selected to train the model while the other is used to test, 

and this training process is repeated K times (Figure 6). To compare models, the average 

of performance results (e.g., RMSE, and MAPE) is computed. Kohavi (1995) stated that K 

= 10 provides analytical validity, computational efficiency, and optimal deviation [65]. 

Thus, K = 10 is used in this study. Performance metrics will be explained in details Section 

4. 

3
3

3
3

3
3

3
3

3
3

4
4

4
4

4
4

4
4

4
4

5
5

5
5

5
5

5
5

5
5

6
6

6
6

6
6

6
6

6
6

7
7

7
7

7
7

7
7

7
7

8
8

8
8

8
8

8
8

8
8

9
9

9
9

9
9

9
9

9
9

10
10

10
10

10
10

10
10

10
10

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
1

Test data

Training data

 

Figure 6. K-fold cross-validation method. 

3.4. Intelligent Machine Learner Framework 

Figure 7 presents the structure of iML. In stage 1 (data preprocessing), the data is 

classified distinctly for particular use in the Tiering ensemble model. Meanwhile, all data 

is divided into two main data groups, namely, learning data and test data, and the 

learning data is duplicated for training ensemble models.  

At the next stage, all retrieved data is automatically used for training models, which 

include single models (ANN, SVR, LRR, and CART), and ensemble models (voting, 

bagging, stacking, and tiering). Notably, the tiering ensemble model needs to employ a 

classification technique to assign a class label to the original input at the first tier. A 

corresponding regression model for the particular class is then adopted at the second tier 

to obtain the predictive value [17,26].  

Figure 6. K-fold cross-validation method.

3.4. Intelligent Machine Learner Framework

Figure 7 presents the structure of iML. In stage 1 (data preprocessing), the data is
classified distinctly for particular use in the Tiering ensemble model. Meanwhile, all data
is divided into two main data groups, namely, learning data and test data, and the learning
data is duplicated for training ensemble models.

At the next stage, all retrieved data is automatically used for training models, which
include single models (ANN, SVR, LRR, and CART), and ensemble models (voting, bagging,
stacking, and tiering). Notably, the tiering ensemble model needs to employ a classification
technique to assign a class label to the original input at the first tier. A corresponding
regression model for the particular class is then adopted at the second tier to obtain the
predictive value [17,26].
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Finally, in stage 3 (find the best model), the predictive performances of all the models
learned (trained) in stage 2 using test dataset are compared to identify the best models.
Section 4 describes the performance evaluation metrics in detail.

4. Mathematical Formulas for Performance Measures

To measure the performance of classification models, the accuracy, precision, sensi-
tivity, specificity and the area under the curve (AUC) are calculated. For the regression
models, five-performance measures, (i.e., correlation coefficient (R), mean absolute error
(MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE), and
total error rate (TER)) are calculated. Table 1 presents a confusion matrix and Table 2
exhibits those performance measures [17,66].

Table 1. Confusion matrix.

Actual Class

Positive Negative

Predicted class
Positive True positive False Negative

Negative False positive True negative
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In Table 2, MAE is the mean absolute difference between the prediction and the actual
value. MAPE represents the mean percentage error between prediction and actual value,
the smaller value of MAPE, the better prediction result achieved by the model. The MAPE
is the index typically used to evaluate the accuracy of prediction models. RMSE represents
the dispersion of errors by a prediction model. The statistical index that shows the linear
correlation between two variables is denoted as R. Lastly, TER is the total difference of
predicted and actual values [17].

Table 2. Mathematical formulas for performance measures.

Measure Formula Measure Formula

Accuracy Accuracy =
tp+tn

tp+fp+tn+fn Mean absolute error MAE = 1
n

n
∑

i=1

∣∣yi − y′i
∣∣

Precision Precision =
tp

tp+fp Mean absolute percentage error MAPE = 1
n

∣∣∣ yi−y′i
yi

∣∣∣
Sensitivity Sensitivity =

tp
tp+fn Root mean square error RMSE =

√
1
n

n
∑

i=1

(
yi − y′i

)2

Specificity Specificity = tn
tn+fp Correlation coefficient R =

n ∑ yi .y′i−(∑ yi)(∑ y′i)√
n(y2

i )−(∑ yi)
2
√

n(y′i
2)−(∑ y′i)

2

Area under the curve AUC = 1
2

[(
tp

tp+fn

)
+
(

tn
tn+fp

)]
Total error rate TER =

|∑n
i=1 y′i−∑n

i=1 yi |
∑n

i=1 yi

tp is the true positives (number of correctly recognized class examples); tn is the true negatives (number of correctly recognized examples
that do not belong to the class); fp is the number of false positives (number of examples that were incorrectly assigned to a class); fn is the
number of false negatives (number of examples that were not assigned to a class); yi is actual value; y′i is predicted value; n is sample size.

The goal is to identify the model that yields the lowest error of test data. To obtain a
comprehensive performance measure, the five statistical measures (RMSE, MAE, MAPE,
1-R, and TER) were combined into a synthesis index (SI) using Equation (20). Based on the
SI values, the best model is identified.

SI =
1

mp

mp

∑
i=1

(
Pi − Pmin,i

Pmax,i − Pmin,i

)
(20)

where mp = number of performance measures; Pi = ith performance measure; and Pmin,i
and Pmax,i are the maximum and minimum of ith measure. The SI range is 0–1; the SI value
close to 0 indicates a better accuracy of the predictive model.

5. Design and Implementation of iML Interface

The iML was developed in MATLAB R2016a on a PC with an Intel Core i5-750 CPU,
a clock speed of 3.4 GHz, and 8 GB of RAM, running Windows 10. Figure 8 presents
a user-friendly interface for iML. First, users select models on setting-parameters board
and set the parameters for the chosen models, which will be trained and analyzed. Next,
users choose whether to test with either “K-Fold Validation” or “Percentage Split” before
uploading the data. Notably, if “Percentage Split” is selected, the user only has to input
percentage value of learning data. Then, users click on the “Run” button to train the model.
Finally, the “Make Report” function is to create a report containing performance metrics of
all selected models and the identified best model. Figure 9 displays a snapshot of report
file in notepad.
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6. Benchmarks between iML and WEKA
6.1. Publicly Available Datasets

Table 3 shows the publicly available datasets from the UCI Machine Learning Repos-
itory (https://archive.ics.uci.edu/mL/index.php; accessed 1 March 2021). The iML is
benchmarked with WEKA (a free, open source program) using hold-out validation and
K-fold cross-validation on the target datasets. All algorithm parameters are set default for
both iML and WEKA platforms.

Table 3. Characteristic of data from UCI Machine Learning Repository.

UCI Data Set No. of Samples No. of Attributes Output Information

Concrete Compressive Strength
(Yeh (2006) [67]) 1030 8 Concrete compressive strength (MPa)

Real estate valuation (Yeh and
Hsu (2018) [68]) 414 6

Y = house price of unit area (10,000 New
Taiwan Dollar/Ping, where Ping is a local

unit, 1 Ping = 3.3 m squared)

Energy efficiency (Tsanas and
Xifara (2012) [69]) 768 8

y1 Heating Load (kW)

y2 Cooling Load (kW)

Airfoil Self-Noise (Lau and López
(2009) [70]) 1503 5 Scaled sound pressure level (dB).

6.2. Hold-Out Validation

In this test, datasets are randomly partitioned into 80% and 20% for learning and
test, respectively. Tables 4–8 show the one-time performance results on these five datasets.
A model with a normalized SI value of 0.000 is the best prediction model among all the
models tested by iML and WEKA. Notably, the best model can be automatically identified
by iML with “one-click”. To train models with WEKA, the users need to build each model
individually. Moreover, iML gives better test results of single, voting and bagging models
than those of WEKA. Based on the benchmark results, iML is effective to find the best
model in the hold-out validation.

Table 4. Test results by WEKA and iML on concrete compressive strength dataset via hold-out validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(MPa)

MAE
(MPa)

MAPE
(%) R RMSE

(MPa)
MAE
(MPa)

MAPE
(%)

I. Single CART ANN
0.927 6.546 5.170 18.770 0.142 (7) 0.946 5.302 3.728 12.673 0.023 (3)

II. Voting ANN + CART ANN + CART
0.936 6.202 4.930 19.090 0.124 (6) 0.956 4.771 3.550 12.723 0.000 (1)

III. Bagging CART ANN
0.960 5.044 3.983 15.130 0.032 (4) 0.951 5.056 3.647 12.249 0.010 (2)

IV. Stacking (*) CART (*) LRR
0.939 5.986 4.792 17.520 0.104 (5) 0.444 14.829 11.779 56.775 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

https://archive.ics.uci.edu/mL/index.php
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Table 5. Test results by WEKA and iML on real estate dataset via hold-out validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(U)

MAE
(U)

MAPE
(%) R RMSE

(U)
MAE
(U)

MAPE
(%)

I. Single CART ANN
0.740 10.762 5.882 13.210 0.321 (6) 0.871 6.630 4.912 13.591 0.049 (3)

II. Voting ANN + CART + LRR ANN + CART
0.745 11.054 5.908 12.780 0.327 (7) 0.877 6.615 4.739 12.867 0.030 (2)

III. Bagging CART CART
0.770 10.321 5.281 11.760 0.246 (4) 0.884 6.485 4.381 12.305 0.000 (1)

IV. Stacking (*) CART (*) ANN
0.744 10.748 5.774 12.940 0.311 (5) 0.391 12.638 10.411 33.807 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance; U: house price of unit area (10,000 New Taiwan
Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 m squared).

Table 6. Test results by WEKA and iML on energy efficiency data set (Heating load) via hold-out validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(kW)

MAE
(kW)

MAPE
(%) R RMSE

(kW)
MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.996 0.914 0.646 3.300 0.418 (6) 0.999 0.488 0.354 1.700 0.046 (3)

II. Voting ANN + CART ANN + CART
0.996 0.929 0.729 3.820 0.449 (7) 0.999 0.495 0.336 1.617 0.045 (2)

III. Bagging CART ANN
0.997 0.870 0.619 3.210 0.354 (5) 0.999 0.426 0.311 1.519 0.000 (1)

IV. Stacking (*) CART (*) LRR
0.998 0.754 0.524 2.480 0.231 (4) 0.998 3.454 3.226 17.658 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 7. Test results by WEKA and iML on energy efficiency dataset (Cooling load) via hold-out validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(kW)

MAE
(kW)

MAPE
(%) R RMSE

(kW)
MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.986 1.524 1.006 3.900 0.320 (6) 0.992 1.231 0.884 3.577 0.038 (2)

II. Voting ANN + CART ANN + CART
0.987 1.504 1.064 4.330 0.293 (4) 0.988 1.509 0.982 3.544 0.222 (3)

III. Bagging CART ANN
0.986 1.565 1.046 4.030 0.358 (7) 0.993 1.177 0.809 3.165 0.000 (1)

IV. Stacking (*) SVR (*) LRR
0.986 1.537 0.979 3.700 0.314 (5) 0.989 4.290 3.762 17.305 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.
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Table 8. Test results by WEKA and iML on airfoil self-noise dataset via hold-out validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(dB)

MAE
(dB)

MAPE
(%) R RMSE

(dB)
MAE
(dB)

MAPE
(%)

I. Single CART ANN
0.898 3.185 2.339 1.880 0.502 (6) 0.953 2.149 1.577 1.259 0.044 (2)

II. Voting ANN + CART ANN + CART
0.893 3.471 2.649 2.100 0.591 (7) 0.952 2.163 1.633 1.301 0.058 (3)

III. Bagging CART ANN
0.922 2.902 2.135 1.710 0.332 (4) 0.958 2.031 1.494 1.194 0.000 (1)

IV. Stacking (*) CART (*) LRR
0.905 3.082 2.271 1.820 0.450 (5) 0.952 7.050 5.648 4.613 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

6.3. K-Fold Cross-Validation

Tenfold cross-validation is used to evaluate the generalized performance of WEKA
and iML. Tables 9–13 show the average performance measures of five datasets, respectively.
Similarly, iML identifies better models in single, voting, and bagging schemes than those
trained by WEKA. The best model for each dataset is automatically determined by iML.
Therefore, iML is a powerful tool to find the best model in the cross-fold validation.

Table 9. Performance of WEKA and iML on concrete compressive strength dataset via tenfold cross-validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(MPa)

MAE
(MPa)

MAPE
(%) R RMSE

(MPa)
MAE
(MPa)

MAPE
(%)

I. Single CART ANN
0.923 6.434 4.810 15.510 0.228 (5) 0.946 5.411 4.003 13.866 0.154 (3)

II. Voting ANN + CART ANN + CART
0.917 6.823 5.213 17.230 0.265 (7) 0.955 4.903 3.506 12.397 0.111 (2)

III. Bagging CART CART
0.932 6.082 4.598 15.030 0.205 (4) 0.980 3.359 2.432 8.356 0.000 (1)

IV. Stacking (*) SVR (*) ANN
0.924 6.436 4.852 15.530 0.229 (6) 0.613 14.381 10.867 44.759 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 10. Performance of WEKA and iML on real estate valuation dataset via tenfold cross-validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(U)

MAE
(U)

MAPE
(%) R RMSE

(U)
MAE
(U)

MAPE
(%)

I. Single CART ANN
0.807 8.021 5.197 15.270 0.314 (5) 0.813 8.011 5.388 14.991 0.315 (6)

II. Voting SVR + CART ANN + CART + LRR
0.805 8.091 5.198 15.090 0.315 (7) 0.821 7.878 5.376 15.116 0.308 (4)

III. Bagging CART CART
0.828 7.637 5.017 14.930 0.280 (2) 0.925 4.774 3.201 8.974 0.000 (1)

IV. Stacking (*) SVR (*) ANN
0.819 7.823 4.969 14.440 0.284 (3) 0.432 12.309 9.526 32.267 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance; U: house price of unit area (10,000 New Taiwan
Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 m squared).
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Table 11. Performance of WEKA and iML on energy efficiency dataset (Heating load) via tenfold cross-validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(kW)

MAE
(kW)

MAPE
(%) R RMSE

(kW)
MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.995 1.046 0.712 3.200 0.459 (7) 0.999 0.484 0.360 1.722 0.049 (2)

II. Voting ANN + CART ANN + CART
0.997 0.853 0.641 3.190 0.309 (4) 0.999 0.497 0.352 1.602 0.053 (3)

III. Bagging CART ANN
0.997 0.915 0.633 2.890 0.324 (5) 0.999 0.384 0.291 1.409 0.000 (1)

IV. Stacking (*) SVR (*) LRR
0.996 0.872 0.639 2.990 0.337 (6) 0.998 3.522 3.226 18.181 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 12. Performance of WEKA and iML on energy efficiency dataset (Cooling load) via tenfold cross-validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(kW)

MAE
(kW)

MAPE
(%) R RMSE

(kW)
MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.982 1.812 1.183 4.160 0.460 (5) 0.993 1.140 0.799 3.161 0.150 (2)

II. Voting ANN + CART ANN + CART
0.982 1.831 1.276 4.770 0.491 (7) 0.989 1.415 0.900 3.206 0.250 (3)

III. Bagging CART ANN
0.983 1.785 1.160 4.070 0.444 (4) 0.997 0.808 0.556 2.129 0.000 (1)

IV. Stacking (*) SVR (*) LRR
0.982 1.827 1.195 4.210 0.465 (6) 0.989 4.108 3.619 17.253 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 13. Performance of WEKA and iML on airfoil self-noise dataset via tenfold cross-validation.

Model

WEKA
SI (Ranking)

iML
SI (Ranking)

R RMSE
(dB)

MAE
(dB)

MAPE
(%) R RMSE

(dB)
MAE
(dB)

MAPE
(%)

I. Single CART ANN
0.877 3.314 2.381 1.910 0.497 (5) 0.946 2.239 1.660 1.331 0.152 (2)

II. Voting ANN + CART ANN + CART
0.851 3.685 2.747 2.220 0.641 (7) 0.946 2.246 1.664 1.334 0.152 (3)

III. Bagging CART CART
0.911 2.906 2.160 1.730 0.352 (4) 0.971 1.727 1.271 1.023 0.000 (1)

IV. Stacking (*) LRR (*) LRR
0.874 3.374 2.494 1.990 0.525 (6) 0.946 6.894 5.587 4.562 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

6.4. Discussion

Single, voting, bagging, and stacking models are compared using WEKA and iML,
except for the tiering method, which is not available in WEKA. Additionally, unlike manual
construction of individual models in WEKA interface, iML can automatically build and
identify the best model for the imported datasets. Hold-out validation and tenfold cross-
validation are used to evaluate the performance results (R, MAE, RMSE, and MAPE) in each
scheme (single, voting, bagging, and stacking). The analytical results of either validation
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show that most of the models trained by iML are superior to those trained by WEKA using
the same datasets. Hence, iML is an effective platform to solve regression problems.

7. Numerical Experiments

This section validates iML by using various industrial datasets, including (1) enterprise
resource planning data [1], (2) CPU computer performance data [12], (3) customer data for
a logistics company [13], and (4) daily data bike rentals [11]. Table 14 presents the initial
parameter settings for these problems.

Table 14. Parameter setting.

Experiment Model

ANN SVR and SVM LRR and LgR CART

Number of
Hidden Node C Sigma Epsilon Lambda Min Leaf

1
Single regression model 30 7.3× 106 45.67 1.0× 10−5 1.0× 10−8 1

Single classification model 30 41,703 3.67 - 1.0× 10−5 1
Ensemble regression model 30 7.3× 106 45.67 1.0× 10−5 1.0× 10−8 1

2
Single regression model 30 7.3× 106 20.03 1.0× 10−5 1.0× 10−8 1

Single classification model 30 4200 3.40 - 1.0× 10−5 1
Ensemble regression model 30 7.3× 106 45.67 1.0× 10−5 1.0× 10−8 1

3
Single regression model 30 7.3× 106 30.00 1.0× 10−5 1.0× 10−8 1

Single classification model 20 41,703 3.67 - 1.0× 10−5 1
Ensemble regression model 30 7.3× 106 30.00 1.0× 10−5 1.0× 10−8 1

4
Single regression model 15 7.3× 106 45.67 1.0× 10−5 1.0× 10−8 1

Single classification model 15 41,703 3.67 - 1.0× 10−5 1
Ensemble regression model 15 7.3× 106 45.67 1.0× 10−5 1.0× 10−8 1

7.1. Enterprise Resource Planning Software Development Effort

Enterprise Resource Planning (ERP) data for 182 software projects of a leading Taiwan
software provider over the last five years was collected, analyzed, and tested with K-fold
cross validation.

7.1.1. Variable Selection

Experienced in-house project managers were interviewed to identify factors that
affect the ERP software development effort (SDE). There are 182 samples and 17 attributes,
and Table 15 summarizes the descriptive statistical data in details. The input and output
attributes are defined by Chou el at. (2012) [1].

7.1.2. iML Results

iML automatically trains the models and calculates the performance values. Then,
it compares the SI values (SIlocal and SIgloblal) among the selected modeling type (singe,
voting ensemble, bagging ensemble, stacking ensemble and tiering ensemble). Table
16 presents the detailed results of iML and Figure 10 plots the RMSE of best models for
the studied case. Both SIlocal and SIglobal values of bagging ANN ensemble are equal
to zero, which indicate that the bagging ANN ensemble is the best model in terms of
prediction accuracy.
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Table 15. Variables and descriptive statistics for predicting enterprise resource planning (ERP) software development effort.

Variable Min. Max. Mean
Standard Data
Deviation Type

Y: Software development effort
4 2694 258.55 394.69 Numerical(person-hour)

X1: Program type entry 0 1 Dummy variable Boolean
X2: Program type report 0 1 Dummy variable Boolean
X3: Program type batch 0 1 Dummy variable Boolean
X4: Program type query 0 1 Dummy variable Boolean

X5: Program type transaction 0 0 Referential category Boolean
X6: Number of programs 1 88 16.73 19.12 Numerical

X7: Number of zooms 0 2028 100.22 255.40 Numerical
X8: Number of columns in form 3 3216 397.75 548.06 Numerical

X9: Number of actions 0 1645 288.44 339.61 Numerical
X10: Number of signature tasks 0 15 0.39 1.77 Numerical

X11: Number of batch serial numbers 0 11 0.31 1.50 Numerical
X12: Number of multi-angle trade tasks 0 22 0.55 2.66 Numerical

X13: Number of multi-unit tasks 0 21 1.10 3.41 Numerical
X14: Number of reference calls 0 528 13.96 49.92 Numerical

X15: Number of confirmed tasks 0 21 1.50 3.99 Numerical
X16: Number of post tasks 0 12 0.23 1.33 Numerical

X17: Number of industry type tasks 0 21 0.80 2.97 Numerical

Table 16. Performances of predictive models for ERP software development effort.

No. Model Learn Test SI and Ranking

RMSE MAE MAPE R TER RMSE MAE MAPE R TER SIlocal SIglobal

I Single

1 ANN 68.81 24.92 19.91% 0.98 1.49% 115.24 61.85 30.65% 0.95 9.86% 0.00 (1) 0.13 (2)
2 SVR 0.00 0.00 0.00% 1.00 0.00% 361.88 255.35 611.63% Inf 36.81% 0.89 (4)
3 CART 86.89 40.38 19.56% 0.97 0.00% 196.48 107.02 47.29% 0.85 12.77% 0.15 (2)
4 LRR 250.21 221.15 617.02% 0.84 48.77% 255.43 227.80 647.08% 0.78 63.59% 0.72 (3)

II Voting

1 (*) 73.30 62.90 157.96% 0.99 12.39% 185.39 139.02 321.77% 0.94 23.90% 0.34 (5)
2 ANN + CART + LRR 97.74 83.87 210.62% 0.98 16.52% 139.70 110.32 227.32% 0.94 22.01% 0.21 (2)
3 ANN + SVR + CART 39.95 19.33 11.22% 0.99 0.50% 181.63 117.20 215.13% 0.94 14.45% 0.22 (3)
4 ANN + SVR + LRR 87.66 76.90 207.61% 0.99 16.52% 202.91 158.85 419.21% 0.94 30.90% 0.46 (7)
5 SVR + CART + LRR 93.17 80.47 208.60% 0.99 16.26% 236.10 178.73 427.29% 0.89 32.97% 0.60 (10)
6 ANN + CART 59.92 28.99 16.83% 0.99 0.75% 123.43 68.46 33.90% 0.94 10.10% 0.01 (1) 0.15 (3)
7 ANN + LRR 131.49 115.35 311.42% 0.97 24.78% 152.57 129.46 326.55% 0.94 32.67% 0.34 (6)
8 ANN + SVR 34.40 12.46 9.96% 1.00 0.75% 199.24 135.42 307.89% 0.95 18.21% 0.31 (4)
9 SVR + CART 43.45 20.19 9.78% 0.99 0.00% 254.27 166.51 320.26% 0.85 21.09% 0.56 (9)
10 CART + LRR 139.76 120.71 312.91% 0.96 24.38% 190.91 151.58 337.64% 0.89 32.09% 0.48 (8)
11 SVR + LRR 125.10 110.57 308.51% 0.97 24.38% 287.41 230.03 626.83% 0.78 47.93% 1.00 (11)

III Bagging

1 ANN 70.28 33.48 21.45% 0.98 2.51% 65.58 40.51 19.50% 0.99 5.59% 0.00 (1) 0.00 (1)
2 SVR 174.56 92.31 231.82% 0.91 3.98% 162.38 99.02 87.79% 0.87 11.69% 0.47 (3)
3 CART 123.05 52.45 25.94% 0.94 2.19% 127.21 79.97 20.11% 0.96 8.58% 0.21 (2)
4 LRR 249.00 222.81 666.29% 0.88 59.61% 309.18 257.31 269.67% 0.71 10.90% 0.97 (4)

IV Stacking

1 (*) ANN 0.07 0.02 0.03% 1.00 0.00% 361.54 255.19 611.55% 0.71 36.77% 0.80 (2)
2 (*) SVR 0.00 0.00 0.00% 1.00 0.00% 361.76 255.53 612.78% NaN 36.76% 1.00 (4)
3 (*) CART 52.00 17.40 5.69% 0.99 0.00% 360.24 252.61 593.46% NaN 34.86% 0.81 (3)
4 (*) LRR 132.73 97.48 187.26% 0.95 23.62% 289.20 206.32 494.18% 0.62 34.11% 0.03 (1) 1.00 (5)

V Tiering

1 2-Class (**) 317.04 71.38 24.45% 0.58 20.48% 176.77 65.42 23.57% 0.79 16.13% 0.00 (1) 0.31 (4)
2 3-Class (***) 383.02 115.48 26.68% 0.30 36.54% 278.46 111.74 26.94% 0.51 28.64% 0.54 (2)
3 4-Class (****) 414.30 151.32 29.96% 0.10 49.11% 347.05 147.22 29.76% 0.26 43.00% 1.00 (3)

Note: (*) is (ANN + SVR + CART + LRR); (**) SVM-(ANN, SVR); (***) CART-(ANN, SVR, SVR); (****) CART-(CART, SVR, SVR, SVR);
(No.): Ranking.
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Figure 10. Root mean square errors of best models.

Three models (single, voting, and bagging) provided better results in terms of R (0.94
to 0.99) than the tiering and stacking ensemble models, which had the R values of 0.58 to
0.95. Among these three best models, in terms of MAPE, the bagging model exhibited the
best balance of MAPE results from learning and test data (21.45% and 19.50%, respectively).
The single and voting models depicted un-balanced MAPEs for training and test data
(19.91% and 30.65% for the single model; 16.83% and 33.90% for the voting model). Thus,
the bagging model was the best model to predict ERP.

The first experiment indicates that, the iML not only identifies the best model, but
also reports the performance values of all the training models. Chou et al. (2012) obtained
training and testing MAPEs of 26.8% and 27.3%, and RMSEs of 234.0157 h and 97.2667 h
using Evolutionary Support Vector Machine Inference Model (ESIM) [1]. The iML yields
the bagging ensemble model with MAPEs of 21.45% and 19.50%, and RMSEs of 70.28hr
and 65.58 h for the same training and test data, respectively. As a result, the iML is effective
to find the best model among the popular regression models.

7.2. Experiments on Industrial Datasets

Three additional experiments were performed to evaluate iML. To ensure a fair com-
parison, 70 % of the data was used for learning whereas the remaining 30% was utilized
for testing.

7.2.1. Performance of CPU Processors

This experiment is about the comparison of performance of CPU processors. The data
for this experiment was taken from Maurya and Gupta (2015) [12]. This dataset contained
209 samples with a total of 6 attributes (Table 17). The descriptions of the attributes are
as follows: X1: Machine cycle time in nanoseconds (integer, input); X2: Minimum main
memory in kilobytes (integer, input); X3: Maximum main memory in kilobytes (integer,
input); X4: Cache memory in kilobytes (integer, input); X5: Minimum channels in units
(integer, input); X6: Maximum channels in units (integer, input); and Y: Estimated relative
performance (integer, output).

Table 17. Descriptive statistics for CPU processors.

Statistic Value
Input Output

X1 X2 X3 X4 X5 X6 Y

Min 17 64 64 0 0 0 15
Max 1500 32,000 64,000 256 52 176 1238

Mean 203.82 2867.98 11,796.2 25.21 4.7 18.27 99.33
Std. 260.26 3878.74 11,726.6 40.63 6.82 26 154.76
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7.2.2. Daily Demand Forecasting Orders

This experiment is about the daily demand forecasting orders. The data used in this
experiment was taken from Ferreira et al. (2016) [13]. Table 18 shows a statistical analysis
of the data. There were 60 samples with 12 attributes, including X1: Week of the month
(first week, second, third or fourth week of month, input); X2: Day of the week (Monday to
Friday, input); X3: Urgent orders (integer, input); X4: Non-urgent orders (integer, input);
X5: Type A orders (integer, input); X6: Type B orders (integer, input); X7: Orders of type C
(integer, input); X8: Orders from the tax sector (integer, input); X9: Orders from the traffic
controller sector (integer, input); X10: Orders from the banking sector 1 (integer, input); X11:
Orders from the banking sector 2 (integer, input); X12: Banking orders 3 (integer, input);
and Y: Total orders (integer, output).

Table 18. Variables and descriptive statistics for daily demand forecasting orders.

Statistic Value
Input Output

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

Min 1 2 43.65 77.37 21.83 25.13 74.37 0 11,992 3452 16,411 7679 129.41
Max 5 6 435.30 223.27 118.18 267.34 302.45 865 71,772 210,508 188,411 73,839 616.45

Mean - - 172.55 118.92 52.11 109.23 139.53 77.4 44,504.4 46,640.8 79,401.5 23,114.6 300.87
Std. - - 69.51 27.17 18.83 50.74 41.44 186.5 12,197.9 45,220.7 40,504.4 13,148 89.6

7.2.3. Total Hourly-Shared Bike Rental per Days

The experiment is about the total hourly-shared bike rental per days. The data was
adopted from Fanaee-T and Gama (2014) [11], and statistically analyzed in Table 19. In
total, there were 731 samples and 11 attributes, defined as follows: X1: Season (1: spring, 2:
summer, 3: fall, 4: winter, input); X2: Month (1 to 12, input); X3: Year (0:2011, 1:2012, input);
X4: Weather day is holiday or not (input); X5: Day of the week (input); X6: Working day
if day is neither weekend nor holiday is 1, otherwise is 0 (input); X7: Weather condition
(1: Clear, Few clouds, partly cloudy; 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few
clouds, Mist; 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain +
Scattered clouds; 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog, input);
X8: Normalized temperature in Celsius. The values are divided to 41 (max) (input); X9:
Normalized feeling temperature in Celsius. The values are divided to 50 (max) (input);
X10: Normalized humidity. The values are divided to 100 (max) (input); X11: Normalized
wind speed. The values are divided to 67 (max) (input); and Y: Count of total rental bikes
including both casual and registered (output).

Table 19. Variables and descriptive statistics for total hourly-shared bike rental per days.

Statistic Value
Input Output

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Y

Min 1 0 1 0 0 0 1 0.059 0.079 0 0.022 22
Max 4 1 12 1 6 1 3 0.862 0.841 0.973 0.507 8714

Mean - - - 0.029 2.997 0.684 1.395 0.495 0.474 0.628 0.19 4504.35
Std. - - - 0.167 2.005 0.465 0.545 0.183 0.163 0.142 0.077 1937.21

In this study, to calculate MAPE, the output was normalized and 0.1 was added to
prevent a zero value.

yi =
yi − ymin

ymax − ymin
+ 0.1 (21)

where yi, ymin, and ymax are actual value, minimum and maximum of actual value, respec-
tively.
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7.2.4. Performance Results

Table 20 presents the performance results of all models for the three additional datasets.
Using the same dataset in the experiment No. 2, Maurya and Gupta (2015) [12] trained ANN
models with the maximum R-learn and R-test values of 0.98146 and 0.98662, respectively.
Meanwhile, the iML identifies the ANN single model as the best model with R-learn and
R-test values of 0.99990 and 0.99629, respectively. The iML gives out a slightly better model
than those of the previous research in this numerical experiment.

Table 20. Performance results of three additional numerical experiments.

No. Model
Learn Test

RMSE MAE MAPE R TER RMSE MAE MAPE R TER

2 Single 2.462 0.569 1.015% 1.000 0.236% 8.738 3.683 3.775% 0.996 2.730%
Voting 17.509 4.965 2.808% 0.995 0.118% 13.087 5.173 5.685% 0.989 0.921%

Bagging 40.127 8.893 2.360% 0.981 3.015% 13.484 3.930 2.489% 0.996 3.795%
Stacking 40.428 9.030 3.389% 0.973 0.000% 64.782 43.615 104.992% 0.842 9.852%

Tiering-2class 163.338 26.947 3.229% 0.383 24.818% 18.196 5.822 4.629% 0.986 3.220%
Tiering-3class 167.093 29.784 3.856% 0.340 27.446% 76.406 12.698 5.268% 0.639 13.094%
Tiering-4class 182.572 44.722 7.970% 0.112 41.332% 91.701 21.089 8.342% 0.422 24.368%

3 Single 0.349 0.080 0.023% 1.000 0.021% 0.317 0.231 0.093% 1.000 0.042%
Voting 17.417 10.754 3.089% 0.985 0.010% 12.162 10.157 3.993% 0.951 0.867%

Bagging 0.917 0.399 0.110% 1.000 0.020% 0.296 0.221 0.087% 1.000 0.074%
Stacking 0.338 0.090 0.026% 1.000 0.014% 0.335 0.251 0.101% 1.000 0.042%

Tiering-2class 169.296 63.580 14.294% −0.399 21.483% 214.674 86.711 16.747% −0.704 27.688%
Tiering-3class 273.303 212.047 62.384% −0.664 71.449% 295.065 223.209 62.186% −0.570 71.054%
Tiering-4class 329.001 312.397 97.619% −0.304 99.023% 51.164 45.122 18.684% 0.706 11.339%

4 Single 0.046 0.030 6.670% 0.979 10.450% 0.105 0.073 14.120% 0.883 0.550%
Voting 0.052 0.037 7.850% 0.974 8.000% 0.080 0.056 10.750% 0.929 0.260%

Bagging 0.049 0.034 7.150% 0.977 6.930% 0.069 0.046 8.870% 0.948 0.190%
Stacking 0.005 0.003 0.700% 1.000 21.430% 0.214 0.169 38.680% 0.000 0.086%

Tiering-2class 0.580 0.432 57.620% −0.582 58.900% 0.589 0.451 61.410% −0.570 68.290%
Tiering-3class 0.639 0.568 84.420% −0.680 64.600% 0.646 0.565 82.110% −0.717 90.260%
Tiering-4class 0.648 0.596 92.370% −0.513 65.200% 0.652 0.584 87.400% −0.630 94.300%

Note: No. 2: CPU experiment dataset; No. 3: Customer experiment dataset; No. 4: Rental bike experiment dataset; the bold denotes the
best model in each experiment.

In the experiment No. 3, Ferreira et al. (2016) had an analytical result of MAPE 3.45%
and iML confirms ANN single model as the best model, with MAPE values for learning and
test of 0.023% and 0.093%, respectively [13]. The stacking ANN ensemble also performs
well with the MAPEs for the learning and test data by 0.026% and 0.010%, respectively.

Finally, in the experiment No. 4, iML achieves R-learn and R-test values of 0.97660
and 0.94790, with bagging ANN as the best model. In contrast, Fanaee-T and Gama (2014)
obtained a maximum R value of 0.91990 [11].

As shown in the above numerical experiments, iML trains and identifies the best
models which are better than those in the previous studies.

8. Conclusions and Future Work

This study develops an iML platform to efficiently operate data-mining techniques.
The iML is designed to be user-friendly, so users can get the results with only “One-Click”.
The numerical experiments have demonstrated that iML is a powerful soft computing to
identify the best prediction model by automating comparison among diverse machine
learning techniques.

To benchmark the effectiveness of iML with WEKA, five datasets collected from the
UCI Machine Learning Repository were analyzed via hold-out validation and tenfold cross
validation. The performance results indicate that iML can find a more accurate model
than that of WEKA in the publicly available datasets. The best prediction model identified
by iML is also the best model among all the models trained by iML and WEKA. Notably,
iML requires minimal effort from the users to build single, voting, bagging, and stacking
models in comparison with WEKA.
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Four industrial experiments were carried out to validate the performance of iML. The
first experiment involved training a model for prediction of ERP development effort, in
which iML yielded an RMSE for learning data with 70.28 h and for testing data with 65.58
h, by using the bagging ANN ensemble (best model). In contrast, Chou et al. (2012) [1]
obtained training and testing RMSE values of 234.0157 h and 97.2667 h, respectively.

In the second experiment on performance of CPU processors, iML yielded 0.99990
for R-learning and 0.99629 for R-testing, which are better than those reported in Maurya
and Gupta (2015) [12], and confirmed that single ANN was the best model. In the third
experiment of daily demand forecasting orders, iML achieved MAPE values of 0.026%
(learning) and 0.010% (testing). The results are as excellent as those obtained in Ferreira
et al. (2016) [13]. In the fourth experiment for total hourly-shared bike rental, R-learning
and R-testing values of 0.97660 and 0.94790 were reached using iML. The test performance
was 6% better than that obtained by Fanaee-T and Gama (2014) [11]. In addition to the
enhanced prediction performance, the iML possesses ability to determine the best models
on the basis of multiple evaluation metrics.

In conclusion, the iML is a powerful and promising prediction platform for solving
diverse engineering problems. Since the iML platform can only deal with regression
problems, future research should upgrade iML for solving complex classification and
time series problems by automatically presenting the alternative models for practical use
in engineering applications, as well as adding some other advanced ML methods (such
as deep learning models). Moreover, metaheuristic optimization algorithms could be
integrated with the iML to help the users finetune the hyperparameters of chosen machine
learning models.
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