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Abstract: In this study we show that concept of backward bifurcation, borrowed from epidemics,
can be fruitfully exploited to shed light on the mechanism underlying the occurrence of hysteresis
in marketing and for the strategic planning of adequate tools for its control. We enrich the model
introduced in [Gaurav et al., 2019] with the mechanism of self-information that accounts for informa-
tion about the product performance basing on consumers’ experience on the recent past. We obtain
conditions for which the model exhibits a forward or a backward phenomenology and evaluate the
impact of self-information on both these scenarios. Our analysis suggests that, even if hysteretic
dynamics in referral campaigns is intimately linked to the mechanism of referrals, an adequate level
of self-information and a fairly high level of customer-satisfaction can act as strategic tools to manage
hysteresis and allow the campaign to spread in more controllable conditions.
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1. Introduction and Motivations

In the last century, mathematical models based on differential equations have been
fruitfully applied to describe phenomena belonging to even extremely different disciplinary
fields. As well known in literature [1], mathematical models can act essentially in two direc-
tions: those based on more sophisticated mathematical tools can give a great contribution
in terms of quantitative predictions but simpler qualitative models can be precious to shed
light on the constitutive mechanisms, highlighting their role and reciprocal interactions.

Precisely because they go to the heart of the phenomena, simple mechanistic qualita-
tive models are capable to create bridges between apparently very distant worlds, making
sure that models and methodologies used in a certain context could be exploited to open the
way to the understanding of phenomena that are similar in their underlying mechanisms.
On this line, it is not surprising that the simple mechanistic model found by Volterra [2] to
describe the interaction between preys and predators in the Italian Adriatic Sea displays
the same mathematical structure as the one introduced in those same years by Lotka [3] in
the context of the chemical kinetics. And, again, it is not surprising at all that a discipline
such as marketing has been able to benefit from the models and the modus operandi
of mathematical epidemiology. In this case, the unifying factor is the idea of contagion,
a key mechanism for those forms of marketing defined as viral. The viral name refers
in particular to all those marketer-initiated consumer activities that spreads a marketing
message unaltered across a market or segment in a limited time period mimicking an
epidemic [4]. Terms from epidemiology have been hence widely used to explain such viral
marketing process [5,6].

This interconnection has become even more pronounced with the unchallenged emer-
gence of new means of communication. With consumers showing increasing resistance to
traditional forms of advertising, marketers have been forced to rely on alternative strategies.
Among these are social networks, whose usage is sensitively growing among marketing
managers with the aim to promote an idea, a product or a brand at no additional cost to
the firm. If a marketer encourages consumers to share and spread a marketing message
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through their social contacts, this is called Referral Marketing [7]. In few words, refer-
ral marketing spreads the word about a product or service through a business’ existing
customers, rather than traditional advertising. This kind of marketing uses referrals or
word-of-mouth to promote services or products and businesses may control it through
suitable strategies and make a viral referral campaign. Strategic use of referral marketing
can hence allow marketers to leverage the power of consumer recommendations in order
to achieve the desired results. On this line, questions as ‘Which are the underlying set of
interactions that ensure a marketing message to go viral? Which parameters can allow an
effective spread of a marketing message through a viral process?’ becomes simply crucial.
And since a viral marketing message involves a person-to-person transmission spreading
within a population just like an epidemic, it is not strange that the most likely enlightening
answers could hence come from epidemic models.

In the classical models of epidemiology, the interactions between susceptible and
infected is a key factor for the spread of an epidemic, qualitatively defined as a situation in
which the number of the infected reaches a significant percentage at steady state. In the
case of a viral marketing campaign it can be thought as a situation for which, because of
the sharing mechanisms, the marketing message reaches and attracts a majority of its target
consumers. Obviously in epidemiology one aims to contain epidemics whereas, within the
marketing framework, the main purpose is to maximize the spread.

In the context of online social networks and digital contagion, many efforts have
recently been made to model such kind of dynamics: [4] discussed the viral marketing
diffusion within the SIR and SEIAR epidemic framework and [8] proposed a mathemat-
ical model borrowed from epidemiology to describe its spread. An extensive survey
in [9] underlined that along with the viral component, a particular focus on customer
behaviors should be given to ensure the relevance and survival of a newly-launched
campaign. On this line, [7,10] considered more realistic models for the viral campaign
spread, where specific behavioral factors were introduced to take into account a customer’s
perspective about marketing messages, i.e., inherent adversion, brand trust, remembering
and reminding.

In this paper we want to pursue this line focusing on the interplay between two
behavioral mechanisms that can be involved together in a referral campaign. In fact,
if referral is obviously the key mechanism of a referral campaign, it is not the only one.
The Nielson Global Survey of Trust in Advertising [11] clearly supports the remarkable
potential of referrals showing that for the question ‘To what extent do you trust the
following form of advertising?’, the answer ‘Recommendation from the people I know’
gains the first position with 83%. But the answer ‘Consumer’s opinion posted online’ is
also on the podium with 66%, confirming how online reviews remain a trust source of
customer information. This means that, on average, two-thirds of consumers feels the
need of ‘self-information’ and make purchases after inspecting customers’ opinions posted
online about a particular product or service. In this case information comes from sources of
reviews with no conflicts of interest, such as specific consumers’ forum that collect opinions
by those who bought particular products or experienced certain services.

Therefore in a referral marketing campaign, the nature of the information for the
potential consumer can be twofold: passive, when it is linked to the mechanism of recom-
mendations by friends and acquaintances or active when it is linked to the self-information
mechanism described above. Our aim is to elucidate under what conditions the interplay
between ‘passive’ and ‘active’ information can strengthen or weaken the survival chances
of a referral campaign. On this line, we enrich the model introduced in [10] with the
mechanism of self-information that accounts for information about the product perfor-
mance basing on consumer’s experience on the recent past. Such a mechanism, based on
a kind of learning that a potential consumer can adopt during the referral campaign, is
mathematically obtained by introducing a distributed lag in the population equations that
therefore become an integro-differential system, i.e., a delay differential model. The impor-
tance of considering such kind of models is provided by the fact that the role of delays in
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biological [12–15] as well as in economic models [16–20] is widely recognized, being often
appropriate for these kind of problems to allow the rate of change of the system variables
to depend in some sense on the previous history. We want to establish conditions for which
the model exhibits a forward or a backward phenomenology and evaluate the impact of
self-information on both these scenarios. The backward phenomenology, in particular,
is connected to a situation of bistability between the campaign-free equilibrium and the
campaign-standing equilibrium and can lead the system towards hysteresis-type behaviors.
In a very qualitative way the term hysteresis, related to the idea of “irreversibility”, denotes
the effects that persist after the causes that determined them have been removed. The rel-
evance of using hysteresis at economic systems level is well recognized and marketing
provides a generous framework to improve the understanding of this phenomenon in
the economic sphere. In marketing, hysteresis is mainly thought in relation to consumer
behaviour as well as to temporary or permanent changes of consumption patterns caused
by specific marketing tools. [21–23]

Its link with hysteresis is the reason why, in mathematical epidemiology, many
papers have been focused on backward bifurcation, i.e., [24–28]. In that context,
the basic reproduction number R0 is usually defined as the expected number of
new infections produced by a single infective individual introduced into a disease-
free population [29] and R0 = 1 represents the threshold value that separates the
stability and instability regimes of the disease-free equilibrium. There are two
bifurcation scenarios commonly detectable at R0 = 1: (i) forward bifurcation that
implies disease eradication below the threshold R0 = 1; (ii) backward bifurcation
that includes a saddle-node (sn) bifurcation at R0 = Rsn

0 < 1 along with a subcritical
transcritical bifurcation at R0 = 1; it involves a multiplicity of endemic equilibria and
subcritical persistence of the disease. When a backward scenario is found, reducing
R0 below 1 is not sufficient to eradicate the disease and a further effort should
be done until R0 is lowered below the critical value Rsn

0 . It is therefore obvious
that, in epidemic models, detecting and managing the occurrence of backward
bifurcations are two features of primary importance in the perspectives of the disease
control. In viral marketing, however, the backward scenario may play a different
role than in epidemics since it could be seen as an opportunity for the firm to
carry on the viral campaign even in adverse conditions, which in itself adds an
interesting perspective to the problem. Also in this case, however, the backward
scenario must still be carefully monitored because in the bistability regime, too
large displacements from the campaign-standing equilibrium can bring the system
into the basin of attraction of the campaign-free equilibrium. That means a sudden
collapse of the referral campaign.

The paper is structured as follows: In Section 2, we enrich the model intro-
duced in [10] with the mechanism of self-information by the means of a variable
that summarizes information about the product performance basing on consumers’
experience on the recent past. In Section 3 we get conditions for the existence of a
campaign-free and of a campaign-standing equilibria and establish under which
conditions, expressed as a function of the system parameters, the campaign spread
goes towards stopping. In Section 4 a bifurcation analysis in the neighbouring
of the campaign-free equilibrium is performed and conditions are obtained for
the emergence of a forward or a backward scenario that are also discussed in the
perspective to improve the sustainability of the referral campaign. The effects of
self-information on the bifurcation thresholds is shown in Section 5 where the role
of the customer satisfaction parameter is also elucidated. Concluding remarks,
in Section 6, close the paper.
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2. A Referral Marketing Model with Self-Information

To mimics referral dynamics, a model was introduced in [7] with the total population
divided in three mutually exclusive subpopulations: Unaware, Broadcaster and Inert.
The unaware class U is the target market, namely ‘susceptible’ people that have not
yet received the message about a certain product but are exposed and have a chance of
receiving it; the broadcaster class B is composed of individuals who have received the
message earlier and have the potential to spread the message further to their social contacts;
the inert class I is instead made of individuals that, willingly or unwillingly, do not take
part in the campaign even if they have come across it at least once. This model is essentially
based on contagion as the basic transition mechanism between different subgroups.

To increase the degree of realism, the authors then proposed in [10] a more realistic
model including some additional features raised in a survey campaign developed in [9].
Analyzing the surveys and the interactions between different people, they modeled the
transition between different sub-groups with taking into account some additional factors
that more clearly reflect customer’s perspective about marketing messages: (a) inherent
aversion, i.e., a portion of individuals could be strongly against the mechanisms of referral
marketing in general; (b) brand trust, i.e., people need to ‘trust’ the person who is referring
the product (for example family or friends) as well as the brand-names while participating
in referral marketing; (c) remembering and reminding, i.e., strategically designed emails
from the company or casual reminders from friends can tempt inert individuals to become
broadcasters again. The following model was hence considered [10]:

u̇ = µ− ρ b u− µ u

ḃ = p ρ b u− σ b + α1 b i− µ b + λ i

i̇ = (1− p) ρ b u + σ b− α1 b i− λ i− µ i

(1)

where u,b and i are the fraction of the unaware, broadcaster and inert classed normalized
by the total population. In (1), it is assumed that a broadcaster spreads the message to a
member from unaware class at a rate ρ and, whenever a broadcaster sends the referral
message to an unaware individual, this moves to the broadcaster class with a probability p
and to the inert class with a probability (1− p). The parameter p ∈ [0, 1] assumes a high
value if the campaign comes from a trusted brand or the message comes from a trusted
member and can be hence interpreted as the ‘trust’ parameter. The term (1− p) accounts
that some individuals of the unaware class might decide to ignore the messages or to not
take part in the campaign, i.e., groups of individuals that are for example rigidly inert.
Messages from not so trustworthy brand or members increases the value of (1− p).

Once the unawares have become broadcasters or inert, they can ‘change their mind’
by moving from one class to another respectively. In fact, broadcasters can stop sharing the
message, hence moving to the inert class at a rate σ. On the other hand, inert people can
move back to broadcaster class following two different mechanisms: (i) independently of
their interaction with other individuals (like reminder from the company etc.) at a rate λ
or (ii) because of their interaction with another broadcaster (like reminder from a friend,
discussion with family members) at a rate α1 = α p where α is the original relapse rate and
p is the trust parameter. Obviously people can join or leave a particular social platform
where the campaign is going. It is then assumed a constant input µ in the unaware class and
a natural ‘mortality rate’ µ for each class so that a fixed population size can be maintained.

The analysis carried out in [10] showed that the brand loyalty and brand name
are two important factors to create positive reaction of a person towards a campaign
message. Moreover, model dynamics turned out to be critically affected by variations in the
relapse rate α that was recognized to be crucial to safeguard the survival of the campaign.
In particular, sufficiently high values of the relapse rate α could drive the system towards a
bistability situation between the campaign-free and the campaign-standing equilibria.
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In [10] the involved information mechanism was essentially passive because the
spread of the message is based on referrals. To investigate the role of an active information
on the spreading of the referral campaign, we equipped model (1) with a self-information
variable m that summarizes information about the product performance basing on the
customers’ experiences in the recent past, i.e., online customer reviews. Because of this
‘active’ information process, we assume that unaware individuals can exit their class at a
rate γ, moving to the broadcaster class with a probability q and to the inert class with a
probability (1− q). The parameter q ∈ [0, 1] assumes a high value if the online reviews on
the product indicates an overall high level of satisfaction and can be hence interpreted as a
‘customer satisfaction’ parameter. We hence consider the following model:

u̇ = µ− ρ b u− µ u− γ m u

ḃ = p ρ b u− σ b + α1 b i− µ b + λ i + γ q m u

i̇ = (1− p) ρ b u + σ b− α1 b i− λ i− µ i + γ (1− q)m u

(2)

where the self-information variable m is given by

m(t) =
∫ t

−∞
f (u(τ), b(τ), i(τ)) Ka(t− τ)dτ (3)

The distributed lag (3) in the governing equations means that unaware, broadcaster
and inert individuals at time t are affected by the state variables u, b, i at possibly all
previous times τ ≤ t in a way prescribed by the function f (u(τ), b(τ), i(τ)) and distributed
in the past by the delay kernel Ka(t− τ) which is also called ‘memory function’.

We assume here that the function f (u(τ), b(τ), i(τ)) = k b where k is a positive
parameter. Among the possible types of delay kernels, we consider

Ka(t) = a e−a t (4)

which qualitatively represents a weak delay in the sense that the maximum (weighted)
response of the growth rate is to current population density whereas past densities have
exponentially decreasing influence. Such a kernel provides therefore a reasonable effect of
short term memory.

With (4) as delay kernel and by applying the linear chain trick [30], the set of delay
differential Equations (2)–(3) turns out to be equivalent to the following set of ordinary
differential equations that will be hereafter the object of our investigations:

u̇ = µ− ρ b u− µ u− γ m u

ḃ = p ρ b u− σ b + α1 b i− µ b + λ i + γ q m u

i̇ = (1− p) ρ b u + σ b− α1 b i− λ i− µ i + γ (1− q)m u

ṁ = a k b− a m

(5)

with α1 = α p.

In the next section, we get conditions for the existence of a campaign-free and of
a campaign-standing equilibria and establish under which conditions, expressed as a
function of the system parameters, the campaign goes viral or is forced to stop.
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3. The Campaign-Free and the Campaign-Standing Equilibria

Model (5) always admits a campaign-free equilibrium E0 = (1, 0, 0, 0) and, under suit-
able conditions on the system parameters can admit one or two campaign-standing equilib-
rium E∗ = (u∗, b∗, i∗, m∗) where:

u∗ =
µ

b∗ (γ k + ρ) + µ
, i∗ =

b∗ (γ k + ρ)σ + γ k µ (1− q) + µ [σ + ρ (1− p)]
(b∗ γ k + b∗ ρ + µ)(b∗ α p + λ + µ)

, m∗ = k b∗,

(6)
and b∗ is a positive solution of the following algebraic equation,

P2 b2 + P1 b + P0 = 0, (7)

with

P2 = α p (γ k + ρ),

P1 = −p (γ k + ρ− µ) α + (γ k + ρ)(λ + µ + σ) = p (γ k + ρ− µ)(α0 − α),

P0 = (µ− γ k− ρ) λ + µ2 + µ σ− γ k µ q− ρ µ p = µ (σ− σc),

(8)

and

α0 =
(γ k + ρ)(λ + µ + σ)

p (γ k + ρ− µ)
, σc =

1
µ
[λ (γ k + ρ− µ) + γ k q µ + µ (p ρ− µ)]. (9)

By (6), it follows that E∗ is a positive equilibrium provided b∗ is a positive solution of (7).
Moreover being (7) a second order algebraic equation we observe that, for certain ranges of
the parameter values, model (5) could admit a multiplicity of campaign-standing equilibria.

In the next we assume µ ≤ p ρ so that the natural “mortality rate” for each class is
considered slow with respect to the marketing process. Under this condition, both σc and
α0 are positive quantities. We now determine the conditions for which model (5) can admit
feasible (i.e. positive) campaign-standing equilibria. To do that, we inspect the discriminant
of the algebraic Equation (7), namely

∆ = P2
1 − 4 P2 P0 = p2 (γ k + ρ− µ)2 (α0 − α)2 − 4 α p (γ k + ρ) µ (σ− σc) (10)

and observe that, if σ < σc, then (10) is a positive quantity so that by the Descartes’ rule of
signs, the algebraic Equation (7) admits only one positive real solution. On the contrary,
if σ > σc, then ∆ < 0⇔ α1 < α < α2, where

α1/2 = α0 +
Q1 ∓

√
3 α2

0 Q2
0 + Q2

1 + 4 α0 Q0 Q1

2 Q0
(11)

and

Q0 = p2 (γ k + ρ− µ)2, Q1 = 4 p (γ k + ρ) µ (σ− σc).

For σ > σc, Q1 is a positive quantity and it is also easy to prove that α1 < α0 < α2.
We can hence conclude that: if α1 < α < α2 then Equation (7) admits no real solutions; if
α < α1 then, by the Descartes’ rule of signs, the algebraic Equation (7) admits two negative
real solutions; if α > α2 then it admits two positive real solutions.

The above results can be summarized in the following theorems:

Theorem 1. Let µ ≤ p ρ and σ < σc. Then model (5) admits the campaign-free equilibrium
E0 = (1, 0, 0, 0) and one positive campaign-standing equilibrium E∗.
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Theorem 2. Let µ ≤ p ρ and σ > σc. Then model (5) admits the campaign-free equilibrium
E0 = (1, 0, 0, 0) and (i) if α < α2, none positive campaign-standing equilibrium exists; (ii) if
α > α2, two positive campaign-standing equilibria exist.

As far as the local stability properties of the campaign-free equilibrium E0 = (1, 0, 0, 0)
are concerned, we observe that the Jacobian matrix of model (5) when evaluated at E0, is
given by

J(E0) =



−µ −ρ 0 −γ

0 p ρ− µ− σ λ γ q

0 (1− p) ρ + σ −λ− µ γ (1− q)

0 a k 0 −a


,

and admits ω = −µ as an eigenvalue. To reason about the sign of the other three eigenval-
ues, we introduce the following matrices:

A =


pρ− µ− σ λ γ q

(1− p)ρ + σ −λ− µ γ (1− q)

ak 0 −a

,

A1 =

(
−λ− µ γ (1− q)

0 −a

)
, A2 =

(
(1− p)ρ + σ γ (1− q)

ak −a

)
, A3 =

(
(1− p)ρ + σ −λ− µ

ak 0

)
.

and recall that the remaining three eigenvalues of J(E0) have negative real part if and only
if the following conditions holds:

det(A) < 0; tr(A) < 0;
3

∑
i=1

det(Ai) > det(A)/tr(A).

We get det(A) = µ a (σc − σ) and tr(A) = p ρ− a− λ− 2 µ− σ so that:

det(A) < 0⇔ σ > σc, tr(A) < 0⇔ a > ac

where σc is given in (9) and ac = p ρ− λ− 2 µ− σ. We also observe that

ac > 0⇔ σ < σ̃ = p ρ− λ− 3 µ

and

σ̃ < σc ⇔ − µ < γ k q +
λ (ρ + γ k)

µ

that is always verified. Therefore for σ > σc > σ̃, the threshold quantity ac is negative so
that tr(A) < 0 for every positive value of a. Moreover by straightforward algebra follows

that, for σ > σc, inequality
3

∑
i=1

det(Ai) > det(A)/tr(A) is always verified. We are hence in

the position to state the following theorem:

Theorem 3. Let µ ≤ p ρ. (i) If σ < σc then the campaign-free equilibrium E0 is unstable. (ii) If
σ > σc then the campaign-free equilibrium E0 is locally asymptotically stable.

In the following section, we analyze in more details the nature of the transcritical
bifurcation at σ = σc and its impact on the sustainability of the referral campaign.
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4. Sustaining the Campaign: Forward or Backward Scenario?

Within the epidemic framework, backward scenarios have been mainly detected by
the means of specific bifurcation approaches [31] with the aim to establish the nature of the
bifurcation at R0 = 1. Once the backward scenario is detected, the subcritical persistence
of the disease can be prevented by varying significant parameters in the system or by the
means of error-based methods as the Z-type control approach [32–34].

In this section, we discuss the occurrence of the backward vs the forward phenomenol-
ogy for model (5), by using the method proposed in [35] that provides simple and manage-
able conditions for monitoring both these scenarios.

As shown in the previous section, σ = σc is a transcritical bifurcation threshold.
We observe that all the coefficients in the equilibrium Equation (7) may be regarded as
functions of the parameter σ. Moreover at σ = σc, P0(σc) = 0 so that Equation (7) becomes

P2(σc)b2 + P1(σc)b = 0

and admits the roots b = 0 and b = − P1(σc)
P2(σc)

. The former is related to the campaign-free
equilibrium and the latter corresponds to a positive campaign-standing equilibrium only
if P1(σc) and P2(σc) have opposite signs. Therefore, in order to have a positive campaign-
standing equilibrium, P1(σc) < 0 must hold. By implicit differentiation of Equation (7)
with respect to σ, one obtains:

(2 P2 b + P1)
db
dσ

+
dP2

dσ
b2 +

dP1

dσ
b +

dP0

dσ
= 0.

Now, looking at the equilibrium b = 0, at σ = σc one has:

P1(σc)
db
dσ

(σc) = −
dP0

dσ
< 0, (12)

since, recalling (8), it holds
dP0

dσ
= µ > 0. Therefore, in order inequality (12) to be verified,

P1(σc) and
db
dσ

(σc) must have opposite sign. This means that the slope of the bifurcation

curve at b = 0 must have opposite sign with respect to the coefficient P1(σc). Since in our

case a forward scenario at σ = σc is obtained when
db
dσ

(σc) < 0 and a backward scenario

when
db
dσ

(σc) > 0, it hence follows that: (i) if P1(σc) < 0 then a backward bifurcation occurs

at σ = σc; (ii) if P1(σc) > 0, the system displays a forward bifurcation at σ = σc.
For model (5), P1(σc) < 0 is hence a necessary and sufficient condition for the oc-

currence of the backward bifurcation at σ = σc. By (9), the threshold α0 depends on the
parameter σ. Therefore by introducing,

α∗ = α0(σc) =
γ k + ρ

γ k + ρ− µ
α̃, (13)

where

α̃ =
γ k (µ q + λ) + ρ (µ p + λ)

µ p
, (14)

the following result holds:

Theorem 4. Let µ < p ρ. (i) If α < α∗ then system (5) exhibits a forward bifurcation at σ = σc .
(ii) If α > α∗ then system (5) exhibits a backward bifurcation at σ = σc.

Proof. It follows from (8) by direct computations.
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Remark 1. It easy to prove by direct computation that the threshold α2 defined in (11) is such that

α2 = α0(σc) = α∗

so that results in Theorem 4 are in perfect agreement with the existence results provided in Theorem 2.

To validate the results found in Theorem 4, we show the local dynamics in the neigh-
boring of the bifurcation value σ = σc by the means of the bifurcation diagrams in the
(σ, b∗) parameter space, Figure 1.
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Figure 1. Bifurcation diagram in the plane (σ, b∗). The other parameters are µ = 0.05; ρ = 0.25;
λ = 0.02; p = 0.7; q = 0.8; a = 0.5; k = 2; γ = 0.2 so that α∗ = 1.1684 and σc = 0.6850. The solid lines
(-) denote stability; the dashed lines (- -) denote instability. (Left) Forward scenario. The case α < α∗,
α = 0.4 − At σ = σc = 0.6850, system (5) exhibits a forward bifurcation. (Right) Backward scenario.
The case α > α∗, α = 2 − At σ = σc = 0.6850, system (5) exhibits a backward bifurcation. The value
σSN = 0.9105 is the saddle-node bifurcation threshold.

For the numerical investigations, we decide to use the same parameters considered
in [7,10] where a mathematical model was introduced basing on data collected through
an extensive questionnaire-based-survey [9]. That survey recognized the dynamics of
viral marketing propagation as a complicated nonlinear phenomenon that involves several
interactions between the participants and is influenced by several intensive and extensive
parameters. In [7,10], the above conceptual framework was developed through a mathemat-
ical ODE epidemic model that in [7] contains only the essential features of the phenomenon
and in [10] is instead enriched with more realistic behavioral factors. The set of parameters
used in these papers are chosen with the purposes (i) to illustrate the range of possible
dynamics that can be expressed by the model and (ii) to elucidate which parameters and
hence mechanisms can influence the overall dynamics. The perspective in which they
move is a qualitative one and the model we develop in the present paper, enriching [10]
with the self-information mechanism, moves exactly in the same qualitative direction.
Therefore, to better elucidate the role of self-information and for a better comparison with
the dynamics presented in [7,10], in the present study we have intentionally decided to
consider the same set of parameters used there, namely: µ = 0.05; ρ = 0.25; λ = 0.02;
p = 0.7. The parameters for the self-information mechanism are instead chosen so that the
hypothesis of Theorem 4 could be verified. We hence fix q = 0.8, a = 0.5, k = 2, γ = 0.2.

With this choice for the parameters, the assumption µ = 0.05 < (p ρ) = 0.1750 is
verified. Moreover α∗ = 1.1684 and σc = 0.6850.

In Figure 1(left), the parameters are taken in order to verify condition (i) in Theorem 4 so
that a forward scenario is obtained. In this case, α = 0.4 < α∗ = 1.1684: a forward bifur-
cation occurs at σ = σc = 0.6850. For σ < σc, the campaign-standing equilibrium E∗ is
the only attractor for the system, being E0 unstable in this range. Differently, for σ > σc,
the campaign-free equilibrium E0 is the only attractor for the system and increasing σ above
the threshold σc is sufficient to stop the campaign. In Figure 1(right), we choose the param-
eter values so that condition (ii) in Theorem 4 is verified. In this case, α = 2 > α∗ = 1.1684:
a backward bifurcation occurs at σ = σc = 0.6850 and σSN = 0.91058 is the saddle node-
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bifurcation value. For σ < σc, the campaign-standing equilibrium E∗ is the only attractor
for the system since E0 is unstable in this range. For σc < σ < σSN , a bistability situa-
tion occurs, with the disease-free equilibrium E0 and the endemic equilibrium E2 as local
attractors. For σ > σSN , the campaign-free equilibrium E0 becomes the only attractor
for the system. In this case, the value of the parameter σ should be increased above the
saddle-node bifurcation threshold σSN in order to stop the campaign.

The above results well put into evidence that the sustainability of the referral campaign
is linked to the suitable interplay between the two parameters α and σ that respectively
regulate the reciprocal transition between the broadcaster and inert classes. We recall that
α is the relapse rate from the inert to the broadcaster class whereas σ is the dropout rate of
the broadcaster class in favor of the inert class. Therefore, when the impact of the relapse
rate α is below a certain threshold, i.e., α < α∗, then increasing the dropout rate σ above a
certain threshold σc has the effect to stop the campaign. On the contrary, when the impact
of the relapse rate α is much stronger, i.e., α > α∗, then simply increasing the dropout rate
σ above σc is not enough to stop the campaign and the value of σ must exceed an higher
threshold σSN to make it end. This aspect would seem to suggest that a backward scenario
could strengthen the campaign’s chances of survival. However, in the bistability range
σc < σ < σSN , the dynamics of the system is highly dependent on the initial conditions so
that, within the backward scenario, a sudden stop of the campaign could likely occur.

In this latter case, inducing a slight reduction of the dropout rate σ does not allow
to restore the spreading of the campaign. To this aim, it is in fact necessary to drastically
reduce σ below the σc value. This behavior is depicted in Figure 2 and clearly indicates a
hysteretic phenomenology since the functioning and the current state of the system can be
understood in a more detailed manner with reference to its past. In this sense, the effects
on the dynamics persist after the causes that determined them have been removed.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ

b
*

σ
c

σ
SN

Figure 2. Graphical representation of an hysteresis cycle on the bifurcation diagram in the plane
(σ, b∗) in the case α > α∗, where a backward scenario is obtained. The other parameters are as in
Figure 1 (right). Here α∗ = 1.1684, σc = 0.6850 and the value σSN = 0.9105 is the saddle-node
bifurcation threshold. The solid lines (-) denote stability; the dashed lines (- -) denote instability.

As a consequence if the backward phenomenology can represent an opportunity, it
nevertheless introduces a risk factor and, for this reason, it must be detected and adequately
managed. This suggests the need for a more accurate characterization of the bistability
range delimited by the transcritical threshold σc and by the saddle-node threshold σSN .
To this aim, we derive the analytical expression of the saddle-node bifurcation threshold
σSN . We first recall that the two campaign-standing equilibria E∗1 and E∗2 are such that:
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E1 = (u∗1 , b∗1 , i∗1 , m∗1), E2 = (u∗2 , b∗2 , i∗2 , m∗2),

where ui, ii and mi are defined in (6) and bi are the two positive solutions of the algebraic
Equation (7) whose coefficients are defined in (8). More precisely,

b1/2 = −P1 ∓
√

∆
2 P2

with ∆ defined in (10) and the quantities α0 and σc defined in (9). At σ = σSN , the two
campaign-standing equilibria E∗1 (unstable) and E∗2 (stable) coalesce and disappear so that,
for σ > σSN the campaign-free equilibria is the only attractor for the system. The saddle-
node bifurcation of the two campaign-standing equilibria can be detected by requiring that
∆ = 0 so that E∗1 ≡ E∗2 . At this regard, it holds:

∆ = 0⇔ σ1/2 =
1

(γ k + ρ)

[
α p (γ k + µ + ρ)− (γ k + ρ)(λ + µ)∓ 2

√
∆∗
]

where
∆∗ = α p (γ k + ρ) µ p (α− α̃) (15)

with α̃ defined in (14). By direct computation it easy follows that if α > α̃ then σi are real
quantities and that, for α > α∗ > α̃, the inequalities σ1 > σc > 0 hold. Therefore,

σSN = σ1 =
1

(γ k + ρ)

[
α p (γ k + µ + ρ)− (γ k + ρ)(λ + µ)− 2

√
∆∗
]

is the saddle-node bifurcation threshold and [σc, σSN ] is the bistability range for model (5).
In the next section, we show how these critical thresholds are affected by variations in the
self-information level.

5. Effects of Self-Information on the Bifurcation Thresholds

Since γ and k are the parameters specifically related to the self-information mechanism,
we introduce the information parameter ζ = γ k and consider the different bifurcation
thresholds as function of ζ, i.e.,

α∗(ζ) =
ζ + ρ

ζ + ρ− µ

ζ (µ q + λ) + ρ (µ p + λ)

µ p

σc(ζ) =
1
µ
[λ (ζ + ρ− µ) + ζ q µ + µ (p ρ− µ)]

σSN(ζ) =
1

(ζ + ρ)

[
α p (ζ + µ + ρ)− (ζ + ρ)(λ + µ)− 2

√
∆∗(ζ)

]
(16)

with ∆∗(ζ) as defined in (15). We observe that the saddle-node bifurcation threshold σSN
is a real quantity provided that the information variable ζ is chosen in the range (0, ζ∗),
where

ζ∗ =
α µ p− ρ (µ p + λ)

µ q + λ
(17)

Moreover, since in the backward scenario α > α∗, the inequality

α >
ρ (µ p + λ)

µ p
,

is always verified and ζ∗ is a positive quantity. We also observe that the transcritical
bifurcation threshold σc is an increasing function of ζ, being
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dσc

dζ
=

µ q + λ

µ
.

Therefore an higher information increases the threshold σc, so that both in the forward
and in the backward regime it becomes larger the range [0, σc] for which the campaign-
standing equilibrium is the only attractor for the system.

Moreover, Figure 3 also indicates that:

• the threshold α∗ increases with increasing the information variable ζ . This
means that an higher information increases the threshold α∗ , favoring the for-
ward regime with respect to the backward scenario. In this sense, information
would act as a stabilizing mechanism;

• within the backward scenario, the saddle-node bifurcation threshold σSN in-
creases with increasing the information variable ζ . This means that an higher
information implies a higher value of σ in order to stop the campaign. However,
the length of the bistability range [σc , σSN ] does not have a monotone trend as
function of the information variable ζ . More precisely, for intermediate values
of ζ , the bistability range decreases whereas it increases when the values of ζ are
too small or too large. This would qualitatively mean that too much or too little
information, although enlarging the chances of survival of the campaign, can
have eventually a destabilizing effect on the system dynamics favoring sudden
collapses in broadcasters that could lead to a sudden stop of the campaign
according to a hysteretic phenomenology.
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Figure 3. Thresholds (16) as function of the information variable ζ. The other parameters are chosen
as in Figure 1. (Top-left) The threshold α∗(ζ) as function of ζ. (Top-right) The saddle-node bifurcation
threshold σSN(ζ) as function of ζ. The threshold σSN is feasible in the range (0, ζ∗], with ζ∗ = 0.9375
(Bottom) The length of the bistability range, i.e., σSN − σc, within the backward scenario as function
of ζ. The bistability range is increasing for [0, ζ1) and (ζ2, ζ∗) and it decreases for [ζ1, ζ2]. Here
ζ∗ = 0.9375; ζ1 = 0.1135; ζ2 = 0.8861.
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To give a more quantitative measure of the impact of the information parameter ζ
on the bifurcation thresholds (16), we will make use of the sensitivity analysis that is a
useful tool to reveal how a certain parameter can influence the campaign transmission.
The sensitivity of a certain variable with respect to system parameters can be measured
through a sensitivity index that provides a quantitative measure of the relative change in a
variable when a parameter changes. When the variable is a differentiable function of the
parameter, the sensitivity index is defined as follows:

Definition 1. [36] The normalized forward sensitivity index of a variable u, that depends differen-
tiably on a parameter p, is defined as

φu
p =

∂u
∂p

p
u

The normalized forward sensitivity index of a variable with respect to a parameter is
therefore the ratio of the relative change in the variable to the relative change in the parameter.

Figure 4 shows how the sensitivity index of the different thresholds α∗, σc and σSN

varies with varying the information parameter ζ. For both α∗ and σc, the sensitivity index
is a saturating function of ζ, the first increasing more slowly than the latter. The sensitivity
of σSN instead rapidly grows for enough low values and for enough high values of the
information parameter ζ; on the contrary, it grows very slowly for intermediate values of ζ.
In Table 1, we show more quantitatively how variations in the information parameter ζ can
affect the different thresholds (16).
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Figure 4. Sensitivity indices of the different thresholds α∗, σc and σSN as function of the information
variable ζ. The other parameters are chosen as in Figure 1. (Top-left) Plot of the sensitivity φα∗

ζ versus
the information variable ζ; (Top-right) Plot of the sensitivity φσc

ζ versus the information variable ζ;

(Bottom) Plot of the sensitivity φσSN

ζ versus the information variable ζ.
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Table 1. Sensitivity indices of the thresholds α∗, σc and σSN for three different levels of
information: low, intermediate and high. The numerical values of the system parameters
used for the computations are: µ = 0.05; ρ = 0.25; λ = 0.02; p = 0.7; q = 0.8.
Here ζ∗ = 0.9375; ζ1 = 0.1135; ζ2 = 0.8861.

Low Information Intermediate Information High Information
0 < ζ < ζ1 ζ1 < ζ < ζ2 ζ2 < ζ < ζ∗

ζ = 0.08 ζ = 0.5 ζ = 0.9
φα∗

ζ = 0.2154 φα∗
ζ = 0.6380 φα∗

ζ = 0.7614
φσc

ζ = 0.38 φσc
ζ = 0.74 φσc

ζ = 0.8404
φ

σSN
ζ = 0.1734 φ

σSN
ζ = 0.3450 φ

σSN
ζ = 0.9713

It is interesting to observe that ζ affects such thresholds differently depending on the
level of information we consider.

In the case of low information, σc is the most affected threshold: in fact, φσc
ζ = 0.38,

which means that increasing (or decreasing) the parameter ζ by 10%, increases (or de-
creases) the transcritical threshold σc by 3, 8%. The less affected threshold is instead σSN ,
being φ

σSN
ζ = 0.1734. However, for this case, the sensitivity indices for the three thresh-

olds have numerical values fairly low and quite similar each others. A similar situation,
but with higher values of the sensitivity indices is found for the case of intermediate
levels of information for which the thresholds α∗ and σc are influenced by variations in the
information parameter ζ much more than the saddle-node bifurcation threshold σSN . Also
in this case, σc is the threshold most influenced by variations in the information parameter,
being φσc

ζ = 0.74; the less affected threshold is instead σSN , since φ
σSN
ζ = 0.3450. The case

of high levels of information presents a completely different scenario being now σSN the
most affected threshold with φ

σSN
ζ = 0.97: this means that increasing (or decreasing) the

parameter ζ by 10%, increases (or decreases) the saddle-node bifurcation threshold σSN by
9.7%. In this case, however, also the thresholds α∗ and σc are significantly influenced by
variations in the information parameter ζ.

These results seem to suggest that intermediate levels of information allow to spread
the campaign in more controllable conditions. In fact, they seem to (i) favor a forward-type
regime over a backward type, as it can be observed by the significant increase in the α∗

threshold; (ii) favor the presence of a single campaign-standing type attractor (significant
increase in the threshold σc) with respect to a bistability regime (loose impact on the
threshold σSN). In this sense, intermediate levels of information are surely preferable to low
ones. On the other hand, too high levels of information sensitively impact the saddle-node
threshold, favoring a bistability situation where the chances of the campaign’s survival
increase despite being exposed to the likely emergence of hysteretic dynamics.

The survival of the campaign obviously depends on the number of people who make
it to spread and in the bistability range, when σ tends to σSN , the level of broadcasters at
the campaign-standing equilibrium tends to decrease, as it can be seen from the bifurcation
diagram in Figure 1.

It is therefore interesting to ask whether the level of customer satisfaction linked to the
self-information process can act as a destabilizing factor for the survival of the campaign.
Numerical simulations in Figure 5(Top) show that, for low or intermediate values of the
self-information parameter ζ, the campaign-standing equilibrium is rather resilient to
variations in the level of the customer satisfaction q. However, increasing the level of
self-information from low to intermediate, the impact of q also increases to the point that,
for high values of ζ, a threshold value q∗ can be found below which the referral campaign
is driven to stop, Figure 5(Bottom).
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Figure 5. Impact of the customer satisfaction parameter q on the referral campaign in the bistability
region, σ ∈ [σc, σSN ], for different levels of self-information. Initial conditions are chosen in the
neighbouring of the campaign-standing equilibrium. The other parameters are as in Figure 1.
(Top-left) Low level of the self-information parameter, i.e., ζ = 0.08 (k = 2; γ = 0.04) and σ = 0.4.
(Top-right) Intermediate level of the self-information parameter, i.e., ζ = 0.5 (k = 2; γ = 0.25) and σ =

0.7. (Bottom) High level of the self-information parameter, i.e., ζ = 0.9 (k = 2; γ = 0.45) and σ = 0.9.

6. Conclusions

With this study we wanted to show that the concept of backward bifurcation, borrowed
from epidemics, can be fruitfully exploited to shed light on the mechanism underlying
the occurrence of hysteresis in marketing as well as for the strategic planning of adequate
tools for its control.

In this paper, we considered a referral marketing model with self-information and
evaluated how the interplay between a passive information (due to referrals) and an active
information (due to self-information) impacts the sustainability of the viral campaign. We
found that the emergence of a forward or a backward phenomenology is essentially linked
to passive information mechanisms since the occurrence of these scenarios depends on
the suitable interplay between the two parameters that regulate the reciprocal transition
between the broadcaster and inert classes by the means of referrals.

Differently from epidemics, in the viral marketing context, a backward scenario could
strengthen the campaign’s chances of survival. But if it can represent an opportunity from
one side, on the other it introduces a risk factor because of the bistability range where system
dynamics highly depends on the initial conditions. In this range hysteresis-type behaviors
can hence emerge. Moreover, if in epidemics the main purpose is to ‘avoid’ a backward type
scenario, for viral marketing this aim becomes learning to tame and eventually manage
the backward phenomenology. In the present study, this has been shown to be the role of
self-information that, however, needs to be properly calibrated. According to the Latin
sentence ‘in medio stat virtus’, our analysis shows in fact that intermediate levels of self-
information allow the campaign to spread in more controllable conditions by favoring
the more reassuring forward-type regime over the backward one and, in both these cases,
by widening the range of parameters in which the campaign-standing equilibrium is the
only attractor for the system. Too high levels of information can instead broaden the
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region of parameters in which bistability occurs and, although enlarging the chances of
survival of the campaign, can be responsible of sudden collapses in its spread. Just in
this case, the level of customer satisfaction turns out to have a certain weight since a
threshold customer satisfaction value can be found, below which, small fluctuations from
the campaign-standing equilibrium value can lead the campaign to a sudden stop.

Therefore, even if hysteretic dynamics in referral campaigns may likely occur because
intimately linked to the mechanism of referrals, an adequate level of self-information and a
fairly high level of customer-satisfaction, can be two weapons capable to control hysteresis
by transforming a potential risk into an opportunity.

In conclusion, this study represents a qualitative step to better understand how self-
information can impact the sustainability of a referral marketing campaign and, within such
a qualitative dimension, there is no presumption to fit the trend of a specific campaign.
To provide further insight into the topic, two extensions are currently the subject of ongoing
research: (i) giving the model a more quantitative dimension through a validation with
a practical experience and (ii) exploring the possible impact of multilayer or multiplex
networks, that may lead to some hidden patterns of influence and interplay between the
self-information mechanism and the viral spreading of the campaign.
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