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Abstract: The article is devoted to the numerical simulation and experimental verification of a
vehicle’s response to kinematic excitation caused by driving along an asphalt road. The source
of kinematic excitation was road unevenness, which was mapped by geodetic methods. Vertical
unevenness was measured in 0.25 m increments in two longitudinal profiles of the road spaced
two meters apart with precise leveling realized by geodetic digital levels. A space multi-body
computational model of a Tatra 815 heavy truck was adopted. The model had 15 degrees of freedom.
Nine degrees of freedom were tangible and six degrees of freedom were intangible. The equations of
motion were derived in the form of second-order ordinary differential equations and were solved
numerically by the Runge–Kutta method. A custom computer program in MATLAB was created
for numerical simulation of vehicle movement (eps = 2−52). The program allowed simulation of
quantities such as deflections, speeds, accelerations at characteristic points of the vehicle, and static
or dynamic components of contact forces arising between the wheel and the road. The response
of the vehicle (acceleration at characteristic points) at different speeds was experimentally tested.
The experiment was numerically simulated and the results were mutually compared. The basic
statistical characteristics of experimentally obtained and numerically simulated signals and their
power spectral densities were compared.

Keywords: numerical simulation; experimental test; heavy truck; kinematic quantities; statisti-
cal characteristics

1. Introduction

A moving load’s effect on transport structures has been observed in literature since
1849. After the collapse of the Chester Rail Bridge in England in the year 1947, civil engineer
R. Willis and mathematician G. G. Stokes published work [1,2] in which they tried to clarify
the cause of the accident and a method for solving equations of motion describing the
problem. Subsequently, a flood of articles appeared that tried to solve the problems of
moving loads analytically, with varying degrees of applicability. The development of
computer technologies has stimulated the transition from analytical to numerical methods
of a solution. Initially, the effects of moving loads were addressed in the context of dynamic
analysis of railway bridges, and gradually attention was paid to road bridges. A complete
overview of the procedures up to 1959 is published in [3]. An overview of the moving load
effects on road bridges up to 1975 is published in [4]. The Czech and Slovak Republics
are known for their high-level theoretical approach to the solution of moving load effects
on transport structures. The work of V. Koloušek and L. Frýba are known all over the
world [5–7]. A generation of younger authors, who already use numerical methods in
their solutions, followed up on the work of their teachers [8–11]. Over time, attention
has shifted from bridges to roads and vehicles [12–14]. Computational models of vehicles
with different degrees of aptness, quarter-1D models, half-2D models, and spatial-3D
models began to be developed. Single-layer or multi-layer models of asphalt or concrete
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pavements began to be created. Real unevenness of the road surface began to be taken into
account. A contribution to the development was the appearance of FEM (Finite Element
Method) on the scene. Finite methods have significantly expanded the possibilities of the
solution. Matrix-oriented programming languages of a higher level than MATLAB [15]
contributed to the development of numerical methods and the programming activities of
engineers. The current situation in engineering practice is very inclined to solve interaction
problems that have a theoretical and experimental foundation [16]. In general, it is stated
that the research is aimed at solving increasingly complicated mathematical methods,
which are used as a mathematical apparatus for solving these tasks. The final results of
a theoretical task contain the large number of factors that are included in the calculation.
If the problem is complicated, a detailed solution is needed to monitor and evaluate all
aspects [17–20]. Monitoring, recording, and evaluating experimental measurements also
form a very complicated part of the task. The process is time consuming and requires very
precise work. However, it represents a possibility of verifying numerically obtained results.
Therefore, the penetration of these two tasks is very valuable, and the results connected
with it have a great weight in engineering and scientific practice [21–23].

There are many articles paying attention to numerical studies. Fewer papers are
devoted to experimental studies. The contribution sought here is, as far as possible, to
compare the results of numerical simulations of vehicle movement along the road with
the results of experimental tests. This comparison will help engineers realize the current
possibilities of applying numerical simulations in practice. It can also motivate them to
look for new effective solutions. In the present state of knowledge, this work works with a
combination of numerical and experimental analyses; with such a large amount of data
study creates an original contribution to solving this engineering problem.

2. Computational Model of Vehicle

A multi-body computational model of vehicles can be created on three different
qualitative levels: 1D–quarter model, 2D–plane model, and 3D–spatial model. Every model
has its advantages and disadvantages, and under certain assumptions, it can be used as
a solution for real practical problems [5]. The behavior of the multi-body computational
model is described by a system of ordinary differential equations. The equations of motion
can be derived in the sense of the component element method [24]. The relation between
the components of displacements {r(t)}, corresponding to individual degrees of freedom,
and deformations of joining elements {d(t)} can be expressed by the transposed static
matrix [A]T:

{d(t)} = [A]T {r(t)} (1)

Dependence between elastic forces in joining elements (in the sense of the action of
mass objects on joining elements) and its deformations is described by the equation

{Fre(t)} = [k] {d(t)} (2)

where [k] is the diagonal stiffness matrix of joining elements. Dependence of damping
forces on the velocity of deformations {

.
d(t)} is described by the equation

{Fd(t)} = [b] {
.
d(t)} (3)

where [b] is a diagonal damping matrix. The derivation according to time t is denoted by a
dot above the symbol. Friction forces are considered as

if {
.
d(t)} ≥ +

.
dc {Ff(t)} = +{f}

if {
.
d(t)} ≥ −

.
dc {Ff(t)} = −{f}

if abs {
.
d(t)} < +

.
dc {Ff(t)} = +{f}T{

.
d(t)}/

.
dc

(4)
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Resulting forces in joining elements in action on mass objects are

{FJE(t)} = −{Fre(t)} − {Fd(t)} − {Ff(t)} (5)

Sign (–) is due to the principle of action and reaction. From the forces in joining
elements {FJE(t)}, the static equivalents corresponding to individual degrees of freedom
{FDF(t)} are calculated by

{FDF(t)} = [A] {FJE(t)} (6)

The gravity forces {FG} and reactions in supports {FRS(t)} must be added to the forces
corresponding to individual degrees of freedom {FDF(t)}. In this manner we obtain the
complete vector of forces {FR(t)} acting on the computing model of vehicle:

{FR(t)} = {FDF(t)} + {FDF,KO(t)} = {FDF(t)} + {FG} + {FRS(t)} (7)

The system of equations of motion describing the vibration of the computational
model of vehicle is then expressed by the relation

[m]{..
r(t)} = {FR(t)} (8)

where [m] is a diagonal mass matrix.
For this paper the spatial model of the vehicle was adopted, Figure 1. The model has

15 degrees of freedom and 10 joining elements. Tangible degrees of freedom (in number
9) correspond to movements of the mass points of the model, and intangible degrees
of freedom (in number 6) correspond to movements of the contact points with the road.
The displacement components of the individual points of the vehicle model (vector {r(t)})
are numbered 1–15 (positive orientation is indicated by an arrow). The joining elements
are numbered from 1 to 10 by numbers in rings. The individual columns of the matrix
[A]T represent the deformations of the joining elements as a result of the unit states of
displacements (where one element of the vector {r(t)} is equal to 1 and the others are zero).
The spatial model can capture the heave, pitch, and roll effects of the upper mass on the
contact forces between the wheels and the runway.

Figure 1. Computational model of vehicle.

The first step is to generate the vector {r(t)} and the matrix [A]T that is dependent on
it. The second step is to calculate the vector {d(t)}.

{r} = [r1(t), r2(t), r3(t), r4(t), r5(t), r6(t), r7(t), r8(t), r9(t), u5(t), u6(t), u7(t), u8(t), u9(t), u10(t)]
T (9)
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{d} = [d1(t), d2(t), d3(t), d4(t), d5(t), d6(t), d7(t), d8(t), d9(t), d10(t)]
T = [A]T{r} =

=



1 −a −d −1 0 0 0 0 0 0 0 0 0 0 0
1 −a +d 0 −1 0 0 0 0 0 0 0 0 0 0
1 +b −e 0 0 −1 0 0 0 0 0 0 0 0 0
1 +b +e 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 +1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 +1 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 +1 −c 0 0 0 0 −1 0 0 0
0 0 0 0 0 +1 +c 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 +1 −c 0 0 0 0 −1 0
0 0 0 0 0 0 0 +1 +c 0 0 0 0 0 −1





r1(t)
r2(t)
r3(t)
r4(t)
r5(t)
r6(t)
r7(t)
r8(t)
r9(t)
u5(t)
u6(t)
u7(t)
u8(t)
u9(t)
u10(t)



=

=



r1(t)− a · r2(t)− d · r3(t)− r4(t)
r1(t)− a · r2(t) + d · r3(t)− r5(t)
r1(t) + b · r2(t)− e · r3(t)− r6(t)
r1(t) + b · r2(t) + e · r3(t)− r8(t)

r4(t)− u5(t)
r5(t)− u6(t)

r6(t)− c · r7(t)− u7(t)
r6(t) + c · r7(t)− u8(t)
r8(t)− c · r9(t)− u9(t)
r8(t) + c · r9(t)− u10(t)



(10)

By mechanical multiplication of the matrices according to Equations (2) to (8), we
obtain the needed Equation (11) by

[m]{..
r(t)} = {FR(t)}. (11)

The mass matrix [m] in Equation (11) is diagonal. The elements of the main diagonal are
presented in the row matrix [m]D (12). The last six elements are zero, since the computational
model has also massless degrees of freedom u5(t), u6(t), u7(t), u8(t), u9(t), u10(t).

[m]D = [m1, Iy1, Ix1, m2, m3, m4, Iy4, m5, Iy5, 0, 0, 0, 0, 0, 0]. (12)

The first nine equations in the system (11) are equations of motion and the last six
equations give the expressions for the reactions of the road:

..
r1(t) = −{b1 ·

.
d1(t) + k1 · d1(t) + b2 ·

.
d2(t) + k2 · d2(t) + b3 ·

.
d3(t) + k3 · d3(t)+

+b4 ·
.
d4(t) + k4 · d4(t) + f3 ·

.
d3(t)/

.
dc + f4 ·

.
d4(t)/

.
dc}/m1,

..
r2(t) = +{a · (b1 ·

.
d1(t) + k1 · d1(t)) + a · (b2 ·

.
d2(t) + k2 · d2(t))−

−b · (b3 ·
.
d3(t) + f3 ·

.
d3(t)/

.
dc + k3 · d3(t))−

−b · (b4 ·
.
d4(t) + f4 ·

.
d4(t)/

.
dc + k4 · d4(t))}/Iy1,

..
r3(t) = +{d · (b1 ·

.
d1(t) + k1 · d1(t))− d · (b2 ·

.
d2(t) + k2 · d2(t))+

+e · (b3 ·
.
d3(t) + f3 ·

.
d3(t)/

.
dc + k3 · d3(t))−

−e · (b4 ·
.
d4(t) + f4 ·

.
d4(t)/

.
dc + k4 · d4(t))}/Ix1,

..
r4(t) = +{b1 ·

.
d1(t) + k1 · d1(t)− b5 ·

.
d5(t)− k5 · d5(t)}/m2,

..
r5(t) = +{b2 ·

.
d2(t) + k2 · d2(t)− b6 ·

.
d6(t)− k6 · d6(t)}/m3,

..
r6(t) = +{b3 ·

.
d3(t) + f3 ·

.
d3(t)/

.
dc + k3 · d3(t)− b7 ·

.
d7(t)− k7 · d7(t)− b8 ·

.
d8(t)− k8 · d8(t)}/m4

..
r7(t) = +{c · (b7 ·

.
d7(t) + k7 · d7(t))− c · (b8 ·

.
d8(t) + k8 · d8(t))}/Iy4

..
r8(t) = +{b4 ·

.
d4(t) + f4 ·

.
d4(t)/

.
dc + k4 · d4(t)− b9 ·

.
d9(t)− k9 · d9(t)− b10 ·

.
d10(t)− k10 · d10(t)}/m5

..
r9(t) = +{c · (b9 ·

.
d9(t) + k9 · d9(t))− c · (b10 ·

.
d10(t) + k10 · d10(t))}/Iy5.

(13)
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FRS,5(t) = (m1
2 ·

b
s + m2) · g− (b5 ·

.
d5(t) + k5 · d5(t)),

FRS,6(t) = (m1
2 ·

b
s + m3) · g− (b6 ·

.
d6(t) + k6 · d6(t)),

FRS,7(t) = (m1
4 ·

a
s +

m4
2 ) · g− (b7 ·

.
d7(t) + k7 · d7(t)),

FRS,8(t) = (m1
4 ·

a
s +

m4
2 ) · g− (b8 ·

.
d8(t) + k8 · d8(t)),

FRS,9(t) = (m1
4 ·

a
s +

m5
2 ) · g− (b9 ·

.
d9(t) + k9 · d9(t)),

FRS,10(t) = (m1
4 ·

a
s +

m5
2 ) · g− (b10 ·

.
d10(t) + k10 · d10(t)).

(14)

3. Road Unevenness

Road unevenness is the source of vehicle kinematic excitation. It is an integral part of
the numerical solution of the vehicle response. It is possible to generate a random road
profile of a certain category A–H according to the international standard (ISO 8606) [25]
or to map unevenness on the selected section of the road. For this article, the geodetic
method of exact leveling was used to identify road unevenness. Vertical road unevenness
was measured in 0.25 m increments on a 110 m long section in two profiles, left and right,
2 m apart. The road has a small slope, 0.48%. In numerical calculations, the slope of the
road is neglected. The left and right road profiles are shown in Figure 2.

Road unevenness is random. Unevenness in the monitored section on the left and right
longitudinal road profile represents only one implementation of the random process. The
basic statistical characteristics that characterize the longitudinal profile from a statistical
point of view are given in Table 1.

Figure 2. Left and right road profiles.



Mathematics 2021, 9, 678 6 of 23

Table 1. Statistical characteristics of the road profiles.

uL uR

Mean value u 0.5874 mm 0.3812 mm
Arithmetic mean deviation Ra 8.1329 mm 7.0686 mm

Root mean square (RMS) average deviation Rq 10.0791 mm 9.0668 mm
Dispersion σ2 101.5884 mm2 82.2073 mm2

Effective value RMS 10.0962 mm 9.0748 mm
Asymmetry coefficient Rsk 0.2454 0.1128

Kurtosis Rku 2.3314 2.6591
The greatest depth of unevenness −17.9348 mm −18.8316 mm
The largest height of unevenness 21.4085 mm 20.9047 mm

Overall height of the profile 39.3433 mm 39.7364 mm

It is generally accepted that vertical road unevenness satisfies Gauss’s law of probabil-
ity distribution. A visual view of this assumption can be made from Figure 3, where the
probability distribution histograms for vertical unevenness in the left and right longitudinal
road profiles are compared to Gauss’s law. It should be noted that the length of the 110 m
section is too short for such a comparison to be made seriously.

Figure 3. Histogram of unevenness and Gauss’s law.

The quality of a road surface is assessed by an international standard [7] that divides
roads into 8 categories A to H according to the values of power spectral densities (PSD).
The smoothed PSD Su(Ω) can be approximated in a log-log scale by a straight line. It is
valid that

log Su(Ω) = log Su(Ω0) − k·
(
log Ω − log Ω0

)
(15)

or also

Su(Ω) = Su(Ω0)·
(

Ω
Ω0

)−k
(16)
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where Ω is path angular frequency in [1/m], Ω0 = 1 [1/m] is reference angular frequency,
and k = 2. Figures 4 and 5 show the PSD of the left and right road profile on the log-log
scale. The road can be included in category B.

Figure 4. Power spectral density (PSD) of left road profile in log-log scale.

Figure 5. PSD of right road profile in log-log scale.

4. Numerical Simulation of Vehicle Movement along a Road

A computer program in the MATLAB was developed for numerical simulation of
vehicle movement along the road. Because it is a discrete computational model, the problem
is described by a system of ordinary differential equations. The system of Equation (11)
breaks down into two systems. The equations corresponding to the mass degrees of
freedom in Equation (9) represent the equations of motion themselves in Equation (13),
which are the subject of a numerical solution. The equations corresponding to the mass-less
degrees of freedom in Equation (6) represent the equations for calculating the subsoil
reactions in Equation (14). The second-order equations of motion are replaced by the
first-order equations with the help of suitable substitution:

{r(t)} = {y1(t)} (17)

{ .
r(t)} = {y2(t)} → { .

y2(t)} = {
..
r(t)} (18)

The subject of the solution is then the system of the first-order equations of the type

{ .
y1(t)} = {y2(t)} (19)

{ .
y2(t)} = {

..
r(t)} (20)

The ode45 procedure was used to solve the system of differential Equations (19) and (20).
Relative error tolerance RelTol = 1 × 10−3, absolute error tolerance AbsTol = 1 × 10−6. The
output of the numerical integration was realized in steps of 0.0005 s, which corresponds
to a sampling frequency of 2000 Hz. At the beginning of the simulation at time t = 0, the
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vehicle is at a rest in a state of static equilibrium and is in contact with the road. The rear
axle is at the beginning of the monitored road section. At the end of the simulation, the
front axle is at the end of the monitored section. The vehicle moves at a constant speed
throughout the section. The total weight of the vehicle is 21,500 kg. The damping in the
vehicle tires is neglected in the simulation.

The output of the simulation is the time courses of all kinematic quantities (deflections,
speeds, accelerations) in the characteristic points of the vehicle and the contact forces
between the wheel of the vehicle and the road. The list of monitored quantities is as follows:

r1(t)-vertical deflection of the center of gravity of the sprung mass of the vehicle.
r2(t)-the angle of rotation of the vehicle’s sprung mass in the longitudinal direction about
an axis passing through the center of gravity.
r3(t)-the angle of rotation of the vehicle’s sprung mass in a transverse direction about an
axis passing through the center of gravity.
r4(t)-vertical deflection of the right front axle of the vehicle.
r5(t)-vertical deflection of the left front axle of the vehicle.
r6(t)-vertical deflection of the right rear axle of the vehicle.
r7(t)-the angle of rotation of the right rear axle in the longitudinal direction.
r8(t)-vertical deflection of the left rear axle of the vehicle.
r9(t)-the angle of rotation of the left rear axle in the longitudinal direction.
F5(t)-contact force between the right front wheel and the road.
F6(t)-contact force between the left front wheel and the road.
F7(t)-contact force between the right front wheel of the rear axle and the road.
F8(t)-contact force between the right rear wheel of the rear axle and the road.
F9(t)-contact force between the left front wheel of the rear axle and the road.
F10(t)-contact force between the left rear wheel of the rear axle and the road.

It is possible to quantify velocities
.
ri(t) ≡ rdi, (i = 1, 2, . . . , 9) and accelerations

..
ri(t) ≡ rddi, (i = 1, 2, . . . , 9) for all monitored kinematic quantities. Figures 6–10 show
examples of time courses of selected quantities for a vehicle at a speed of 43.2 km/h.

Figure 6. Vertical deflection of the center of gravity of the sprung mass of vehicle.

Figure 7. Angle of rotation of the sprung mass of vehicle in the longitudinal direction about an axis
passing through the center of gravity.
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Figure 8. Vertical deflection of the right front axle of vehicle.

Figure 9. Speed of vertical motion of the right front axle of vehicle.

Figure 10. Contact force between the left rear wheel of the rear axle and the road.

5. Results

To assess the degree of the correctness of the numerical simulation of the vehicle
response when the vehicle moves along the road, experimental tests were realized. The
experiment was performed with a Tatra T815 vehicle whose parameters were used in the
numerical simulation process. During the test, vertical accelerations were monitored at
three points on the right side of the vehicle: at the center of gravity (CG) of the vehicle’s
sprung mass-sensor, A1; on the right front axle (FA)-sensor, A2; and on the right rear axle
(RA)-sensor A3. See Figure 11.
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Figure 11. Localization of sensors on the vehicle.

Acceleration sensors Brüel & Kjær type BK4508B were used to monitor the response.
The measuring string was composed of these components: sensor, amplifier with a band-
pass filter, analog–digital interface, computer. The signal from the sensor was routed
through a coaxial cable. A detailed view of the sensor and its location on the front and
rear axles are shown in Figure 12. The measuring string was located in the vehicle. The
sampling frequency was 2000 Hz.

Figure 12. Sensor and its location on the front and rear axles.

The length of the monitored section of the road was 100 m. On this section of road, the
average vehicle speed was measured as follows: steel strips and accelerometers (D2 and
D3) were placed on the road in the transverse direction at a distance of 100 m, Figure 13.

Figure 13. Steel strips with accelerometers D2 and D3 at a distance of 100 m.

The average speed was calculated from the known distance and travel time. The
passage of the wheel through the steel strip is manifested as a sharp impulse in the
accelerometer record. By comparing the records of accelerometers D2 and D3, it is possible
to determine the travel time, Figure 14. Travel time tt is determined as the difference
between the end time te and the start time ts of the passage, tt = te − ts. The average speed
of the vehicle is determined as the ratio of the section length and the passage time, v = ls/tt.
The time record from the sensors on the road was synchronized with the time record from
the sensors on the vehicle. A total of 12 vehicle runs were performed in the experiment at
different speeds, from 15.18 km/h to 52.95 km/h.
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Figure 14. Records from accelerometers D2 and D3.

6. Comparison of Numerically and Experimentally Obtained Results

During the experiment, the vehicle passed along the road at a specific speed. The same
phenomenon was simulated by numerical simulation. From the records of vehicle response
obtained by the experiment and by numerical simulation, sections corresponding to the
vehicle movement along the selected section of road in the length of 100 m were selected.
These selected sections were subjected to mutual comparison. Runs at the lowest speed
V = 15.18 km/h and at the highest speed V = 52.95 km/h were chosen for comparison.
The values of the vertical accelerations at three points on the right side of the vehicle were
compared at the center of gravity of the vehicle’s sprung mass-sensor A1, on the front
axle-sensor A2, and on the rear axle-sensor A3.

First, a comparison of the monitored quantities at the vehicle speed V = 15.18 km/h is
presented. Time records lasted 23.71 s and contained 47,421 samples. Figure 15 shows a
visual comparison of the vertical accelerations at the center of gravity of the sprung mass
of the vehicle obtained experimentally and numerically.

Figure 15. Acceleration in the center of gravity (CG) of vehicle sprung mass, V = 15.18 km/h.

The kinematic excitation was random, so the response of the vehicle was also random.
One passage of the vehicle represents only one realization of the random process. From
this point of view, it did not make sense to compare the values of the two records at each
point. It was more realistic to compare the basic statistical characteristics of both records.
Table 2 compares the basic statistical characteristics for experimentally and numerically
obtained values of vertical accelerations at the center of gravity of the vehicle sprung mass.
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Table 2. Statistical characteristics of acceleration in vehicle CG.

Experiment Simulation

Mean value a −0.0019 mm −0.0008 mm
Arithmetic mean deviation Ra 0.3632 mm 0.3469 mm

Root mean square average deviation Rq 0.4688 mm 0.4575 mm
Dispersion σ2 0.2198 mm2 0.2093 mm2

Effective value RMS 0.4688 mm 0.4575 mm
Asymmetry coefficient Rsk 0.4408 0.3230

Kurtosis Rku 3.7620 4.8537
The greatest depth of record −2.0433 mm −2.1635 mm
The largest height of record 2.4146 mm 2.3314 mm
Overall height of the record 4.4579 mm 4.4950 mm

The density of probability distribution or distribution function provide complete
information about the random variable. Therefore, in the next step, these characteristics
are compared with each other, Figures 16 and 17.

Figure 16. Density of probability distribution, acceleration in vehicle CG.

Figure 17. Distribution function, acceleration in vehicle CG.

Frequency spectra are needed to evaluate the dynamic behavior of structures in the
frequency domain. Power spectral densities (PSD) are often used. In the next step, the PSDs
were also compared with each other. The Fast Fourier Transform (FFT) was used to calculate
the frequency spectra. The FFT works with the number of 2n samples, so 215 = 32,768
samples from the beginning of acceleration records were selected for the analysis. As we
can see from Figure 18, the dominant frequencies were in the range of 0–10 Hz, so the
PSD was compared in this frequency range. The comparison of the PSDs of the vertical
accelerations at the center of gravity of the vehicle sprung mass for experimentally and
numerically obtained records is shown in Figure 19.
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Figure 18. PSD of vertical accelerations in vehicle CG.

Figure 19. PSD of vertical accelerations in vehicle CG, 0–10 Hz.

Although the frequency clusters for both records are similar, the powers of individual
frequencies in the simulated record were significantly lower.

The acceleration records on the right front axle were compared similarly. Figure 20
shows a visual comparison of vertical accelerations on the right front axle.

Figure 20. Acceleration on right front axle, V = 15.18 km/h.

Table 3 compares the basic statistical characteristics for experimentally and numerically
obtained values of vertical accelerations on the right front axle. The density of probability
distribution and distribution function are compared in Figures 21 and 22.
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Table 3. Statistical characteristics of acceleration on right front axle.

Experiment Simulation

Mean value a 0.0031 mm −0.0008 mm
Arithmetic mean deviation Ra 0.5311 mm 0.5878 mm

Root mean square average deviation Rq 0.6786 mm 0.8324 mm
Dispersion σ2 0.4605 mm2 0.6929 mm2

Effective value RMS 0.6786 mm 0.8324 mm
Asymmetry coefficient Rsk 0.0809 0.1851

Kurtosis Rku 4.7239 6.8217
The greatest depth of record −5.2235 mm −5.6434 mm
The largest height of record 6.4155 mm 6.7649 mm
Overall height of the record 11.6390 mm 12.4084 mm

Figure 21. Density of probability distribution, acceleration on vehicle front axle (FA).

Figure 22. Distribution function, acceleration on vehicle FA.

The comparison of PDSs is shown in Figure 23. The dominant frequencies were
located in the frequency range of 0–25 Hz. Although the same frequency components
appear in both records, their powers were completely different.

Figure 23. PSD of vertical accelerations on vehicle FA, 0–25 Hz.
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In the third, the vertical accelerations on the right rear axle were also compared.
Figure 24 shows a visual comparison of vertical accelerations on the right rear axle.

Figure 24. Acceleration on right rear axle, V = 15.18 km/h.

Table 4 compares the basic statistical characteristics for experimentally and numerically
obtained values of vertical accelerations on the right rear axle. The density of probability
distribution and distribution function are compared in Figures 25 and 26.

Table 4. Statistical characteristics of acceleration on right rear axle.

Experiment Simulation

Mean value a −0.0062 mm −0.0003 mm
Arithmetic mean deviation Ra 0.7076 mm 0.8128 mm

Root mean square average deviation Rq 0.9106 mm 1.1605 mm
Dispersion σ2 0.8292 mm2 1.3468 mm2

Effective value RMS 0.9106 mm 1.1605 mm
Asymmetry coefficient Rsk 0.2835 0.1368

Kurtosis Rku 4.5032 7.6179
The greatest depth of record −4.6194 mm −7.8089 mm
The largest height of record 6.6533 mm 10.1296 mm
Overall height of the record 11.2728 mm 17.9385 mm
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Figure 25. Density of probability distribution, acceleration on vehicle rear axle (RA).



Mathematics 2021, 9, 678 16 of 23

Figure 26. Distribution function, acceleration on vehicle RA.

The comparison of PDSs in the frequency range of 0–10 Hz is made in Figure 27.

Figure 27. PSD of vertical accelerations on vehicle RA, 0–10 Hz.

All kinematic values of the vehicle response depend on the speed of movement of the
vehicle. Speed is the most important parameter entering into the vehicle–road interaction.
It only makes sense to talk about the influence of all other parameters in connection with
a certain specific speed of the vehicle. Therefore, in the following text, a comparison is
made for a higher vehicle speed V = 52.95 km h. Time records lasted 6.7985 s and contained
13,598 samples. Figure 28 shows a visual comparison of vertical accelerations in the center
of gravity of the sprung mass of the vehicle.

Figure 28. Acceleration in the CG of vehicle sprung mass, V = 52.85 km/h.

Table 5 compares the basic statistical characteristics for experimentally and numerically
obtained values of vertical accelerations at the center of gravity of the vehicle. The density
of the probability distribution and distribution function are compared in Figures 29 and 30.
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Table 5. Statistical characteristics of acceleration in vehicle CG.

Experiment Simulation

Mean value a −0.0296 mm −0.0060 mm
Arithmetic mean deviation Ra 1.0412 mm 1.0346 mm

Root mean square average deviation Rq 1.2769 mm 1.2843 mm
Dispersion σ2 1.6307 mm2 1.6495 mm2

Effective value RMS 1.2773 mm 1.2843 mm
Asymmetry coefficient Rsk 0.0532 0.0676

Kurtosis Rku 2.6251 2.9134
The greatest depth of record −3.8163 mm −3.8200 mm
The largest height of record 4.5049 mm 3.8873 mm
Overall height of the record 8.3213 mm 7.7074 mm
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The acceleration record had 13,598 samples. To calculate the frequency spectrum, we
needed 2n samples, that is, either 8192 or 16,384. We decided on 16,384 samples, and the
missing 2786 samples were filled with zeros. The comparison of PDSs in the frequency
range 0–10 Hz is shown in Figure 31.

Figure 31. PSD of vertical accelerations in vehicle CG, 0–10 Hz.
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In the next step, the vertical accelerations on the right front axle were compared.
Figure 32 shows a visual comparison of vertical accelerations on the right front axle.

Figure 32. Acceleration on right front axle, V = 52.95 km/h.

Table 6 compares the basic statistical characteristics for experimentally and numerically
obtained values of vertical accelerations on the right front axle. The density of probability
distribution and distribution function are compared in Figures 33 and 34. The comparison
of PDSs in the frequency range 0–10 Hz is shown in Figure 35.

Table 6. Statistical characteristics of acceleration on vehicle FA.

Experiment Simulation

Mean value a 0.0396 mm −0.0076 mm
Arithmetic mean deviation Ra 2.4080 mm 2.3237 mm

Root mean square average
deviation Rq

3.0531 mm 3.1212 mm

Dispersion σ2 9.3214 mm2 9.7419 mm2

Effective value RMS 3.0533 mm 3.1212 mm
Asymmetry coefficient Rsk 0.0934 0.1137

Kurtosis Rku 3.3311 4.3811
The greatest depth of record −13.8083 mm −14.8321 mm
The largest height of record 14.0480 mm 13.1869 mm
Overall height of the record 27.8563 mm 28.0191 mm

Figure 33. Density of probability distribution, acceleration on vehicle FA.
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Figure 34. Distribution function, acceleration on vehicle FA.

Figure 35. PSD of vertical accelerations on vehicle FA, 0–25 Hz.

In the last step, the vertical accelerations on the right rear axle were compared. Figure 36
shows a visual comparison of vertical accelerations on the right rear axle.

Figure 36. Acceleration on right rear axle, V = 52.95 km/h.

Table 7 compares the basic statistical characteristics for experimentally and numerically
obtained values of vertical accelerations on the right rear axle. The density of probability
distribution and distribution function are compared in Figures 37 and 38.
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Table 7. Statistical characteristics of acceleration on vehicle RA.

Experiment Simulation

Mean value a −0.1588 mm −0.0184 mm
Arithmetic mean deviation Ra 2.4934 mm 2.4533 mm

Root mean square average deviation Rq 3.2557 mm 3.2746 mm
Dispersion σ2 10.5998 mm2 10.7233 mm2

Effective value RMS 3.2596 mm 3.2746 mm
Asymmetry coefficient Rsk 0.2650 0.1038

Kurtosis Rku 5.1084 4.8027
The greatest depth of record −15.7769 mm −19.1264 mm
The largest height of record 25.9766 mm 17.1971 mm
Overall height of the record 41.7536 mm 36.3236 mm

Figure 37. Density of probability distribution, acceleration on vehicle RA.

Figure 38. Distribution function, acceleration on vehicle RA.

The comparison of PDSs in the frequency range 0–10 Hz is shown in Figure 39.

Figure 39. PSD of vertical accelerations on vehicle RA, 0–10 Hz.

7. Conclusions

The development of computers has created conditions for the development of simula-
tion methods. Numerical simulation of vehicle movement along the transport structures
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is a real task today and can be done in real-time. This fact is confirmed by many articles
dealing with this issue. Fewer articles are devoted to experimental measurements or com-
parisons between the results of numerical simulations and the results of experimental tests.
The degree of accuracy of the various quantities obtained by numerical simulation is not
the same. If differential equations are solved in the numerical simulation, where the sought
functions have the meaning of deviations of certain points in time, then these quantities are
calculated most accurately. The first derivatives of these functions according to time, the
speed of movements, are already burdened with a larger error, and the second derivatives
of these functions according to time, the acceleration of movements, are burdened with
the largest error. On the contrary, when monitoring the response of a vehicle, measuring
deviations is very problematic. Accelerations are measured most easily and accurately.
Paradoxically, we are therefore forced to compare what we measure most accurately in
the experiment with what we calculate the least accurately in the numerical simulation.
When simulating the movement of a vehicle along the road, the unevenness of the road
surface is a source of kinematic excitation of the vehicle, the contact between the wheel
and the road is a point and changes discretely with the time step of the simulation. The
source of the vehicle’s kinematic excitation, in reality, is the movement of the wheel hub
on the axle. This depends on the unevenness of the road, the unevenness of the tire, the
pressure in the tire, and the size of the contact area between the tire and the road. The
tire, therefore “smoothes out” the road profile. The real response is more settled than the
response obtained by numerical simulation. It is generally accepted that road unevenness
is governed by Gauss’s law of distribution. If the unevenness is measured on a shorter
section of the road, this may not always be evident, Figure 3. On the contrary, the response
of the vehicle in all cases very well satisfies Gauss’s law of distribution, Figure 40.

Figure 40. Density of probability distribution, acceleration on vehicle FA, V = 15.18 km/h.

All kinematic values of a vehicle’s response depend on the speed of movement of the
vehicle. Speed is the most important parameter entering into the vehicle–road interaction.
It only makes sense to talk about the influence of all other parameters in connection with a
certain specific speed of the vehicle. The theoretical curve (kinematic value versus vehicle
speed) would have a large number of local maxima and spikes [13]. The position of the
spikes is related to the discontinuous, step-changing course of the phase characteristics.
The dependence of the root mean square (RMS) values for vertical accelerations in the
center of gravity of the vehicle’s sprung mass on the vehicle speed V used in the experiment
is shown in Figure 41.
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Figure 41. RMS of acceleration in vehicle CG versus speed V.

It does not make sense to compare the values of the two records at each point. It is more
realistic to compare the basic statistical characteristics of both records. The comparison of
basic statistical characteristics looks quite satisfactory for all monitored quantities. At low
vehicle speeds, it was very good. With increasing speed, the rate of agreement decreased,
but it could always be considered satisfactory.

The effective value RMS is considered in dynamics as a representative quantity of
a given signal. Therefore, Table 8 compares the differences (simulation–experiment) ex-
pressed in percentage (experiment represents 100%) for the observed vehicle speeds and
for the three characteristic points on the vehicle.

Table 8. Differences (Simulation–Experiment) of effective value RMS in (%).

Difference (Simulation–Experiment) in (%) of Experiment

Sensor A1-CG A2-FA A3-RA
V = 15.18 km/h −2.41% +22.66% +27.44%
V = 52.95 km/h +0.55% +2.22% +0.46%

The biggest problem is with frequency spectra comparisons. Although the clusters of
dominant frequencies in the experimental records and simulated records were similar, the
powers were diametrically different. The largest disproportions related to the front axle
response spectra.

Despite all the shortcomings we could mention, the methods of numerical simulation
were applied in engineering practice. The advantage of numerical simulation is that it can
perform interval analysis and simulate phenomena in the early stages of preparation of a
structure, an analysis that could previously be obtained only experimentally on the finished
structure itself; numerical simulation can also simulate phenomena that are problematic to
model experimentally.

So far, an experiment is the only one way to verify the numerically obtained results. We
do not consider one experiment to be sufficient. Due to the random nature of experimental
measurements and the uniqueness of each passage of the vehicle on the pavement, we
plan to perform another series of experimental measurements, which will provide a more
extensive dataset for verification of the results obtained. This will allow the field to move
the state of knowledge another step forward.
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