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Abstract: This paper introduces the concept of close-enough in the context of facility location. It
is assumed that customers are willing to move from their homes to close-enough pickup locations.
Given that the number of pickup locations is expanding every day, it is assumed that pickup locations
can be placed everywhere. Conversely, the set of potential location for opening facilities is discrete
as well as the set of customers. Opening facilities and pickup points entails an installation budget
and a distribution cost to transport goods from facilities to customers and pickup locations. The
(p, t)-Close-Enough Facility Location Problem is the problem of deciding where to locate p facilities
among the finite set of candidates, where to locate t pickup points in the plane and how to allocate
customers to facilities or to pickup points so that all the demand is satisfied and the total cost is
minimized. In this paper, it is proved that the set of initial infinite number of pickup locations is finite
in practice. Two mixed-integer linear programming models are proposed for the discrete problem.
The models are enhanced with valid inequalities and a branch and price algorithm is designed
for the most promising model. The findings of a comprehensive computational study reveal the
performance of the different models and the branch and price algorithm and illustrate the value of
pickup locations.

Keywords: location science; branch and price; pickup points

1. Introduction

Location problems are of great interest in the operational research field. In general,
location problems entail the decision of where to locate a set of facilities and how to allocate
the customers so that the demand is satisfied and the total cost is minimized. Nevertheless,
there are plenty of peculiarities that may differentiate the type of problem to be solved. If
the facilities can be located in a continuous space, it is termed continuous location, while
if the set of potential locations is finite, it is termed discrete location. If the customers’
demand is known in advance, it is known as a deterministic problem whereas if it follows a
distribution it is known as a stochastic problem. If facilities have a capacity, then capacitated
is the adjective. The facilities might be all in one level or belong to different service levels.
There is a vast of literature on location science. The book by [1] presents a good and recent
survey; it covers both basic concepts and advanced concepts as well as applications.

The close-enough concept in network management was first embedded in routing
problems. The Close Enough Traveling Salesman Problem was first studied in [2–5]. This
problem looks for the cheapest route among all those available to customers within a
certain radius.

The willingness of customers to move has also been analyzed in the location context.
In this case, it is assumed that some agents are willing to collaborate with other agents.
Cooperation of agents in a network system has become increasingly frequent and beneficial.
Facilities cooperate transferring capacity [6]; some customers cooperate with others and
pickup non only their goods but the goods of other allocated customers [7]; facilities and
customers all move to delivery areas (mobile facilities), [8–10]. Recently, cooperation in the
determination of a pickup and delivery route has also been studied in [11]. Cooperation is
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a current tendency motivated by new technologies and it is part of the logistic networks
design [12].

Conceptually, pickup points are different from transshipment points. Goods arriving
at a pickup point do not consume more network resources in order to get to customers.
Conversely, goods arriving to a transshipment point do require additional distribution
resources get to their destination.

In this paper, we suppose that there is a finite set of customers and a finite set of poten-
tial facility locations and that each customer is willing to move a certain distance/radius
from their home to pickup their demand. The delivery of the goods entails a distribution
cost and the facility and pickup point location incurs an investment that nonetheless may
be compensated by savings in the distribution costs. The goal is to decide where to install
p facilities and where to install t pickup locations so that all customers are served and
the total distribution cost is minimized. We call the problem, the (p, t)-Close-Enough
Facility Location Problem ((p, t)-CEFLP). Figure 1 illustrates a solution of the problem:
the 18 black points represent customers, the 2 triangle points represent facilities and the
circles represent the area in the plane where each customer is willing to travel to collect
their demand. Any point in the circles is a candidate pickup point. A solution with p = 2
and t = 10 is depicted in the figure; grey points are the pickup points and lines represent
the distribution costs/distances. 15 costumers among the 18 move to pickup points and
3 are directly served from facilities. The 15 customers moving to pickup points share the
10 open pickup points. The cost of this solution is the distribution cost throughout the 13
segments.
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Figure 1. Illustration of a solution with p = 2 and t = 10.

Our problem is different from the cooperative problem introduced in [7] because
in our problem the pickup points can be placed anywhere within a radius whilst in the
cooperative location problem introduced in [7], the pickup points can only be placed in
current customer locations within the radius. In our problem, the set of potential facility
location is discrete whilst the set of potential pickup points is continuous.

The remainder of the paper is organized as follows—in Section 2, we present several
properties of the problem that allow to transform the problem with an infinite number of
pickup locations into a problem with a set of finite locations. The notation and variables to
be used throughout the work are presented in Section 3 along with some of the properties
of the variables. Two mathematical models for the discrete problem, together with some
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families of valid inequalities, are presented in Sections 4 and 5. The details of an exact
branch-and-price algorithm to solve the problem are given in Section 5, and computational
results are reported in Section 6. Finally, the conclusions are reported in Section 7.

2. Optimal Pickup Locations

In this section it is proved that when minimizing distribution cost, pickup points are
never located inside the circles that determine the customers’ areas of movement but at
the borders. Even more, pickup points are not located at any point on the circumference
but at the intersection of two circumferences or at the intersection of a circumference and a
segment connecting one facility and one customer.

The following proposition states that in the optimal solution, the pickup points are
always located at the border of customer’s circles. In other words, one pickup point is not
an interior point for all the customers.

Let I be the set of customers and J the set of potential facility locations. For each i ∈ I,
let Ri be the distance that customer i is willing to travel to pick up his demand.

Proposition 1. Let Ci be the set of points in the circumference with centre in customer i and radius
Ri and let Sij be the set of points in the segment joining customer i with facility j. Let (x∗, y∗) be
the coordinates for a pickup point in an optimal solution for the (p, t)-CEFLP. Then, one of the
following statements hold:

• (x∗, y∗) ∈ Ci ∩ Sij for some i ∈ I, j ∈ J.
• (x∗, y∗) ∈ Ci1 ∩ Ci2 for some i1, i2 ∈ I.

Proof. Let us suppose that (x∗, y∗) does not satisfy any of the statements. Let I′ be the
subset of I that moves to (x∗, y∗) in the optimal solution. Then, (x∗, y∗) belongs to the
interior of the area delimited by the intersection of Ci for all i ∈ I′ or it is on the border
of this area but not at a point of type Ci1 ∩ Ci2 for some i1, i2 ∈ I′ or Ci ∩ Sij for some
i ∈ I′, j ∈ J. Since the goal is to minimize the distribution cost, (x∗, y∗) cannot belong to
the interior of the area delimited by the intersection of Ci for all i ∈ I′ : the closer (x∗, y∗) is
to an open facility, the smaller is the distribution cost. Thus, it holds that (x∗, y∗)

• belongs to Ci∗ for certain i∗ ∈ I and (x∗, y∗) is on the border of Ci∗ .
• is not in Ci∗ ∩ Ci for all i ∈ I′ : i 6= i∗.
• and, (x∗, y∗) 6∈ Ci∗ ∩ Si∗ j for all j ∈ J.

Let j∗ be the facility to which (x∗, y∗) is allocated. Then, the solution that replaces
(x∗, y∗) by Ci∗ ∩ Si∗ j∗ is better than the solution with (x∗, y∗) which contradicts that it
is optimal.

Figure 2 illustrates the two families of candidate pickup locations that Proposition 1
distinguishes—a pickup point is the intersection of a circumsphere and of a segment Ci ∩ Sij
for some i ∈ I and j ∈ J or it is the intersection of two circumferences Ci1 ∩ Ci2 for some
i1, i2 ∈ I. Pickup points in the figure are the non-labelled gray points.

Proposition 1 entails that the infinite potential set of candidate pickup locations can be
reduced to a finite subset. Proposition 1 simplifies the search in the optimization problem
by considerably reducing the feasible region so that the problem can be viewed as a discrete
location problem and not as a continuous problem.

The cardinality of the finite subset of potential optimal pickup points depends on
the relative positions of customers and facilities. From Figure 2, it seems that for each
customer-facility pair there is one candidate pickup point and for each pair of customers
there are two candidate pickup points. If the distance between two customers i1 and i2 is
larger than Ri1 + Ri2 , this pair does not entail a pickup point nor if the distance between a
facility j and a customer i is smaller than Ri. The number

2
(
|I|
2

)
+ |I||J| (1)
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is un upper bound of the cardinality of the finite subset of potential optimal pickup points.
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Figure 2. Illustration of the statements in Proposition 1.

When the potential facility locations are the customer locations, that is, I = J and
Ri = R for all i, the relative position of each pair of elements can be of three types as
depicted in Figure 3. Let dii′ represent the distance between any two points i, i′ ∈ I and
let i1. . . . , i6 ∈ I = J be six customers/potential facilities. If di3i4 > 2R, then the pair (i3, i4)
defines two potential pickup points, if R < di1i2 < 2R then the pair (i1, i2) defines four
potential pickup points and if di5i6 < R, it defines two. When the radii are different the
reasoning is analogous.
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Figure 3. Candidate pickup points when I = J.

Considering I = J in the example in Figure 1, the application of Proposition 1 reduces
the feasible region for pickup points from the areas of the circles to the gray points in
Figure 4.
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Figure 4. Candidate pickup points for the example in Figure 1.

3. Notation and Variables

Apart from sets I and J and parameters p and t, in the following sections, we make
use of the following sets, parameters and variables. Some of them appear only in Section 4,
some only in Section 5 and some in both. For the sake of clarity, we list them all together in
this section.

Sets

• K is the set of candidate pickup points induced by Proposition 1, that is, it is the
set of circumference intersections and segment-circumference intersections.

• For all i ∈ I, Ki is the subset of K that customer i could benefit from, Ki is the
set of elements k of K such that dik ≤ Ri. Ki and Kj might overlap and K is the
union of Ki for all i ∈ I.

• For all i ∈ I, K̄i is the subset of Ki in the border, that is, the set of elements k of K
such that dik = Ri.

• For all k ∈ K, Ik is the set of customers that are willing to move to k, that is,
Ik = {i ∈ I : dik ≤ Ri}.

Parameters

• For all i ∈ I, hi is the demand of customer i.
• For all i ∈ I, Ri is the distance that customer i is willing to travel for picking up

his demand. It is named R when Ri1 = Ri2 for all i1.i2 ∈ I.
• For each i ∈ I, j ∈ J, dij is the distance between i and j.
• For each k ∈ K, j ∈ J, dkj is the distance between k and j.

Variables

• For all j ∈ J, yj ∈ {0, 1} is 1 if facility j is open.
• For all k ∈ K, νk ∈ {0, 1} is 1 if the pickup point k is installed.
• For all i ∈ I, j ∈ J, xij ∈ {0, 1} is 1 if customer i is allocated to facility j,
• For all i ∈ I, k ∈ K, zik ∈ {0, 1}, is 1 if customer i moves to the pickup location k,
• For all k ∈ K, j ∈ J, skj ≥ 0 is the demand supported by facility j through the

pickup point k.
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• For all i ∈ I, k ∈ K, j ∈ J, wikj ∈ {0, 1} is 1 if customer i moves to the pickup
location k and facility j serves the pickup point k, wiij = 1 represents that
customer i is directly served from facility j and thus, does not move to any
pickup point.

Both two-index variables and three-index variables are frequently used when mod-
elling location problems, sometimes even four-index variables, see for instance [13–16]
among others.

The Binary Integer Variables

Since the (p, t)-CEFLP lacks capacity constraints, once the decision of where to locate
the p facilities and the t pickup points is taken, the customers’ allocation is straightforward—
customers pickup their goods at some pickup point as long as it is within their radius or
customers pickup their goods at the nearest facility. Thus, provided that yj ∈ {0, 1} for all
j ∈ J and νk ∈ {0, 1} for all k ∈ K, variables xij, zik and wikj would take integer values, even
if their domains became [0, 1]. Conversely, the location of the pickup points is nontrivial
with regard to facility location. In this section, we show that the problem of locating the
pickup points when the number of open facilities is known is still difficult, in the sense that
if the constraint νk ∈ {0, 1} is replaced by the constraint νk ∈ [0, 1], the optimal solution
changes and it might happen that a solution with fractional pickup locations would be
cheaper than any binary solution.

Let us consider the situation depicted in Figure 5. There are six customers I =
{i1, i2, i3, i4, i5, i6} at coordinates i1 = (16.51, 20), i2 = (23.5, 20), i3 = (20, 26.84), i4 =
(46.51, 20), i5 = (53.5, 20), i6 = (50, 26.84), and six potential facilities J = {j1, j2, j3, j4, j5, j6},
at coordinates j1 = (10, 30), j2 = (30, 30), j3 = (20, 10), j4 = (40, 300), j5 = (60, 30), j6 =
(50, 10) and the radius is Ri = 6 for all i ∈ I. The best solution for p = 6 and t = 3 consists
of opening all the plants and the pickup locations k1, k4 and k7, entailing a cost of 35.46:
customers i1 and i2 move to pickup location k1 which is allocated to facility j3, customer
i3 does not move to any pickup location but moves to facility j1, customers i4, i5 move to
pickup location k4 which is allocated to facility j6 and customer i6 moves to the pickup
location k7, which is allocated to facility j5. If fractional pickup points could be opened,
the solution with νk1 = νk2 = νk3 = νk4 = νk5 = νk6 = 0.5 would be better with a cost of
34.68. The circumsphere and segment intersections give a set of 169 potential pickup points.
However, and for the sake of clarity, we have only depicted the seven pickup points in the
two considered solutions. Note that these six customers and facilities could be part of a
larger problem with more customers and facilities and it would justify that in the integer
solution facilities, j2 and j4 are open but do not serve customers.
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Figure 5. Optimal integer and fractional solutions.
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4. Mixed-Integer Linear Two-Index Formulation

The (p, t)-CEFLP can be modelled as follows.

(P1) min ∑
i∈I

∑
j∈J

hidijxij + ∑
k∈K

∑
j∈J

dkjskj (2)

st ∑
j∈J

yj = p (3)

∑k∈K νk = t (4)

∑
j∈J

xij + ∑
k∈Ki

zik = 1 ∀i ∈ I (5)

∑
j∈J

skj = ∑
i∈Ik

hizik ∀k ∈ K (6)

∑
k∈K

skj ≤ Myj ∀j ∈ J (7)

zik ≤ νk ∀i ∈ I, k ∈ Ki (8)

xij ≤ yj ∀i ∈ I, j ∈ J (9)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (10)

zik ∈ {0, 1} ∀i ∈ I, k ∈ Ki (11)

yj ∈ {0, 1} ∀j ∈ J (12)

νk ∈ {0, 1} ∀k ∈ K (13)

skj ≥ 0 ∀k ∈ K, j ∈ J. (14)

The objective function measures the total cost; the first term is the cost of satisfying the
demand of those customers that do not make use of pickup points but are directly served
from facilities and the second term is the cost of sending goods from open facilities to open
pickup points. Constraint (3) states that the number of open facilities is p and constraint (4)
that the number of open pickup points is t. Constraints (5) guarantee that all the customers
move to a pickup point or are directly served by an open facility. Constraint (6) computes
the amount of product that an open pickup point k distributes. Constraints (7) and (8) entail
that pickup points must be served from open facilities and constraints (9) that customers
that do not make use of pickup points are served from open facilities. M is any upper
bound for the values of ∑k∈K skj, that is, any upper bound for the demand supported
by one facility: in practice, it is the addition of all the customer’s demand, M = ∑i∈I hi.
Constraints (10)–(14) are the domain constraints.

Polyhedral Enhancement

Some valid inequalities follow from the analysis of the problem that make the model
strong.

Proposition 2. For all i ∈ I, the following inequalities are valid inequalities for P1.

∑
j∈J

xij + ∑
k∈Ki\K̄i

zik + ∑
k∈K̄i

νk ≤ 1. (15)

Proof. If customer i is allocated to a facility, then does not move to any of the pickup points
at Ki \ K̄i and if does move to a pickup point at Ki \ K̄i, then the pickup points at K̄i are
closed.
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Proposition 3. For all i ∈ I and j ∈ J, let k(i, j) be the pickup point in Ci ∩ Sij. Then, it holds
that the inequalities

νk(i,j) ≤ yj ∀j ∈ J ∀i ∈ I (16)

are valid inequalities for P1.

Proof. If facility j is closed, none of the pickup points allocated to it can be open.

Remark 1. If I = J, then it holds that yi = xii for all i.

Corollary 1. For all i1, i2 ∈ I such that di1,i2 < Ri1 + Ri2 , let k1(i1, i2) and k2(i1, i2) be the two
points in Ci1 ∩ Ci2 . If I = J, then it holds that the inequalities

∑
j∈J:j 6=i1

xi1 j + νk1(i1,i2) + νk2(i1,i2) + νk(i1,i2) + νk(i2,i1) ≤ 1 ∀i1, i2 ∈ I, di1,i2 < Ri1 + Ri2 (17)

∑
j∈J:j 6=i2

xi2 j + νk1(i1,i2) + νk2(i1,i2) + νk(i1,i2) + νk(i2,i1) ≤ 1 ∀i1, i2 ∈ I, di1,i2 < Ri1 + Ri2 (18)

are valid inequalities for P1.

Proof. If ∑j∈J:j 6=i1 xi1 j = 1, then xi1i1 = yi1 = 0 and from inequality (16), it holds that
νk(i2,i1) = 0. The rest follows from inequality (15). It is analogous when ∑j∈J:j 6=i2 xi2 j = 1.

Remark 2. Allocation variables zik commonly appear in discrete location models. However, only
some of the valid inequalities in the literature for this family can be used for P1. In fact, we point out
that the inequality

∑
i∈Ik

zik ≤ min{(|I| − t + 1), |Ik|}νk ∀k ∈ K, (19)

which is based on the one proposed by [17], is valid for P1. The rest of inequalities in literature for
variables zik which are surveyed in [18] do not apply because I 6⊆ K.

5. Mixed-Integer Linear Three-Index Formulation

The (p, t)-CEFLP can be alternatively modeled as follows.

(P2) min ∑
i∈I

∑
k∈Ki∪{i}

∑
j∈J

hidkjwikj (20)

s.t (3), (4)

∑
j∈J

∑
k∈Ki∪{i}

wikj = 1 ∀i ∈ I (21)

∑
j∈J

wikj ≤ νk i ∈ I, k ∈ Ki (22)

∑
k∈Ki∪{i}

wikj ≤ yj ∀i ∈ I, j ∈ J (23)

wikj ∈ {0, 1} ∀i ∈ I, k ∈ Ki ∪ {i}, j ∈ J (24)

yj ∈ {0, 1} ∀j ∈ J (25)

νk ∈ {0, 1} ∀k ∈ K. (26)

The objective function is again the total cost, the cost of satisfying the demand of those
customers that do not make use of pickup points plus the cost of sending goods from open
facilities to open pickup points. Constraints (21) guarantee that all the customers are served,
constraints (22) that only open pickup points can deliver goods and constraints (23) that
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only open facilities can serve pickup points and customers. Finally, constraints (24)–(26)
are the domain constraints.

Remark 3. Valid inequalities (16) apply and strengthen P2.

Inequalities (15) and (19) and inequalities in Corollary 1 can be easily adapted as
stated in the following remark.

Remark 4. Since xij in P1 is wiij in P2 and zik = ∑j∈J wijk, the following inequalities are valid
for P2.

∑
j∈J

wiij + ∑
j∈J

∑
k∈Ki\K̄i

wikj + ∑
k∈K̄i

νk ≤ 1

∑
i∈I

∑
j∈J

wijk ≤ min{(|I| − t + 1), |Ik|}νk ∀k ∈ K

If I = J, then it holds that the inequalities

∑
j∈J:j 6=i1

wi1i1 j + νk1(i1,i2) + νk2(i1,i2) + νk(i1,i2) + νk(i2,i1) ≤ 1 ∀i1, i2 ∈ I, di1,i2 < Ri1 + Ri2

∑
j∈J:j 6=i2

wi2i2 j + νk1(i1,i2) + νk2(i1,i2) + νk(i1,i2) + νk(i2,i1) ≤ 1 ∀i1, i2 ∈ I, di1,i2 < Ri1 + Ri2

are valid inequalities for P2.

It is not difficult to prove that the LP gap of P2 is smaller than the LP gap of P1. that is,
that the linear relaxation of P2 gives larger objective values than the linear relaxation of P1.

Proposition 4. Let v∗(PLR
1 ) be the optimal value of the linear relaxation of P1 and v∗(PLR

2 ) be the
optimal value of the linear relaxation of P2. It holds v∗(PLR

1 ) ≤ v∗(PLR
2 ).

Proof. It is clear that xij = wiij and that zik = ∑j∈J wijk. Accordingly, replacing zik in (6),
that is,

∑
j∈J

skj = ∑
j∈J

∑
i∈Ik

hiwjk,

it follows that skj = ∑i∈Ik
hiwjk. Thus, the three families of variables in P1, xij, zik and

skj can be written in terms of the variables in P2, that is, wijk. By using these identities,
constraints (5) become constraints (21), constraints (6) are the skj definitions, constraints (8)
become constraints (22), constraints (9) is a subset of constraints in (23) and (7) become

∑
k∈K

∑
i∈Ik

hiwjk ≤ Myj

which is a linear combination of constraints (23) with weights hi and M = ∑i∈I hi.

Branch and Price Algorithm

The P2 formulation has a very small integrality gap but it has a huge number of
variables. Both facts together suggest that a column generation approach is a promising
resolution method. Column generation is a popular approach when handling models
with a lot variables that have good performance in terms of integrality gap, see [19] for
an application to the discrete ordered median problem and [20–23] for solving different
combinatorial problems.
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Let (δ, θ, αi, βik, γij) be the dual variables of constraints (3), (4), (21), (22) and (23)
respectively. The dual problem for the linear relaxation of P2 is the following Linear
Relaxation Master Problem (LRMP).

(LRMP) max pδ + tθ + ∑
i∈I

αi

s.t. αi + βik + γij ≤ hidkj ∀j ∈ J, i ∈ I, k ∈ Ki

δ−∑
i∈I

γij ≤ 0 ∀j ∈ J

θ − ∑
i∈Ik

βik ≤ 0 ∀k ∈ K

βik ≤ 0 ∀i ∈ I, k ∈ K

γij ≤ 0 ∀i ∈ I, j ∈ J

αi free ∀i ∈ I

δ, θ. free

In order to apply the column generation approach, let us assume that we are given a
subset of intersection points K̂ ⊂ K that defines a restricted linear relaxation of the Master
Problem, from now on ReLRMP. Let (δ∗, θ∗, α∗, β∗, γ∗) be the optimal solution of ReLPMP.
Then, the reduced cost c̃k of the column νk for all k ∈ K \ K̂ is

c̃k = ∑
i∈Ik

βik − θ∗

where
βik ≤ hidkj − α∗i − γ∗ij, ∀j ∈ J, i ∈ Ik.

The pricing subproblem, the problem of obtaining the maximum value for c̃k, can be
directly obtained without optimizing.

Proposition 5. Let (δ∗, θ∗, α∗, β∗, γ∗) be the optimal solution of ReLPMP for K̂ ⊂ K. Then, the
maximum reduced cost ck of the column νk is

ck = ∑
i∈Ik

min
j∈J
{hidkj − α∗i − γ∗ij} − θ∗, ∀k ∈ K \ K̂.

Proof. It follows from maximizing ∑i∈Ik
βik − θ∗ subject to βik ≤ hidkj − α∗i − γ∗ij for all

j ∈ J, i ∈ Ik.

ck is an estimation of the improvement in the objective function if the pickup point k
is introduced in ReLRMP. If ck ≤ 0 for all k ∈ K \ K̂, the current solution of ReLRMP is also
optimal for the LRMP and the column generation approach is finished. Otherwise, each
positive value proposes the addition of a new column (variable) to the current reduced
master problem to proceed further. In each iteration, the optimal value of ReLRMP, zReLRMP,
not only gives an upper bound of the optimal value of LRMP, zLRMP, but also a lower
bound of it. zLRMP cannot be reduced more than the smaller reduced cost ck for each
customer i if k ∈ Ki, hence

zReLRMP + ∑
i∈I

min
k∈Ki

ck ≤ zLRMP ≤ zReLRMP.

Algorithm 1 clearly describes the branch and price procedure that we propose. K0 is
a subset of K, such that K0 ∩ Ki 6= ∅ for all i ∈ I, ideally K0 has exactly one element from
each Ki.
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Algorithm 1: Branch and price algorithm

1 Initialization: K̂ = K0, GAP=1. UB =∞, ε = 0.01 ;
2 while GAP > ε do
3 Solve ReLRMP ;
4 Result: Primal (y∗, ν∗, w∗) and dual (δ∗, θ∗, α∗, β∗, γ∗) solutions ;
5 forall k ∈ K \ K̂ do
6 forall i ∈ I do
7 β̂ik = minj∈J{hidkj − α∗i − γ∗ij} ;

8 ck = ∑i∈I β̂ik − θ∗ ;

9 forall i ∈ I do
10 k′ = arg mink∈Ki

{ck : ck < 0} ;
11 Update K̂ := K̂ ∪ {k′} ;

12 UB = zReLRMP ;
13 LB = zReLRMP −∑i∈I mink∈Ki

ck ;
14 GAP = UB−LB

LB ;

6. Computational Results

In this section, the performance of the two linear formulations as well as the perfor-
mance of the polyhedral enhancement and of the branch and price algorithm is illustrated.
The experiment has been coded in C++, using IBM ILOG CPLEX Optimization Studio. The
characteristics of the computer are an 8 GB RAM and an Intel Core i5 2 GHz processor. The
default options of CPLEX v12.8 have been used for solving the models P1 and P2 as well
for solving the submodels in the branch and price algorithm.

For the computational experiments, we have used the pmedcap1.txt file, which con-
tains the problems solved in [24], originally generated for the p-median problem. It always
holds that I = J, that is, customers are the potential facility locations. From the instances in
pmedcap1.txt, we have defined 60 different instances for our problem with constant radius.
The number of facilities and pickup points has been decided by the graphic distribution of
the points. Table 1 describes the 60 different instances we have used in this section. We
call n the number of potential facilities and/or customers, that is, n = |I| = |J|. Instances
i1-i6, i16-i21, i31-i36 and i46-i51 follow from the corresponding first n nodes of the first
instance in pmedcap1.tx1 with 50 nodes, instances i7-i15, i22-i30, i37-i45 and i52-i60 follow
from the corresponding first n nodes of the first instance in pmedcap1.tx1 with 100 nodes.
Instances i16-i30 have the same data as instances i1-i15 but with a different value for R.
Instances i31-i45 are also i1-i15 for another radius, and so on. For each instance, we have
fixed values for p, t and R as shown in Table 1. The radius is constant at each instance.
The radius for i1-i15 is the 2.5% of the maximum euclidean distance between nodes in the
instance; the radius for i16-i30 is 5% this maximum and the radius for i31-i45 and i46-i60
is 10% and 15% respectively. Column #k gives the size of the set K. Note that when R is
small, |K| is farther form the upper bound (1) than when R is medium: i1, i16, i31 and i46
differ in R and |K| grows as R does: the bound 2(|I|2 ) + |I||J| is 2(10

2 ) + 10 ∗ 10 = 190 while
|K| goes from 90 to 106. Similarly, for all the 4-uples of instances with the same data but
different radii, iq, iq + 15, iq + 30, iq + 45 for all q ∈ {1. . . . , 15}. For q = 15, |K| varies in
{9974, 10294, 11086, 12222}.



Mathematics 2021, 9, 670 12 of 17

Table 1. Data instances and P1 and P2 dimensions.

Data Instances P1 P2Instance
n p t R #k m n01 nc m n01

i1 10 2 3 2.69 90 312 300 1000 202 1100
i2 20 2 10 2.98 382 1253 1231 8040 831 8982
i3 30 3 10 2.98 874 2821 2789 27120 1887 30454
i4 35 3 10 2.98 1196 3841 3804 43085 2575 48411
i5 40 4 10 2.98 1568 5047 5005 64320 3399 73488
i6 50 4 10 2.98 2462 7885 7833 125600 5323 143562
i7 55 4 10 3.25 2984 9550 9493 167145 6456 191634
i8 60 4 10 3.25 3560 11493 11431 217200 7813 256280
i9 65 4 10 3.25 4186 13552 13485 276315 9236 329836

i10 70 4 10 3.25 4858 15765 15693 344960 10767 415478
i11 75 4 10 3.25 5588 18152 18075 424725 12414 514688
i12 80 4 10 3.25 6362 20645 20563 515360 14123 624122
i13 85 4 10 3.25 7190 23366 23279 618375 16006 753490
i14 90 4 10 3.25 8068 26555 26463 734220 18307 926608
i15 100 4 10 3.25 9974 33197 33095 1007400 23023 1312174

i16 10 2 3 5.39 92 328 316 1020 216 1242
i17 20 2 10 5.96 394 1408 1386 8280 974 11854
i18 30 3 10 5.96 894 3139 3107 27720 2185 39414
i19 35 3 10 5.96 1222 4304 4267 43995 3012 63732
i20 40 4 10 5.96 1608 5806 5764 65920 4118 102288
i21 50 4 10 5.96 2522 9165 9113 128600 6543 204622
i22 55 4 10 6.51 3092 11693 11636 173085 8491 303667
i23 60 4 10 6.51 3686 14299 14237 224760 10493 417206
i24 65 4 10 6.51 4332 17253 17186 285805 12791 561057
i25 70 4 10 6.51 5030 20297 20225 357000 15127 720850
i26 75 4 10 6.51 5774 23633 23556 438675 17709 911999
i27 80 4 10 6.51 6570 27116 27034 532000 20386 1125370
i28 85 4 10 6.51 7424 30973 30886 638265 23379 1380429
i29 90 4 10 6.51 8322 35594 35502 757080 27092 1717512
i30 100 4 10 6.51 10294 45371 45269 1039400 34877 2497894

i31 10 2 3 10.77 94 352 340 1040 238 1464
i32 20 2 10 11.92 420 1786 1764 8800 1326 18920
i33 30 3 10 11.92 962 4299 4267 29760 3277 72242
i34 35 3 10 11.92 1306 5976 5939 46935 4600 119396
i35 40 4 10 11.92 1724 8513 8471 70560 6709 206044
i36 50 4 10 11.92 2704 14364 14312 137700 11560 455654
i37 55 4 10 13.01 3324 19843 19786 185845 16409 739389
i38 60 4 10 13.01 3978 25449 25387 242280 21351 1068978
i39 65 4 10 13.01 4664 31095 31028 307385 26301 1439539
i40 70 4 10 13.01 5420 37459 37387 384300 31899 1895280
i41 75 4 10 13.01 6256 45666 45589 474825 39260 2528806
i42 80 4 10 13.01 7094 52542 52460 573920 45288 3118054
i43 85 4 10 13.01 7992 60791 60704 686545 52629 3867247
i44 90 4 10 13.01 8964 70554 70462 814860 61410 4806774
i45 100 4 10 13.01 11086 93774 93672 1118600 82488 7259786

i46 10 2 3 16.16 106 433 421 1160 307 2166
i47 20 2 10 17.88 442 2203 2181 9240 1721 26842
i48 30 3 10 17.88 1032 6064 6032 31860 4972 123162
i49 35 3 10 17.88 1396 8617 8580 50085 7151 208771
i50 40 4 10 17.88 1844 12645 12603 75360 10721 366644
i51 50 4 10 17.88 2862 21290 21238 145600 18328 794212
i52 55 4 10 19.52 3636 34148 34091 203005 30402 1509316
i53 60 4 10 19.52 4352 44494 44432 264720 40022 2189612
i54 65 4 10 19.52 5116 55680 55613 336765 50434 3008636
i55 70 4 10 19.52 5972 69046 68974 422940 62934 4068282
i56 75 4 10 19.52 6866 84296 84219 520575 77280 5380916
i57 80 4 10 19.52 7822 98965 98883 632160 90983 6774382
i58 85 4 10 19.52 8794 114545 114458 754715 105581 8368969
i59 90 4 10 19.52 9896 135054 134962 898740 124978 10528826
i60 100 4 10 19.52 12222 181436 181334 1232200 169014 15913522

Table 1 also shows the P1 and P2 dimensions for the 60 chosen instances. For each
instance, it shows the number of constraints of the model (m), the number of 0-1 variables
(n01) and the number of continuous variables (nc). Table 1 corroborates that P1 has more
rows but significantly less variables than P2. The number of variables in P1 when solving
i60 is smaller than the number of variables in P1 when solving i15. In the following, we
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shall see that within a two-hour time-limit, we successfully solved 16 of 60 instances with
P1 and 57 with P2.

In the sequel we split the computational results into two subsections. In the first
one, the two optimization models are compared, in the second one, the best of the two
optimization models is compared with the branch and price algorithm.

6.1. Optimization Models Results

Table 2 compares resolution times and linear relaxation gaps of P1 by the plain use of
CPLEX with different polyhedral enhancements and P2. Results are only for the instances
that P1 can afford within two hours. The first two columns indicate the instance and
the objective value, the third and fourth columns give the time in seconds and the linear
relaxation gap for P1. Next, each pair of columns gives the time in seconds and the linear
relaxation gap when the different families of valid inequalities are added. In all cases, the
addition of all the valid inequalities in the family have been implemented. From Table 2, it
follows that none of the valid introduced inequalities significantly improves the solution
time nor the linear relaxation gap. In view of the gap results, no separation procedure has
been implemented. If the linear relaxation were improved, the separation could have an
effect on the time, but it is not the case. The last two columns give the time and linear
relaxation gap for P2. Table 2 illustrates that the objective value decreases with R : i1, i16, i31
and i46 (similarly i2, i17, i32 and i47, and the other instances that only differ in the radius)
differ in R going from the 2.5% of the maximum distance in the network, to the 5,10 and
15% maximum distance in the network. If customers are willing to move further by free
choice, the transportation cost of the system is cheaper. Time in seconds for P1 depends on
the size of the problem and grows exponentially. The linear relaxation gap of P1 is always
large, 69% on average. The addition of inequalities (15), (16), (17) and (18) independently,
slightly reduce the linear relaxation gap and moderately reduce the time. The addition
of valid inequalities (19) has no effect whatsoever while the addition of all the rest has no
relevant impact. The most promising family of valid inequalities is the family (16). These
valid inequalities state that if a facility is closed, the pickup points that were generated
by the intersection of the segment, going from this facility to a certain customer and the
customer circumferences, will be closed. Since model P1 requires such long times, several
decomposition algorithms based on Lagrangian relaxations were checked in a previous
computational experience. However, since decomposition algorithms require the optimal
solutions of sub-models and the linear relaxation of P1 is weak, the algorithms failed in
obtaining good lower bounds.

Table 2. P1, enhanced P1 and P2.

P1 P1+(15) P1+(16) P1+(17)+(18) P1+(19) P1+(15)+. . . +(18) P2
Instance

Obj Time
(s.)

GAP
%

Time
(s.)

GAP
% Time GAP

%
Time
(s.)

GAP
%

Time
(s.)

GAP
%

Time
(s.)

GAP
%

Time
(s.)

GAP
%

i1 1600.86 1 62.90 0 62.90 1 61.65 0 62.00 1 62.90 0 61.65 0.00 0.00
i2 4771.03 88 82.26 28 82.26 12 81.79 46 82.15 72 82.26 10 81.79 0.00 0.00
i3 5364.57 485 65.32 550 65.32 223 64.61 981 64.98 3926 65.32 323 64.61 1.00 0.00
i4 6534.84 1032 60.08 1153 60.08 1418 58.60 3699 59.48 4633 60.08 1279 58.60 1.00 0.00
i5 5359.16 3463 52.99 7069 52.99 5747 51.97 7200 52.57 7200 52.99 4916 51.97 2.00 0.00

i16 1493.16 0 58.06 1 58.06 0 56.68 1 57.29 0 58.06 0 56.68 0.00 0.00
i17 4309.60 70 85.63 75 85.63 22 85.28 88 85.62 44 85.63 21 85.28 0.00 0.00
i18 4837.41 764 67.28 1135 67.28 979 66.64 1344 67.10 2056 67.28 831 66.64 1.00 0.00
i19 6011.42 7200 66.29 1715 66.29 3177 65.25 4335 66.03 5331 66.29 1793 65.25 1.00 0.00
i20 4681.10 7200 58.20 7200 58.19 7200 56.80 7200 57.91 7200 58.19 7034 56.80 2.00 0.00

i31 1258.92 0 41.82 1 41.82 0 39.30 1 41.41 1 41.82 0 39.30 0.00 0.00
i32 3369.58 99 84.53 127 84.39 48 82.54 92 84.53 89 84.53 28 81.98 1.00 0.00
i33 1891.92 1965 91.69 5566 91.69 1902 89.98 1446 91.69 2162 91.69 3667 89.97 2.00 0.29
i34 2666.33 4788 92.61 7200 91.93 4850 91.39 2843 92.61 3670 92.61 5135 91.29 5.00 1.71
i35 2896.84 7200 74.80 7200 74.73 7202 71.64 7200 74.75 7200 74.82 7200 71.27 8.00 0.64

i46 1011.21 1 58.04 1 58.04 1 54.90 0 58.04 1 58.04 1 54.90 0.00 0.00
i47 2366.60 49 90.95 75 90.89 22 89.01 87 90.95 55 90.95 40 88.94 0.00 0.00
i48 1891.92 1936 91.69 5529 91.69 1888 89.98 1371 91.69 2154 91.69 3687 89.97 2.00 0.00
i49 2666.33 4800 92.61 7200 91.93 4937 91.39 2747 92.61 3556 92.61 5055 91.29 8.00 1.92
i50 1297.19 7200 90.54 7200 89.18 7200 88.23 7200 90.54 7200 90.54 7200 87.61 7.00 0.00
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In Table 2, model P2 always gives far better results in terms of both measures—time
and linear relaxation gap, being both negligible.

6.2. Branch and Price Algorithm Results

Table 3 resumes the performance of both P2, which is the best of the two optimization
models, and the branch and price algorithm, Algorithm 1. For P2 plain, the objective
value (Obj), the CPU time in seconds (Time (s.)), the optimality gap (GAP%) and the linear
relaxation gap (GAPLP%) are reported. The linear relaxation gap is always smaller than the
linear relaxation gap reported for P1, even for larger instances. 9.22% is the largest linear
relaxation among all the solved instances where the optimality has been proven. Observe
that for the i45, i59 and i60 instances, the optimization is interrupted due to reaching the
allowed time of 7200 s. For i59 and i60 instances, the solver is interrupted after two hours
in the B&B root node and without any interval for the optimal value. In both cases, a bad
lower bound is provided by the CPLEX preprocessing heuristic algorithms and the feasible
solution given can be anywhere in the feasible region. The value in column Obj is useless
since there is no measure of goodness. 100% in GAP% means that neither upper bound nor
lower bounds are known.

Table 3. Results for P2 and Algorithm 1.

P2 Algorithm
Instance

Obj Time (s.) GAP% GAPLP% z∗ z iter %k Time (s.) GAP%
GR

i1 1600.86 0 0.00 0.00 1600.85 1592.82 3 23.33 0 0.50 1.000
i2 4771.04 0 0.00 0.00 4771.61 4759.71 4 20.68 0 0.25 1.000
i3 5364.58 1 0.00 0.00 5364.58 5323.41 4 11.33 1 0.77 1.000
i4 6534.84 1 0.00 0.00 6534.96 6491.49 4 9.62 2 0.67 1.000
i5 5359.18 2 0.00 0.00 5359.48 5312.66 4 6.76 1 0.87 1.000
i6 7000.77 3 0.00 0.00 7000.76 6962.17 5 5.48 2 0.55 1.000
i7 9603.38 4 0.00 0.00 9620.99 9561.90 4 4.66 3 0.61 0.998
i8 10150.86 4 0.00 0.00 10161.99 10113.48 4 4.33 4 0.48 0.999
i9 11798.25 7 0.00 0.00 11810.42 11753.49 4 4.18 6 0.48 0.999
i10 12546.57 12 0.00 0.04 12558.48 12461.86 3 3.05 6 0.77 0.999
i11 13111.45 17 0.00 0.05 13119.66 13046.49 3 2.86 9 0.56 0.999
i12 14274.46 22 0.00 0.04 14282.22 14212.70 3 2.62 11 0.49 0.999
i13 15692.30 20 0.00 0.00 15699.67 15592.85 3 2.53 10 0.68 1.000
i14 16957.89 29 0.00 0.00 16969.49 16854.53 3 2.40 15 0.68 0.999
i15 18268.59 40 0.00 0.00 18286.17 18116.97 3 2.30 17 0.93 0.999

i16 1493.16 0 0.00 0.00 1493.16 1493.04 4 27.17 0 0.01 1.000
i17 4309.62 0 0.00 0.00 4309.60 4290.34 5 24.11 0 0.45 1.000
i18 4837.43 1 0.00 0.00 4837.41 4814.42 5 13.42 1 0.48 1.000
i19 6011.45 1 0.00 0.00 6011.44 5975.46 4 9.57 1 0.60 1.000
i20 4681.11 2 0.00 0.00 4681.09 4654.04 4 6.72 1 0.58 1.000
i21 6305.05 6 0.00 0.30 6305.02 6259.47 5 6.11 3 0.72 1.000
i22 8828.11 9 0.00 0.12 8828.07 8798.12 4 5.56 5 0.34 1.000
i23 9267.65 15 0.00 0.01 9267.63 9206.66 4 4.99 7 0.66 1.000
i24 10790.93 23 0.00 0.12 10790.89 10723.01 4 4.66 10 0.63 1.000
i25 11447.20 27 0.00 0.00 11447.16 11425.13 4 4.10 13 0.19 1.000
i26 12055.98 50 0.00 0.26 12060.39 11956.46 4 4.33 17 0.86 1.000
i27 13219.74 66 0.00 0.11 13219.70 13164.98 4 4.05 21 0.41 1.000
i28 14471.91 73 0.00 0.00 14471.80 14354.60 4 3.74 23 0.81 1.000
i29 15745.76 234 0.00 0.20 15745.65 15583.45 4 3.85 43 1.03 1.000
i30 16959.35 310 0.00 0.11 16959.28 16871.14 4 2.88 55 0.52 1.000

i31 1258.93 0 0.00 0.00 1258.93 1258.36 3 26.60 0 0.05 1.000
i32 3369.60 1 0.00 0.00 3369.58 3346.01 5 22.62 0 0.70 1.000
i33 3362.89 2 0.00 0.29 3362.88 3347.11 6 15.49 2 0.47 1.000
i34 4458.54 5 0.00 1.71 4458.53 4376.95 5 12.71 3 1.83 1.000
i35 2896.83 8 0.00 0.64 2903.19 2873.44 4 7.77 4 1.02 0.998
i36 4162.12 20 0.00 0.19 4162.09 4149.79 5 7.77 9 0.30 1.000
i37 6062.25 58 0.00 1.13 6062.24 5987.31 5 7.46 20 1.24 1.000
i38 6061.98 94 0.00 0.00 6061.99 6052.23 5 6.91 21 0.16 1.000
i39 7390.02 202 0.00 0.51 7390.02 7320.83 5 6.78 43 0.94 1.000
i40 7804.28 248 0.00 0.00 7804.25 7794.15 5 6.51 63 0.13 1.000
i41 8242.77 370 0.00 0.45 8242.75 8158.03 5 5.93 98 1.03 1.000
i42 9406.53 527 0.00 0.32 9406.51 9315.12 6 6.55 219 0.97 1.000
i43 10301.57 960 0.00 0.42 10301.55 10258.50 6 5.67 212 0.42 1.000
i44 11477.28 5005 0.00 1.65 11487.01 11253.92 7 6.36 679 2.03 0.999
i45 21758.80 7200 43.04 43.04 12516.76 12311.39 7 6.05 1454 1.64 1.738
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Table 3. Cont.

P2 Algorithm
Instance

Obj Time (s.) GAP% GAPLP% z∗ z iter %k Time (s.) GAP%
GR

i46 1011.21 0 0.00 0.00 1011.21 1011.21 3 22.64 0 0.00 1.000
i47 2366.58 0 0.00 0.00 2366.58 2360.26 5 21.95 1 0.27 1.000
i48 1891.93 2 0.00 0.00 1891.92 1883.47 5 13.57 2 0.45 1.000
i49 2666.35 8 0.00 1.92 2666.34 2614.44 6 13.75 6 1.95 1.000
i50 1297.19 7 0.00 0.00 1297.16 1295.34 5 10.52 6 0.14 1.000
i51 1940.13 20 0.00 0.00 1940.11 1937.68 6 9.54 16 0.13 1.000
i52 2791.39 233 0.00 6.78 2791.36 2602.21 8 10.64 122 6.78 1.000
i53 2715.34 299 0.00 6.63 2719.01 2532.23 7 9.21 141 6.87 0.999
i54 3600.35 1368 0.00 9.22 3617.04 3268.32 8 9.25 322 9.64 0.995
i55 3829.49 1484 0.00 8.13 3842.71 3517.26 8 8.94 497 8.47 0.997
i56 3779.41 1410 0.00 4.18 3780.68 3608.18 7 7.76 463 4.56 1.000
i57 4560.92 6181 0.00 6.05 4562.18 4277.17 8 7.99 1271 6.25 1.000
i58 4844.79 4086 0.00 4.24 4844.73 4639.30 9 7.70 1779 4.24 1.000
i59 47146.58 7200 100.00 89.16 5438.35 5093.18 8 7.12 2623 6.35 8.669
i60 57708.76 7200 100.00 90.08 5995.50 5726.92 9 6.92 5717 4.48 9.625

For Algorithm 1, the columns are the following—best optimal value (z∗), lower bound
(z), number of iterations of the algorithm (iter), percentage of the number of pickup point
variables included in the algorithm (%k), CPU time in seconds and optimality gap (GAP%)
obtained as 100 ∗ ((z∗ − z)/z). Finally, the column of the goodness ratio (GR) compares
P2 and Algorithm 1 by computing Obj/z∗. The experiment shows that if we increase the
radius, the percentage of pickup points used by the algorithm will also increase, %k, as
well as the time. This makes sense, since the larger the radius, the greater the number of
intersections considered and consequently the size of P2. Sometimes, less than 10% of the
pickup point variables are required for a solution with an optimality gap smaller than 1%.
Never are more than 30% of the pickup point variables required for finalizing Algorithm 1.

Note that all of the 60 instances in the testbed have been solved by Algorithm 1 and
provide comparable solutions with CPLEX ones, see the goodness ratio GR, requiring
a very small computation time. On the other hand, Algorithm 1 provides much better
solutions for the i45, i59 and i60 instances where the goodness ratio reaches up to 9.625.
Also observe that the optimality GAP of the algorithm is comparable to the gap of the linear
relaxation of the problem; the algorithm solution however, is very close to the optimal
solution of the problem. For example, if the time-limit is removed, instance i45 requires
more than 6 hours to be solved to optimality, and in this case Algorithm 1 requires only
1454 s to provide the optimal solution of the problem.

Figure 6 reports the evolution of the lower and upper bounds with respect to the
number of iterations when the instance i60 is solved with Algorithm 1. Figure 6 illustrates
that the lower bound and the upper bound improve at each iteration resulting in a quick
convergence of the branch and price algorithm.
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Figure 6. Bounds in instance i60 on successive iterations.
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7. Final Remarks

We have addressed in this paper a new facility location problem, the (p, t)-Close-
Enough Facility Location Problem, where customers do not have to be served from an
open facility directly, instead, they can also go to a pickup point. This transportation
network with pickup points results in a distribution cost reduction. The problem has
not been studied before, and we present two mathematical models, a pure integer linear
optimization model with three index variables and a mixed integer linear optimization
model with two index variables, and a branch and price algorithm for it.

The benefit of a mathematical model is that it is easy to use. A branch and price
algorithm as a tool for solving a problem is more difficult than a mathematical model
but it has the competitive advantage of allowing the resolution of larger instances. Both
attributes are desirable in real life and thus both a good mathematical model and a good
algorithm are necessary when handling a new problem.

The computational experiment carried out shows that the three index model clearly
outperforms the two index model, providing the shortest computation times and best gaps,
and it is able to cope with benchmark instances with up to 100 nodes and different number
of pickup points and radii. Moreover, some excellent results have been obtained regarding
the goodness ratio which compares the three index models with the branch and price
algorithm. The branch and price algorithm outperforms CPLEX for the large instances.

As future lines of work, we intend to extend the concept of close-enough to other
real world facility location problems as well as to develop new algorithms for solving
larger instances.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Science and Innovation and the State
Research Agency under grant PID2019-105952GB-I00/AEI/10.13039/ 50110 0 011033, and by the
Spanish Ministry of Science and Innovation and the European Regional Development Fund under
grant PGC2018-099428-B-100.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors thank the financial support from the Spanish Ministry of Science
and Innovation and the State Research Agency under grant PID2019-105952GB-I00/AEI/10.13039/
50110 0 011033, and the financial support from the Spanish Ministry of Science and Innovation and
the European Regional Development Fund under grant PGC2018-099428-B-100.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laporte, G.; Nickel, S.; Saldanha-da-Gama, F. Location Science, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2019. [CrossRef]
2. Gulczynski, D.; Heath, J.; Price, C. The Close Enough Traveling Salesman Problem: A Discussion of Several Heuristics. In

Perspectives in Operations Research; Alt, F., Fu, M., Golden, B., Eds.; Operations Research/Computer Science Interfaces Series;
Springer: Boston, MA, USA, 2006; pp. 271–283.

3. Dong, J.; Yang, N.; Chen, M. Heuristic Approaches for a TSP Variant: The Automatic Meter Reading Shortest Tour Problem. In
Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies; Operations Research/Computer Science
Interfaces Series; Baker, E.K., Joseph, A., Mehrotra, A., Trick, M., Eds.; Springer: Boston, MA, USA, 2007.

4. Shuttleworth, R.; Golden, B.; Smith, S.; Wasil, E. Advances in Meter Reading: Heuristic Solution of the Close Enough Traveling
Salesman Problem over a Street Network. In Operations Research/Computer Science Interfaces; Golden, B., Raghavan, S., Wasil, E.,
Eds.; Springer: Boston, MA., USA, 2008.

5. Yuan, B.; Orlowska, M.; Sadiq, S. On the optimal robot routing problem in wireless sensor networks. IEEE Trans. Knowl. Data
Eng. 2007, 19, 1252–1261. [CrossRef]

6. Corberán, A.; Landete, M.; Peiró, J.; Saldanha-da-Gama, F. The facility location problem with capacity transfers. Transp. Res. Part
E Logist. Transp. 2020, 138, 1366–5545. [CrossRef]

7. Landete, M.; Laporte, G. Facility location problems with user cooperation. TOP 2019, 27, 125–145. [CrossRef]
8. Raghavan, S.; Sahin, M.; Salman, F. The capacitated mobile facility location problems. Eur. J. Oper. Res. 2019, 277, 507–520.

[CrossRef]

http://doi.org/10.1007/978-3-030-32177-2
http://dx.doi.org/10.1109/TKDE.2007.1062
http://dx.doi.org/10.1016/j.tre.2020.101943
http://dx.doi.org/10.1007/s11750-018-00496-9
http://dx.doi.org/10.1016/j.ejor.2019.02.055


Mathematics 2021, 9, 670 17 of 17

9. Friggstad, Z.; Salavatipour, M.R. Minimizing Movement in Mobile Facility Location Problems. In Proceedings of the 2008 49th
Annual IEEE Symposium on Foundations of Computer Science, Philadelphia, PA, USA, 25–28 October 2008; pp. 357–366.

10. Halper, R.; Raghavan, S.; Sahin, M. Local search heuristics for the mobile facility location problem. Comput. Oper. Res. 2015,
62, 210–223. [CrossRef]

11. Hernández-Pérez, H.; Landete, M.; Rodríguez-Martín, I. The single-vehicle two-echelon one-commodity pickup and delivery
problem. Comput. Oper. Res. 2021, 127, 105152. [CrossRef]

12. Alumur, S.A.; Kara, B.Y. ; Melo, M.T. Location and Logistics In Location Science; Springer: Boston, MA, USA, 2015; pp. 419–441.
13. Espejo, I.; Puerto, J.; Rodríguez-Chía, A. A comparative study of different formulations for the capacitated discrete ordered

median problem. Comput. Oper. Res. 2021, 125, 105067. [CrossRef]
14. Leitner, M.; Ljubic, I.; Salazar-González, J.J.; Sinnl, M. The connected facility location polytope. Discret. Appl. Math. 2018,

234, 151–167. [CrossRef]
15. Hamacher, H.W.; Labbé, M.; Nickel, S.; Sonneborn, T. Adapting polyhedral properties from facility to hub location problems.

Discret. Appl. Math. 2004, 145, 104–116. [CrossRef]
16. Merakli, M.; Yaman, H. A capacitated hub location problem under hose demand uncertainty. Comput. Oper. Res. 2017, 88, 58–70.

[CrossRef]
17. Baumgartner, S. Polyhedral Analysis of Hub Center Problems. Master’s Thesis, Universität Kaiserslautern, Kaiserslautern,

Germany, 2003.
18. Corberán, A.; Landete, M.; Peiró, J.; Saldanha-da-Gama, F. Improved polyhedral descriptions and exact procedures for a broad

class of uncapacitated p-hub median problems. Transp. Res. Part B Methodol. 2019, 123, 38–63. [CrossRef]
19. Deleplanque, S.; Labbe, M.; Ponce, D.; Puerto, J. A branch-price-and-cut procedure for the discrete ordered Median problem.

INFORMS J. Comput. 2020, 32, 582–599. [CrossRef]
20. Blanco, V.; Japón, A.; Ponce, D.; Puerto, J. On the multisource hyperplanes location problem to fitting set of points. Comput. Oper.

Res. 2021, 128, 105124. [CrossRef]
21. Fernández, E.; Kalcsics, J.; Nez-del Toro, C.N. A branch-and-price algorithm for the Aperiodic Multi-Period Service Scheduling

Problems. Eur. J. Oper. Res. 2017, 263, 805–814. [CrossRef]
22. García, S.; Labbé, M.; Marín, A. Solving large p-median problems with a radius formulation. INFORMS J. Comput. 2011,

23, 546–556. [CrossRef]
23. Contreras, I.; Díaz, J.; Fernández, E. Branch and price for large-scale capacitated hub location problems with single assignment.

INFORMS J. Comput. 2011, 23, 41–55. [CrossRef]
24. Osman, I.H.; Christofides, N. Capacitated Clustering Problems by Hybrid Simulated Annealing and Tabu Search. 1994. Available

online: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedcapinfo.html (accessed on 21 January 2021.).

http://dx.doi.org/10.1016/j.cor.2014.09.004
http://dx.doi.org/10.1016/j.cor.2020.105152
http://dx.doi.org/10.1016/j.cor.2020.105067
http://dx.doi.org/10.1016/j.dam.2016.08.010
http://dx.doi.org/10.1016/j.dam.2003.09.011
http://dx.doi.org/10.1016/j.cor.2017.06.011
http://dx.doi.org/10.1016/j.trb.2019.03.007
http://dx.doi.org/10.1287/ijoc.2019.0915
http://dx.doi.org/10.1016/j.cor.2020.105124
http://dx.doi.org/10.1016/j.ejor.2017.06.008
http://dx.doi.org/10.1287/ijoc.1100.0418
http://dx.doi.org/10.1287/ijoc.1100.0391
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedcapinfo.html

	Introduction
	Optimal Pickup Locations
	Notation and Variables
	Mixed-Integer Linear Two-Index Formulation
	Mixed-Integer Linear Three-Index Formulation
	Computational Results
	 Optimization Models Results
	Branch and Price Algorithm Results

	Final Remarks
	References

