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Abstract

:

This paper introduces the concept of close-enough in the context of facility location. It is assumed that customers are willing to move from their homes to close-enough pickup locations. Given that the number of pickup locations is expanding every day, it is assumed that pickup locations can be placed everywhere. Conversely, the set of potential location for opening facilities is discrete as well as the set of customers. Opening facilities and pickup points entails an installation budget and a distribution cost to transport goods from facilities to customers and pickup locations. The   ( p , t )  -Close-Enough Facility Location Problem is the problem of deciding where to locate p facilities among the finite set of candidates, where to locate t pickup points in the plane and how to allocate customers to facilities or to pickup points so that all the demand is satisfied and the total cost is minimized. In this paper, it is proved that the set of initial infinite number of pickup locations is finite in practice. Two mixed-integer linear programming models are proposed for the discrete problem. The models are enhanced with valid inequalities and a branch and price algorithm is designed for the most promising model. The findings of a comprehensive computational study reveal the performance of the different models and the branch and price algorithm and illustrate the value of pickup locations.
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1. Introduction


Location problems are of great interest in the operational research field. In general, location problems entail the decision of where to locate a set of facilities and how to allocate the customers so that the demand is satisfied and the total cost is minimized. Nevertheless, there are plenty of peculiarities that may differentiate the type of problem to be solved. If the facilities can be located in a continuous space, it is termed continuous location, while if the set of potential locations is finite, it is termed discrete location. If the customers’ demand is known in advance, it is known as a deterministic problem whereas if it follows a distribution it is known as a stochastic problem. If facilities have a capacity, then capacitated is the adjective. The facilities might be all in one level or belong to different service levels. There is a vast of literature on location science. The book by [1] presents a good and recent survey; it covers both basic concepts and advanced concepts as well as applications.



The close-enough concept in network management was first embedded in routing problems. The Close Enough Traveling Salesman Problem was first studied in [2,3,4,5]. This problem looks for the cheapest route among all those available to customers within a certain radius.



The willingness of customers to move has also been analyzed in the location context. In this case, it is assumed that some agents are willing to collaborate with other agents. Cooperation of agents in a network system has become increasingly frequent and beneficial. Facilities cooperate transferring capacity [6]; some customers cooperate with others and pickup non only their goods but the goods of other allocated customers [7]; facilities and customers all move to delivery areas (mobile facilities), [8,9,10]. Recently, cooperation in the determination of a pickup and delivery route has also been studied in [11]. Cooperation is a current tendency motivated by new technologies and it is part of the logistic networks design [12].



Conceptually, pickup points are different from transshipment points. Goods arriving at a pickup point do not consume more network resources in order to get to customers. Conversely, goods arriving to a transshipment point do require additional distribution resources get to their destination.



In this paper, we suppose that there is a finite set of customers and a finite set of potential facility locations and that each customer is willing to move a certain distance/radius from their home to pickup their demand. The delivery of the goods entails a distribution cost and the facility and pickup point location incurs an investment that nonetheless may be compensated by savings in the distribution costs. The goal is to decide where to install p facilities and where to install t pickup locations so that all customers are served and the total distribution cost is minimized. We call the problem, the   ( p , t )  -Close-Enough Facility Location Problem (  ( p , t )  -CEFLP). Figure 1 illustrates a solution of the problem: the 18 black points represent customers, the 2 triangle points represent facilities and the circles represent the area in the plane where each customer is willing to travel to collect their demand. Any point in the circles is a candidate pickup point. A solution with   p = 2   and   t = 10   is depicted in the figure; grey points are the pickup points and lines represent the distribution costs/distances. 15 costumers among the 18 move to pickup points and 3 are directly served from facilities. The 15 customers moving to pickup points share the 10 open pickup points. The cost of this solution is the distribution cost throughout the 13 segments.



Our problem is different from the cooperative problem introduced in [7] because in our problem the pickup points can be placed anywhere within a radius whilst in the cooperative location problem introduced in [7], the pickup points can only be placed in current customer locations within the radius. In our problem, the set of potential facility location is discrete whilst the set of potential pickup points is continuous.



The remainder of the paper is organized as follows—in Section 2, we present several properties of the problem that allow to transform the problem with an infinite number of pickup locations into a problem with a set of finite locations. The notation and variables to be used throughout the work are presented in Section 3 along with some of the properties of the variables. Two mathematical models for the discrete problem, together with some families of valid inequalities, are presented in Section 4 and Section 5. The details of an exact branch-and-price algorithm to solve the problem are given in Section 5, and computational results are reported in Section 6. Finally, the conclusions are reported in Section 7.




2. Optimal Pickup Locations


In this section it is proved that when minimizing distribution cost, pickup points are never located inside the circles that determine the customers’ areas of movement but at the borders. Even more, pickup points are not located at any point on the circumference but at the intersection of two circumferences or at the intersection of a circumference and a segment connecting one facility and one customer.



The following proposition states that in the optimal solution, the pickup points are always located at the border of customer’s circles. In other words, one pickup point is not an interior point for all the customers.



Let I be the set of customers and J the set of potential facility locations. For each   i ∈ I ,   let   R i   be the distance that customer i is willing to travel to pick up his demand.



Proposition 1.

Let   C i   be the set of points in the circumference with centre in customer i and radius   R i   and let   S  i j    be the set of points in the segment joining customer i with facility   j .   Let   (  x *  ,  y *  )   be the coordinates for a pickup point in an optimal solution for the   ( p , t )  -CEFLP. Then, one of the following statements hold:




	
   (  x *  ,  y *  )  ∈  C i  ∩  S  i j     for some   i ∈ I , j ∈ J .  



	
   (  x *  ,  y *  )  ∈  C  i 1   ∩  C  i 2     for some    i 1  ,  i 2  ∈ I .  










Proof. 

Let us suppose that   (  x *  ,  y *  )   does not satisfy any of the statements. Let   I ′   be the subset of I that moves to   (  x *  ,  y *  )   in the optimal solution. Then,   (  x *  ,  y *  )   belongs to the interior of the area delimited by the intersection of   C i   for all   i ∈  I ′    or it is on the border of this area but not at a point of type    C  i 1   ∩  C  i 2     for some    i 1  ,  i 2  ∈  I ′    or    C i  ∩  S  i j     for some   i ∈  I ′  , j ∈ J .   Since the goal is to minimize the distribution cost,   (  x *  ,  y *  )   cannot belong to the interior of the area delimited by the intersection of   C i   for all   i ∈  I ′  :   the closer   (  x *  ,  y *  )   is to an open facility, the smaller is the distribution cost. Thus, it holds that   (  x *  ,  y *  )  




	
belongs to   C  i *    for certain    i *  ∈ I   and   (  x *  ,  y *  )   is on the border of   C  i *   .



	
is not in    C  i *   ∩  C i    for all   i ∈  I ′  : i ≠  i *   .



	
and,    (  x *  ,  y *  )  ∉  C  i *   ∩  S   i *  j     for all   j ∈ J .  








Let   j *   be the facility to which   (  x *  ,  y *  )   is allocated. Then, the solution that replaces   (  x *  ,  y *  )   by    C  i *   ∩  S   i *   j *      is better than the solution with   (  x *  ,  y *  )   which contradicts that it is optimal.  □





Figure 2 illustrates the two families of candidate pickup locations that Proposition  1 distinguishes—a pickup point is the intersection of a circumsphere and of a segment    C i  ∩  S  i j     for some   i ∈ I   and   j ∈ J   or it is the intersection of two circumferences    C  i 1   ∩  C  i 2     for some    i 1  ,  i 2  ∈ I .   Pickup points in the figure are the non-labelled gray points.



Proposition  1 entails that the infinite potential set of candidate pickup locations can be reduced to a finite subset. Proposition  1 simplifies the search in the optimization problem by considerably reducing the feasible region so that the problem can be viewed as a discrete location problem and not as a continuous problem.



The cardinality of the finite subset of potential optimal pickup points depends on the relative positions of customers and facilities. From Figure 2, it seems that for each customer-facility pair there is one candidate pickup point and for each pair of customers there are two candidate pickup points. If the distance between two customers   i 1   and   i 2   is larger than    R  i 1   +  R  i 2    , this pair does not entail a pickup point nor if the distance between a facility j and a customer i is smaller than    R i  .   The number


  2    | I |  2   +  | I | | J |   



(1)




is un upper bound of the cardinality of the finite subset of potential optimal pickup points.



When the potential facility locations are the customer locations, that is,   I = J   and    R i  = R   for all   i ,   the relative position of each pair of elements can be of three types as depicted in Figure 3. Let   d  i  i ′     represent the distance between any two points   i ,  i ′  ∈ I   and let    i 1  . … ,  i 6  ∈ I = J   be six customers/potential facilities. If    d   i 3   i 4    > 2 R ,   then the pair   (  i 3  ,  i 4  )   defines two potential pickup points, if   R <  d   i 1   i 2    < 2 R   then the pair   (  i 1  ,  i 2  )   defines four potential pickup points and if    d   i 5   i 6    < R ,   it defines two. When the radii are different the reasoning is analogous.



Considering   I = J   in the example in Figure 1, the application of Proposition  1 reduces the feasible region for pickup points from the areas of the circles to the gray points in Figure 4.




3. Notation and Variables


Apart from sets I and J and parameters p and   t ,   in the following sections, we make use of the following sets, parameters and variables. Some of them appear only in Section 4, some only in Section 5 and some in both. For the sake of clarity, we list them all together in this section.




	
Sets




	
K is the set of candidate pickup points induced by Proposition 1, that is, it is the set of circumference intersections and segment-circumference intersections.



	
For all   i ∈ I ,    K i   is the subset of K that customer i could benefit from,   K i   is the set of elements k of K such that    d  i k   ≤  R i  .    K i   and   K j   might overlap and K is the union of   K i   for all   i ∈ I .  



	
For all   i ∈ I ,     K ¯  i   is the subset of   K i   in the border, that is, the set of elements k of K such that    d  i k   =  R i  .  



	
For all   k ∈ K ,    I k   is the set of customers that are willing to move to   k ,   that is,    I k  =  { i ∈ I :  d  i k   ≤  R i  }  .  








	
Parameters




	
For all   i ∈ I ,    h i   is the demand of customer   i .  



	
For all   i ∈ I ,    R i   is the distance that customer i is willing to travel for picking up his demand. It is named R when    R  i 1   =  R  i 2     for all    i 1  .  i 2  ∈ I .  



	
For each   i ∈ I , j ∈ J ,    d  i j    is the distance between i and   j .  



	
For each   k ∈ K , j ∈ J ,    d  k j    is the distance between k and   j .  








	
Variables




	
For all   j ∈ J ,     y j  ∈  { 0 , 1 }    is 1 if facility j is open.



	
For all   k ∈ K ,     ν k  ∈  { 0 , 1 }    is 1 if the pickup point k is installed.



	
For all   i ∈ I ,    j ∈ J ,     x  i j   ∈  { 0 , 1 }    is 1 if customer i is allocated to facility j,



	
For all   i ∈ I ,    k ∈ K ,     z  i k   ∈  { 0 , 1 }   , is 1 if customer i moves to the pickup location   k ,  



	
For all   k ∈ K ,    j ∈ J ,     s  k j   ≥ 0   is the demand supported by facility j through the pickup point   k .  



	
For all   i ∈ I ,    k ∈ K ,    j ∈ J ,     w  i k j   ∈  { 0 , 1 }    is 1 if customer i moves to the pickup location k and facility j serves the pickup point   k ,     w  i i j   = 1   represents that customer i is directly served from facility j and thus, does not move to any pickup point.













Both two-index variables and three-index variables are frequently used when modelling location problems, sometimes even four-index variables, see for instance [13,14,15,16] among others.



The Binary Integer Variables


Since the   ( p , t )  -CEFLP lacks capacity constraints, once the decision of where to locate the p facilities and the t pickup points is taken, the customers’ allocation is straightforward—customers pickup their goods at some pickup point as long as it is within their radius or customers pickup their goods at the nearest facility. Thus, provided that    y j  ∈  { 0 , 1 }    for all   j ∈ J   and    ν k  ∈  { 0 , 1 }    for all   k ∈ K ,   variables    x  i j   ,    z  i k    and   w  i k j    would take integer values, even if their domains became   [ 0 , 1 ] .   Conversely, the location of the pickup points is nontrivial with regard to facility location. In this section, we show that the problem of locating the pickup points when the number of open facilities is known is still difficult, in the sense that if the constraint    ν k  ∈  { 0 , 1 }    is replaced by the constraint    ν k  ∈  [ 0 , 1 ]  ,   the optimal solution changes and it might happen that a solution with fractional pickup locations would be cheaper than any binary solution.



Let us consider the situation depicted in Figure 5. There are six customers   I = {  i 1  ,  i 2  ,  i 3  ,  i 4  ,  i 5  ,  i 6  }   at coordinates    i 1  =  ( 16.51 , 20 )  ,    i 2  =  ( 23.5 , 20 )  ,    i 3  =  ( 20 , 26.84 )  ,    i 4  =  ( 46.51 , 20 )  ,    i 5  =  ( 53.5 , 20 )  ,    i 6  =  ( 50 , 26.84 )  ,   and six potential facilities   J = {  j 1  ,  j 2  ,  j 3  ,  j 4  ,  j 5  ,  j 6  } ,   at coordinates    j 1  =  ( 10 , 30 )  ,    j 2  =  ( 30 , 30 )  ,    j 3  =  ( 20 , 10 )  ,    j 4  =  ( 40 , 300 )  ,    j 5  =  ( 60 , 30 )  ,    j 6  =  ( 50 , 10 )    and the radius is    R i  = 6   for all   i ∈ I .   The best solution for   p = 6   and   t = 3   consists of opening all the plants and the pickup locations   k 1 ,    k 4   and   k 7  , entailing a cost of 35.46: customers   i 1   and   i 2   move to pickup location   k 1   which is allocated to facility   j 3 ,   customer   i 3   does not move to any pickup location but moves to facility   j 1 ,   customers   i 4 ,    i 5   move to pickup location   k 4   which is allocated to facility   j 6   and customer   i 6   moves to the pickup location   k 7  , which is allocated to facility   j 5 .   If fractional pickup points could be opened, the solution with    ν  k 1   =  ν  k 2   =  ν  k 3   =  ν  k 4   =  ν  k 5   =  ν  k 6   = 0.5   would be better with a cost of 34.68. The circumsphere and segment intersections give a set of 169 potential pickup points. However, and for the sake of clarity, we have only depicted the seven pickup points in the two considered solutions. Note that these six customers and facilities could be part of a larger problem with more customers and facilities and it would justify that in the integer solution facilities,   j 2   and   j 4   are open but do not serve customers.





4. Mixed-Integer Linear Two-Index Formulation


The   ( p , t )  -CEFLP can be modelled as follows.


     (  P 1  )  min       ∑  i ∈ I    ∑  j ∈ J    h i   d  i j    x  i j   +  ∑  k ∈ K    ∑  j ∈ J    d  k j    s  k j        



(2)






     s t       ∑  j ∈ J    y j  = p         



(3)






       ∑  k ∈ K    ν k  = t        



(4)






        ∑  j ∈ J    x  i j   +  ∑  k ∈  K i     z  i k   = 1      ∀ i ∈ I     



(5)






        ∑  j ∈ J    s  k j   =  ∑  i ∈  I k     h i   z  i k        ∀ k ∈ K     



(6)






        ∑  k ∈ K    s  k j   ≤ M  y j       ∀ j ∈ J     



(7)






        z  i k   ≤  ν k       ∀ i ∈ I , k ∈  K i      



(8)






        x  i j   ≤  y j       ∀ i ∈ I , j ∈ J     



(9)






       x  i j   ∈  { 0 , 1 }      ∀ i ∈ I , j ∈ J     



(10)






       z  i k   ∈  { 0 , 1 }      ∀ i ∈ I , k ∈  K i      



(11)






       y j  ∈  { 0 , 1 }      ∀ j ∈ J     



(12)






       ν k  ∈  { 0 , 1 }      ∀ k ∈ K     



(13)






       s  k j   ≥ 0     ∀ k ∈ K , j ∈ J .     



(14)







The objective function measures the total cost; the first term is the cost of satisfying the demand of those customers that do not make use of pickup points but are directly served from facilities and the second term is the cost of sending goods from open facilities to open pickup points. Constraint (3) states that the number of open facilities is p and constraint (4) that the number of open pickup points is   t .   Constraints (5) guarantee that all the customers move to a pickup point or are directly served by an open facility. Constraint (6) computes the amount of product that an open pickup point k distributes. Constraints (7) and (8) entail that pickup points must be served from open facilities and constraints (9) that customers that do not make use of pickup points are served from open facilities. M is any upper bound for the values of    ∑  k ∈ K    s  k j   ,   that is, any upper bound for the demand supported by one facility: in practice, it is the addition of all the customer’s demand,   M =  ∑  i ∈ I    h i  .   Constraints (10)–(14) are the domain constraints.



Polyhedral Enhancement


Some valid inequalities follow from the analysis of the problem that make the model strong.



Proposition 2.

For all   i ∈ I ,   the following inequalities are valid inequalities for    P 1  .  


         ∑  j ∈ J    x  i j   +  ∑  k ∈  K i  \   K ¯  i     z  i k   +  ∑  k ∈   K ¯  i     ν k  ≤ 1 .       



(15)









Proof. 

If customer i is allocated to a facility, then does not move to any of the pickup points at    K i  \   K ¯  i    and if does move to a pickup point at    K i  \   K ¯  i  ,   then the pickup points at    K ¯  i   are closed.  □





Proposition 3.

For all   i ∈ I   and   j ∈ J ,   let   k ( i , j )   be the pickup point in    C i  ∩  S  i j   .   Then, it holds that the inequalities


        ν  k ( i , j )   ≤  y j      ∀ j ∈ J   ∀ i ∈ I      



(16)




are valid inequalities for    P 1  .  





Proof. 

If facility j is closed, none of the pickup points allocated to it can be open.  □





Remark 1.

If   I = J ,   then it holds that    y i  =  x  i i     for all   i .  





Corollary 1.

For all    i 1  ,  i 2  ∈ I   such that    d   i 1  ,  i 2    <  R  i 1   +  R  i 2   ,   let    k 1   (  i 1  ,  i 2  )    and    k 2   (  i 1  ,  i 2  )    be the two points in    C  i 1   ∩  C  i 2   .   If   I = J ,   then it holds that the inequalities


       ∑  j ∈ J : j ≠  i 1     x   i 1  j   +  ν   k 1   (  i 1  ,  i 2  )    +  ν   k 2   (  i 1  ,  i 2  )    +  ν  k (  i 1  ,  i 2  )   +  ν  k (  i 2  ,  i 1  )   ≤ 1     ∀  i 1  ,  i 2  ∈ I ,  d   i 1  ,  i 2    <  R  i 1   +  R  i 2        



(17)






       ∑  j ∈ J : j ≠  i 2     x   i 2  j   +  ν   k 1   (  i 1  ,  i 2  )    +  ν   k 2   (  i 1  ,  i 2  )    +  ν  k (  i 1  ,  i 2  )   +  ν  k (  i 2  ,  i 1  )   ≤ 1     ∀  i 1  ,  i 2  ∈ I ,  d   i 1  ,  i 2    <  R  i 1   +  R  i 2        



(18)




are valid inequalities for    P 1  .  





Proof. 

If    ∑  j ∈ J : j ≠  i 1     x   i 1  j   = 1 ,   then    x   i 1   i 1    =  y  i 1   = 0   and from inequality (16), it holds that    ν  k (  i 2  ,  i 1  )   = 0 .   The rest follows from inequality (15). It is analogous when    ∑  j ∈ J : j ≠  i 2     x   i 2  j   = 1 .    □





Remark 2.

Allocation variables   z  i k    commonly appear in discrete location models. However, only some of the valid inequalities in the literature for this family can be used for    P 1  .   In fact, we point out that the inequality


       ∑  i ∈  I k     z  i k   ≤  min { ( | I |  − t +  1 ) , |   I k   | }   ν k   ∀ k ∈ K ,      



(19)




which is based on the one proposed by [17], is valid for    P 1  .   The rest of inequalities in literature for variables   z  i k    which are surveyed in [18] do not apply because   I ⊈ K .  







5. Mixed-Integer Linear Three-Index Formulation


The   ( p , t )  -CEFLP can be alternatively modeled as follows.


     (  P 2  )  min       ∑  i ∈ I    ∑  k ∈  K i  ∪  { i }     ∑  j ∈ J    h i   d  k j    w  i k j             s . t     ( 3 ) , ( 4 )        



(20)






        ∑  j ∈ J    ∑  k ∈  K i  ∪  { i }     w  i k j   = 1      ∀ i ∈ I     



(21)






        ∑  j ∈ J    w  i k j   ≤  ν k       i ∈ I , k ∈  K i      



(22)






        ∑  k ∈  K i  ∪  { i }     w  i k j   ≤  y j       ∀ i ∈ I , j ∈ J     



(23)






       w  i k j   ∈  { 0 , 1 }      ∀ i ∈ I , k ∈  K i  ∪  { i }  , j ∈ J     



(24)






       y j  ∈  { 0 , 1 }      ∀ j ∈ J     



(25)






       ν k  ∈  { 0 , 1 }      ∀ k ∈ K .     



(26)







The objective function is again the total cost, the cost of satisfying the demand of those customers that do not make use of pickup points plus the cost of sending goods from open facilities to open pickup points. Constraints (21) guarantee that all the customers are served, constraints (22) that only open pickup points can deliver goods and constraints (23) that only open facilities can serve pickup points and customers. Finally, constraints (24)–(26) are the domain constraints.



Remark 3.

Valid inequalities (16) apply and strengthen    P 2  .  





Inequalities (15) and (19) and inequalities in Corollary  1 can be easily adapted as stated in the following remark.



Remark 4.

Since   x  i j    in   P 1   is   w  i i j    in   P 2   and    z  i k   =  ∑  j ∈ J    w  i j k   ,   the following inequalities are valid for    P 2  .  


        ∑  j ∈ J    w  i i j   +  ∑  j ∈ J    ∑  k ∈  K i  \   K ¯  i     w  i k j   +  ∑  k ∈   K ¯  i     ν k  ≤ 1         ∑  i ∈ I    ∑  j ∈ J    w  i j k   ≤  min { ( | I |  − t +  1 ) , |   I k   | }   ν k   ∀ k ∈ K      











If   I = J ,   then it holds that the inequalities


       ∑  j ∈ J : j ≠  i 1     w   i 1   i 1  j   +  ν   k 1   (  i 1  ,  i 2  )    +  ν   k 2   (  i 1  ,  i 2  )    +  ν  k (  i 1  ,  i 2  )   +  ν  k (  i 2  ,  i 1  )   ≤ 1     ∀  i 1  ,  i 2  ∈ I ,  d   i 1  ,  i 2    <  R  i 1   +  R  i 2          ∑  j ∈ J : j ≠  i 2     w   i 2   i 2  j   +  ν   k 1   (  i 1  ,  i 2  )    +  ν   k 2   (  i 1  ,  i 2  )    +  ν  k (  i 1  ,  i 2  )   +  ν  k (  i 2  ,  i 1  )   ≤ 1     ∀  i 1  ,  i 2  ∈ I ,  d   i 1  ,  i 2    <  R  i 1   +  R  i 2        








are valid inequalities for    P 2  .  





It is not difficult to prove that the LP gap of   P 2   is smaller than the LP gap of    P 1  .   that is, that the linear relaxation of   P 2   gives larger objective values than the linear relaxation of    P 1  .  



Proposition 4.

Let    v *   (  P 1  L R   )    be the optimal value of the linear relaxation of   P 1   and    v *   (  P 2  L R   )    be the optimal value of the linear relaxation of    P 2  .   It holds    v *   (  P 1  L R   )  ≤  v *   (  P 2  L R   )  .  





Proof. 

It is clear that    x  i j   =  w  i i j     and that    z  i k   =  ∑  j ∈ J    w  i j k   .   Accordingly, replacing   z  i k    in (6), that is,


   ∑  j ∈ J    s  k j   =  ∑  j ∈ J    ∑  i ∈  I k     h i   w  j k   ,  








it follows that    s  k j   =  ∑  i ∈  I k     h i   w  j k   .   Thus, the three families of variables in    P 1  ,     x  i j   ,  z  i k     and   s  k j    can be written in terms of the variables in    P 2  ,   that is,    w  i j k   .   By using these identities, constraints (5) become constraints (21), constraints (6) are the   s  k j    definitions, constraints (8) become constraints (22), constraints (9) is a subset of constraints in (23) and (7) become


   ∑  k ∈ K    ∑  i ∈  I k     h i   w  j k   ≤ M  y j   








which is a linear combination of constraints (23) with weights   h i   and   M =  ∑  i ∈ I    h i  .    □





Branch and Price Algorithm


The   P 2   formulation has a very small integrality gap but it has a huge number of variables. Both facts together suggest that a column generation approach is a promising resolution method. Column generation is a popular approach when handling models with a lot variables that have good performance in terms of integrality gap, see [19] for an application to the discrete ordered median problem and [20,21,22,23] for solving different combinatorial problems.



Let   ( δ , θ ,  α i  ,  β  i k   ,  γ  i j   )   be the dual variables of constraints (3), (4), (21), (22) and (23) respectively. The dual problem for the linear relaxation of   P 2   is the following Linear Relaxation Master Problem (LRMP).


      ( LRMP )   max      p δ + t θ +  ∑  i ∈ I    α i             s . t .         α i  +  β  i k   +  γ  i j   ≤  h i   d  k j         ∀ j ∈ J , i ∈ I , k ∈  K i          δ −  ∑  i ∈ I    γ  i j   ≤ 0       ∀ j ∈ J         θ −  ∑  i ∈  I k     β  i k   ≤ 0       ∀ k ∈ K         β  i k   ≤ 0      ∀ i ∈ I , k ∈ K         γ  i j   ≤ 0      ∀ i ∈ I , j ∈ J         α i    free      ∀ i ∈ I        δ , θ .   free     











In order to apply the column generation approach, let us assume that we are given a subset of intersection points    K ^  ⊂ K   that defines a restricted linear relaxation of the Master Problem, from now on ReLRMP. Let   (  δ *  ,  θ *  ,  α *  ,  β *  ,  γ *  )   be the optimal solution of ReLPMP. Then, the reduced cost    c ˜  k   of the column   ν k   for all   k ∈ K \  K ^    is


    c ˜  k  =  ∑  i ∈  I k     β  i k   −  θ *   








where


   β  i k   ≤  h i   d  k j   −  α i *  −  γ  i j  *  ,  ∀ j ∈ J , i ∈  I k  .  











The pricing subproblem, the problem of obtaining the maximum value for     c ˜  k  ,   can be directly obtained without optimizing.



Proposition 5.

Let   (  δ *  ,  θ *  ,  α *  ,  β *  ,  γ *  )   be the optimal solution of ReLPMP for    K ^  ⊂ K  . Then, the maximum reduced cost    c ¯  k   of the column   ν k   is


     c ¯  k  =  ∑  i ∈  I k     min  j ∈ J    {  h i   d  k j   −  α i *  −  γ  i j  *  }  −  θ *  ,  ∀ k ∈ K \  K ^  .   













Proof. 

It follows from maximizing    ∑  i ∈  I k     β  i k   −  θ *    subject to    β  i k   ≤  h i   d  k j   −  α i *  −  γ  i j  *    for all   j ∈ J , i ∈  I k  .    □





   c ¯  k   is an estimation of the improvement in the objective function if the pickup point k is introduced in ReLRMP. If     c ¯  k  ≤ 0   for all   k ∈ K \  K ^   , the current solution of ReLRMP is also optimal for the LRMP and the column generation approach is finished. Otherwise, each positive value proposes the addition of a new column (variable) to the current reduced master problem to proceed further. In each iteration, the optimal value of ReLRMP,    z  R e L R M P   ,   not only gives an upper bound of the optimal value of LRMP,   z  L R M P   , but also a lower bound of it.   z  L R M P    cannot be reduced more than the smaller reduced cost    c ¯  k   for each customer i if   k ∈  K i  ,   hence


   z  R e L R M P   +  ∑  i ∈ I    min  k ∈  K i      c ¯  k  ≤  z  L R M P   ≤  z  R e L R M P   .  











Algorithm 1 clearly describes the branch and price procedure that we propose.   K 0   is a subset of K, such that    K 0  ∩  K i  ≠ ∅   for all   i ∈ I ,   ideally   K 0   has exactly one element from each    K i  .  



	Algorithm 1: Branch and price algorithm
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6. Computational Results


In this section, the performance of the two linear formulations as well as the performance of the polyhedral enhancement and of the branch and price algorithm is illustrated. The experiment has been coded in C++, using IBM ILOG CPLEX Optimization Studio. The characteristics of the computer are an 8 GB RAM and an Intel Core i5 2 GHz processor. The default options of CPLEX v12.8 have been used for solving the models   P 1   and   P 2   as well for solving the submodels in the branch and price algorithm.



For the computational experiments, we have used the pmedcap1.txt file, which contains the problems solved in [24], originally generated for the p-median problem. It always holds that   I = J ,   that is, customers are the potential facility locations. From the instances in pmedcap1.txt, we have defined 60 different instances for our problem with constant radius. The number of facilities and pickup points has been decided by the graphic distribution of the points. Table 1 describes the 60 different instances we have used in this section. We call n the number of potential facilities and/or customers, that is,   n = | I | = | J | .   Instances i1-i6, i16-i21, i31-i36 and i46-i51 follow from the corresponding first n nodes of the first instance in pmedcap1.tx1 with 50 nodes, instances i7-i15, i22-i30, i37-i45 and i52-i60 follow from the corresponding first n nodes of the first instance in pmedcap1.tx1 with 100 nodes. Instances i16-i30 have the same data as instances i1-i15 but with a different value for   R .   Instances i31-i45 are also i1-i15 for another radius, and so on. For each instance, we have fixed values for   p ,  t and R as shown in Table 1. The radius is constant at each instance. The radius for i1-i15 is the 2.5% of the maximum euclidean distance between nodes in the instance; the radius for i16-i30 is 5% this maximum and the radius for i31-i45 and i46-i60 is 10% and 15% respectively. Column   # k   gives the size of the set   K .   Note that when R is small,   | K |   is farther form the upper bound (1) than when R is medium: i1, i16, i31 and i46 differ in R and   | K |   grows as R does: the bound   2    | I |  2   +  | I | | J |    is   2   10 2   + 10 ∗ 10 = 190   while   | K |   goes from 90 to 106. Similarly, for all the 4-uples of instances with the same data but different radii, iq, i  q + 15  , i  q + 30  , i  q + 45   for all   q ∈ { 1 . … , 15 } .   For   q = 15 ,    | K |   varies in   { 9974 , 10294 , 11086 , 12222 } .  



Table 1 also shows the   P 1   and   P 2   dimensions for the 60 chosen instances. For each instance, it shows the number of constraints of the model (m), the number of 0-1 variables (  n 01  ) and the number of continuous variables (  n c  ). Table 1 corroborates that   P 1   has more rows but significantly less variables than   P 2  . The number of variables in   P 1   when solving i60 is smaller than the number of variables in   P 1   when solving i15. In the following, we shall see that within a two-hour time-limit, we successfully solved 16 of 60 instances with   P 1   and 57 with    P 2  .  



In the sequel we split the computational results into two subsections. In the first one, the two optimization models are compared, in the second one, the best of the two optimization models is compared with the branch and price algorithm.



6.1. Optimization Models Results


Table 2 compares resolution times and linear relaxation gaps of   P 1   by the plain use of CPLEX with different polyhedral enhancements and    P 2  .   Results are only for the instances that   P 1   can afford within two hours. The first two columns indicate the instance and the objective value, the third and fourth columns give the time in seconds and the linear relaxation gap for    P 1  .   Next, each pair of columns gives the time in seconds and the linear relaxation gap when the different families of valid inequalities are added. In all cases, the addition of all the valid inequalities in the family have been implemented. From Table 2, it follows that none of the valid introduced inequalities significantly improves the solution time nor the linear relaxation gap. In view of the gap results, no separation procedure has been implemented. If the linear relaxation were improved, the separation could have an effect on the time, but it is not the case. The last two columns give the time and linear relaxation gap for    P 2  .   Table 2 illustrates that the objective value decreases with   R :   i1, i16, i31 and i46 (similarly i2, i17, i32 and i47, and the other instances that only differ in the radius) differ in R going from the   2.5 %   of the maximum distance in the network, to the 5,10 and 15% maximum distance in the network. If customers are willing to move further by free choice, the transportation cost of the system is cheaper. Time in seconds for   P 1   depends on the size of the problem and grows exponentially. The linear relaxation gap of   P 1   is always large, 69% on average. The addition of inequalities (15), (16), (17) and (18) independently, slightly reduce the linear relaxation gap and moderately reduce the time. The addition of valid inequalities (19) has no effect whatsoever while the addition of all the rest has no relevant impact. The most promising family of valid inequalities is the family (16). These valid inequalities state that if a facility is closed, the pickup points that were generated by the intersection of the segment, going from this facility to a certain customer and the customer circumferences, will be closed. Since model   P 1   requires such long times, several decomposition algorithms based on Lagrangian relaxations were checked in a previous computational experience. However, since decomposition algorithms require the optimal solutions of sub-models and the linear relaxation of   P 1   is weak, the algorithms failed in obtaining good lower bounds.



In Table 2, model   P 2   always gives far better results in terms of both measures—time and linear relaxation gap, being both negligible.




6.2. Branch and Price Algorithm Results


Table 3 resumes the performance of both    P 2  ,   which is the best of the two optimization models, and the branch and price algorithm, Algorithm 1. For   P 2   plain, the objective value (  O b j  ), the CPU time in seconds (  T i m e   (  s .  )), the optimality gap (  G A P  %) and the linear relaxation gap (  G A  P  L P    %) are reported. The linear relaxation gap is always smaller than the linear relaxation gap reported for   P 1  , even for larger instances. 9.22% is the largest linear relaxation among all the solved instances where the optimality has been proven. Observe that for the i45, i59 and i60 instances, the optimization is interrupted due to reaching the allowed time of 7200 s. For i59 and i60 instances, the solver is interrupted after two hours in the B&B root node and without any interval for the optimal value. In both cases, a bad lower bound is provided by the CPLEX preprocessing heuristic algorithms and the feasible solution given can be anywhere in the feasible region. The value in column Obj is useless since there is no measure of goodness. 100% in GAP% means that neither upper bound nor lower bounds are known.



For Algorithm 1, the columns are the following—best optimal value (  z *  ), lower bound (  z ̲  ), number of iterations of the algorithm (iter), percentage of the number of pickup point variables included in the algorithm (%k), CPU time in seconds and optimality gap (  G A P  %) obtained as   100 * (  (  z *  −  z ̲  )  /  z ̲  ) .   Finally, the column of the goodness ratio (  G R  ) compares   P 2   and Algorithm 1 by computing   O b j /  z *  .   The experiment shows that if we increase the radius, the percentage of pickup points used by the algorithm will also increase, %  k ,   as well as the time. This makes sense, since the larger the radius, the greater the number of intersections considered and consequently the size of    P 2  .   Sometimes, less than 10% of the pickup point variables are required for a solution with an optimality gap smaller than 1%. Never are more than 30% of the pickup point variables required for finalizing Algorithm 1.



Note that all of the 60 instances in the testbed have been solved by Algorithm 1 and provide comparable solutions with CPLEX ones, see the goodness ratio   G R  , requiring a very small computation time. On the other hand, Algorithm 1 provides much better solutions for the i45, i59 and i60 instances where the goodness ratio reaches up to 9.625. Also observe that the optimality GAP of the algorithm is comparable to the gap of the linear relaxation of the problem; the algorithm solution however, is very close to the optimal solution of the problem. For example, if the time-limit is removed, instance i45 requires more than 6 hours to be solved to optimality, and in this case Algorithm 1 requires only 1454 s to provide the optimal solution of the problem.



Figure 6 reports the evolution of the lower and upper bounds with respect to the number of iterations when the instance i60 is solved with Algorithm 1. Figure 6 illustrates that the lower bound and the upper bound improve at each iteration resulting in a quick convergence of the branch and price algorithm.





7. Final Remarks


We have addressed in this paper a new facility location problem, the   ( p , t )  -Close-Enough Facility Location Problem, where customers do not have to be served from an open facility directly, instead, they can also go to a pickup point. This transportation network with pickup points results in a distribution cost reduction. The problem has not been studied before, and we present two mathematical models, a pure integer linear optimization model with three index variables and a mixed integer linear optimization model with two index variables, and a branch and price algorithm for it.



The benefit of a mathematical model is that it is easy to use. A branch and price algorithm as a tool for solving a problem is more difficult than a mathematical model but it has the competitive advantage of allowing the resolution of larger instances. Both attributes are desirable in real life and thus both a good mathematical model and a good algorithm are necessary when handling a new problem.



The computational experiment carried out shows that the three index model clearly outperforms the two index model, providing the shortest computation times and best gaps, and it is able to cope with benchmark instances with up to 100 nodes and different number of pickup points and radii. Moreover, some excellent results have been obtained regarding the goodness ratio which compares the three index models with the branch and price algorithm. The branch and price algorithm outperforms CPLEX for the large instances.



As future lines of work, we intend to extend the concept of close-enough to other real world facility location problems as well as to develop new algorithms for solving larger instances.
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Figure 1. Illustration of a solution with   p = 2   and   t = 10 .   
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Figure 2. Illustration of the statements in Proposition 1. 
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Figure 3. Candidate pickup points when   I = J  . 
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Figure 4. Candidate pickup points for the example in Figure 1. 
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Figure 5. Optimal integer and fractional solutions. 
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Figure 6. Bounds in instance i60 on successive iterations. 
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Table 1. Data instances and   P 1   and   P 2   dimensions.
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Instance

	
Data Instances

	
    P 1    

	
    P 2    




	
n

	
p

	
t

	
R

	
    # k    

	
m

	
    n 01    

	
   nc   

	
m

	
    n 01    






	
i1

	
10

	
2

	
3

	
2.69

	
90

	
312

	
300

	
1000

	
202

	
1100




	
i2

	
20

	
2

	
10

	
2.98

	
382

	
1253

	
1231

	
8040

	
831

	
8982




	
i3

	
30

	
3

	
10

	
2.98

	
874

	
2821

	
2789

	
27120

	
1887

	
30454




	
i4

	
35

	
3

	
10

	
2.98

	
1196

	
3841

	
3804

	
43085

	
2575

	
48411




	
i5

	
40

	
4

	
10

	
2.98

	
1568

	
5047

	
5005

	
64320

	
3399

	
73488




	
i6

	
50

	
4

	
10

	
2.98

	
2462

	
7885

	
7833

	
125600

	
5323

	
143562




	
i7

	
55

	
4

	
10

	
3.25

	
2984

	
9550

	
9493

	
167145

	
6456

	
191634




	
i8

	
60

	
4

	
10

	
3.25

	
3560

	
11493

	
11431

	
217200

	
7813

	
256280




	
i9

	
65

	
4

	
10

	
3.25

	
4186

	
13552

	
13485

	
276315

	
9236

	
329836




	
i10

	
70

	
4

	
10

	
3.25

	
4858

	
15765

	
15693

	
344960

	
10767

	
415478




	
i11

	
75

	
4

	
10

	
3.25

	
5588

	
18152

	
18075

	
424725

	
12414

	
514688




	
i12

	
80

	
4

	
10

	
3.25

	
6362

	
20645

	
20563

	
515360

	
14123

	
624122




	
i13

	
85

	
4

	
10

	
3.25

	
7190

	
23366

	
23279

	
618375

	
16006

	
753490




	
i14

	
90

	
4

	
10

	
3.25

	
8068

	
26555

	
26463

	
734220

	
18307

	
926608




	
i15

	
100

	
4

	
10

	
3.25

	
9974

	
33197

	
33095

	
1007400

	
23023

	
1312174




	
i16

	
10

	
2

	
3

	
5.39

	
92

	
328

	
316

	
1020

	
216

	
1242




	
i17

	
20

	
2

	
10

	
5.96

	
394

	
1408

	
1386

	
8280

	
974

	
11854




	
i18

	
30

	
3

	
10

	
5.96

	
894

	
3139

	
3107

	
27720

	
2185

	
39414




	
i19

	
35

	
3

	
10

	
5.96

	
1222

	
4304

	
4267

	
43995

	
3012

	
63732




	
i20

	
40

	
4

	
10

	
5.96

	
1608

	
5806

	
5764

	
65920

	
4118

	
102288




	
i21

	
50

	
4

	
10

	
5.96

	
2522

	
9165

	
9113

	
128600

	
6543

	
204622




	
i22

	
55

	
4

	
10

	
6.51

	
3092

	
11693

	
11636

	
173085

	
8491

	
303667




	
i23

	
60

	
4

	
10

	
6.51

	
3686

	
14299

	
14237

	
224760

	
10493

	
417206




	
i24

	
65

	
4

	
10

	
6.51

	
4332

	
17253

	
17186

	
285805

	
12791

	
561057




	
i25

	
70

	
4

	
10

	
6.51

	
5030

	
20297

	
20225

	
357000

	
15127

	
720850




	
i26

	
75

	
4

	
10

	
6.51

	
5774

	
23633

	
23556

	
438675

	
17709

	
911999




	
i27

	
80

	
4

	
10

	
6.51

	
6570

	
27116

	
27034

	
532000

	
20386

	
1125370




	
i28

	
85

	
4

	
10

	
6.51

	
7424

	
30973

	
30886

	
638265

	
23379

	
1380429




	
i29

	
90

	
4

	
10

	
6.51

	
8322

	
35594

	
35502

	
757080

	
27092

	
1717512




	
i30

	
100

	
4

	
10

	
6.51

	
10294

	
45371

	
45269

	
1039400

	
34877

	
2497894




	
i31

	
10

	
2

	
3

	
10.77

	
94

	
352

	
340

	
1040

	
238

	
1464




	
i32

	
20

	
2

	
10

	
11.92

	
420

	
1786

	
1764

	
8800

	
1326

	
18920




	
i33

	
30

	
3

	
10

	
11.92

	
962

	
4299

	
4267

	
29760

	
3277

	
72242




	
i34

	
35

	
3

	
10

	
11.92

	
1306

	
5976

	
5939

	
46935

	
4600

	
119396




	
i35

	
40

	
4

	
10

	
11.92

	
1724

	
8513

	
8471

	
70560

	
6709

	
206044




	
i36

	
50

	
4

	
10

	
11.92

	
2704

	
14364

	
14312

	
137700

	
11560

	
455654




	
i37

	
55

	
4

	
10

	
13.01

	
3324

	
19843

	
19786

	
185845

	
16409

	
739389




	
i38

	
60

	
4

	
10

	
13.01

	
3978

	
25449

	
25387

	
242280

	
21351

	
1068978




	
i39

	
65

	
4

	
10

	
13.01

	
4664

	
31095

	
31028

	
307385

	
26301

	
1439539




	
i40

	
70

	
4

	
10

	
13.01

	
5420

	
37459

	
37387

	
384300

	
31899

	
1895280




	
i41

	
75

	
4

	
10

	
13.01

	
6256

	
45666

	
45589

	
474825

	
39260

	
2528806




	
i42

	
80

	
4

	
10

	
13.01

	
7094

	
52542

	
52460

	
573920

	
45288

	
3118054




	
i43

	
85

	
4

	
10

	
13.01

	
7992

	
60791

	
60704

	
686545

	
52629

	
3867247




	
i44

	
90

	
4

	
10

	
13.01

	
8964

	
70554

	
70462

	
814860

	
61410

	
4806774




	
i45

	
100

	
4

	
10

	
13.01

	
11086

	
93774

	
93672

	
1118600

	
82488

	
7259786




	
i46

	
10

	
2

	
3

	
16.16

	
106

	
433

	
421

	
1160

	
307

	
2166




	
i47

	
20

	
2

	
10

	
17.88

	
442

	
2203

	
2181

	
9240

	
1721

	
26842




	
i48

	
30

	
3

	
10

	
17.88

	
1032

	
6064

	
6032

	
31860

	
4972

	
123162




	
i49

	
35

	
3

	
10

	
17.88

	
1396

	
8617

	
8580

	
50085

	
7151

	
208771




	
i50

	
40

	
4

	
10

	
17.88

	
1844

	
12645

	
12603

	
75360

	
10721

	
366644




	
i51

	
50

	
4

	
10

	
17.88

	
2862

	
21290

	
21238

	
145600

	
18328

	
794212




	
i52

	
55

	
4

	
10

	
19.52

	
3636

	
34148

	
34091

	
203005

	
30402

	
1509316




	
i53

	
60

	
4

	
10

	
19.52

	
4352

	
44494

	
44432

	
264720

	
40022

	
2189612




	
i54

	
65

	
4

	
10

	
19.52

	
5116

	
55680

	
55613

	
336765

	
50434

	
3008636




	
i55

	
70

	
4

	
10

	
19.52

	
5972

	
69046

	
68974

	
422940

	
62934

	
4068282




	
i56

	
75

	
4

	
10

	
19.52

	
6866

	
84296

	
84219

	
520575

	
77280

	
5380916




	
i57

	
80

	
4

	
10

	
19.52

	
7822

	
98965

	
98883

	
632160

	
90983

	
6774382




	
i58

	
85

	
4

	
10

	
19.52

	
8794

	
114545

	
114458

	
754715

	
105581

	
8368969




	
i59

	
90

	
4

	
10

	
19.52

	
9896

	
135054

	
134962

	
898740

	
124978

	
10528826




	
i60

	
100

	
4

	
10

	
19.52

	
12222

	
181436

	
181334

	
1232200

	
169014

	
15913522
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Table 2.    P 1  ,   enhanced   P 1   and   P 2  .
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Instance

	
    P 1    

	
    P 1  +   (15)

	
    P 1  +   (16)

	
    P 1  +   (17)+(18)

	
    P 1  +   (19)

	
    P 1  +   (15)+…+(18)

	
    P 2    




	
   Obj   

	
   Time       ( s . )    

	
  GAP   %

	
   Time       ( s . )    

	
  GAP   %

	
   Time   

	
  GAP   %

	
   Time       ( s . )    

	
  GAP   %

	
   Time       ( s . )    

	
  GAP   %

	
   Time       ( s . )    

	
  GAP   %

	
   Time       ( s . )    

	
  GAP   %






	
i1

	
1600.86

	
1

	
62.90

	
0

	
62.90

	
1

	
61.65

	
0

	
62.00

	
1

	
62.90

	
0

	
61.65

	
0.00

	
0.00




	
i2

	
4771.03

	
88

	
82.26

	
28

	
82.26

	
12

	
81.79

	
46

	
82.15

	
72

	
82.26

	
10

	
81.79

	
0.00

	
0.00




	
i3

	
5364.57

	
485

	
65.32

	
550

	
65.32

	
223

	
64.61

	
981

	
64.98

	
3926

	
65.32

	
323

	
64.61

	
1.00

	
0.00




	
i4

	
6534.84

	
1032

	
60.08

	
1153

	
60.08

	
1418

	
58.60

	
3699

	
59.48

	
4633

	
60.08

	
1279

	
58.60

	
1.00

	
0.00




	
i5

	
5359.16

	
3463

	
52.99

	
7069

	
52.99

	
5747

	
51.97

	
7200

	
52.57

	
7200

	
52.99

	
4916

	
51.97

	
2.00

	
0.00




	
i16

	
1493.16

	
0

	
58.06

	
1

	
58.06

	
0

	
56.68

	
1

	
57.29

	
0

	
58.06

	
0

	
56.68

	
0.00

	
0.00




	
i17

	
4309.60

	
70

	
85.63

	
75

	
85.63

	
22

	
85.28

	
88

	
85.62

	
44

	
85.63

	
21

	
85.28

	
0.00

	
0.00




	
i18

	
4837.41

	
764

	
67.28

	
1135

	
67.28

	
979

	
66.64

	
1344

	
67.10

	
2056

	
67.28

	
831

	
66.64

	
1.00

	
0.00




	
i19

	
6011.42

	
7200

	
66.29

	
1715

	
66.29

	
3177

	
65.25

	
4335

	
66.03

	
5331

	
66.29

	
1793

	
65.25

	
1.00

	
0.00




	
i20

	
4681.10

	
7200

	
58.20

	
7200

	
58.19

	
7200

	
56.80

	
7200

	
57.91

	
7200

	
58.19

	
7034

	
56.80

	
2.00

	
0.00




	
i31

	
1258.92

	
0

	
41.82

	
1

	
41.82

	
0

	
39.30

	
1

	
41.41

	
1

	
41.82

	
0

	
39.30

	
0.00

	
0.00




	
i32

	
3369.58

	
99

	
84.53

	
127

	
84.39

	
48

	
82.54

	
92

	
84.53

	
89

	
84.53

	
28

	
81.98

	
1.00

	
0.00




	
i33

	
1891.92

	
1965

	
91.69

	
5566

	
91.69

	
1902

	
89.98

	
1446

	
91.69

	
2162

	
91.69

	
3667

	
89.97

	
2.00

	
0.29




	
i34

	
2666.33

	
4788

	
92.61

	
7200

	
91.93

	
4850

	
91.39

	
2843

	
92.61

	
3670

	
92.61

	
5135

	
91.29

	
5.00

	
1.71




	
i35

	
2896.84

	
7200

	
74.80

	
7200

	
74.73

	
7202

	
71.64

	
7200

	
74.75

	
7200

	
74.82

	
7200

	
71.27

	
8.00

	
0.64




	
i46

	
1011.21

	
1

	
58.04

	
1

	
58.04

	
1

	
54.90

	
0

	
58.04

	
1

	
58.04

	
1

	
54.90

	
0.00

	
0.00




	
i47

	
2366.60

	
49

	
90.95

	
75

	
90.89

	
22

	
89.01

	
87

	
90.95

	
55

	
90.95

	
40

	
88.94

	
0.00

	
0.00




	
i48

	
1891.92

	
1936

	
91.69

	
5529

	
91.69

	
1888

	
89.98

	
1371

	
91.69

	
2154

	
91.69

	
3687

	
89.97

	
2.00

	
0.00




	
i49

	
2666.33

	
4800

	
92.61

	
7200

	
91.93

	
4937

	
91.39

	
2747

	
92.61

	
3556

	
92.61

	
5055

	
91.29

	
8.00

	
1.92




	
i50

	
1297.19

	
7200

	
90.54

	
7200

	
89.18

	
7200

	
88.23

	
7200

	
90.54

	
7200

	
90.54

	
7200

	
87.61

	
7.00

	
0.00
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Table 3. Results for   P 2   and Algorithm 1.






Table 3. Results for   P 2   and Algorithm 1.





	
Instance

	
    P 2    

	
   Algorithm   

	
GR




	
   Obj   

	
   Time       ( s . )    

	
  GAP  %

	
   GAP LP   %

	
    z *    

	
    z ̲    

	
iter

	
%k

	
   Time       ( s . )    

	
  GAP  %






	
i1

	
1600.86

	
0

	
0.00

	
0.00

	
1600.85

	
1592.82

	
3

	
23.33

	
0

	
0.50

	
1.000




	
i2

	
4771.04

	
0

	
0.00

	
0.00

	
4771.61

	
4759.71

	
4

	
20.68

	
0

	
0.25

	
1.000




	
i3

	
5364.58

	
1

	
0.00

	
0.00

	
5364.58

	
5323.41

	
4

	
11.33

	
1

	
0.77

	
1.000




	
i4

	
6534.84

	
1

	
0.00

	
0.00

	
6534.96

	
6491.49

	
4

	
9.62

	
2

	
0.67

	
1.000




	
i5

	
5359.18

	
2

	
0.00

	
0.00

	
5359.48

	
5312.66

	
4

	
6.76

	
1

	
0.87

	
1.000




	
i6

	
7000.77

	
3

	
0.00

	
0.00

	
7000.76

	
6962.17

	
5

	
5.48

	
2

	
0.55

	
1.000




	
i7

	
9603.38

	
4

	
0.00

	
0.00

	
9620.99

	
9561.90

	
4

	
4.66

	
3

	
0.61

	
0.998




	
i8

	
10150.86

	
4

	
0.00

	
0.00

	
10161.99

	
10113.48

	
4

	
4.33

	
4

	
0.48

	
0.999




	
i9

	
11798.25

	
7

	
0.00

	
0.00

	
11810.42

	
11753.49

	
4

	
4.18

	
6

	
0.48

	
0.999




	
i10

	
12546.57

	
12

	
0.00

	
0.04

	
12558.48

	
12461.86

	
3

	
3.05

	
6

	
0.77

	
0.999




	
i11

	
13111.45

	
17

	
0.00

	
0.05

	
13119.66

	
13046.49

	
3

	
2.86

	
9

	
0.56

	
0.999




	
i12

	
14274.46

	
22

	
0.00

	
0.04

	
14282.22

	
14212.70

	
3

	
2.62

	
11

	
0.49

	
0.999




	
i13

	
15692.30

	
20

	
0.00

	
0.00

	
15699.67

	
15592.85

	
3

	
2.53

	
10

	
0.68

	
1.000




	
i14

	
16957.89

	
29

	
0.00

	
0.00

	
16969.49

	
16854.53

	
3

	
2.40

	
15

	
0.68

	
0.999




	
i15

	
18268.59

	
40

	
0.00

	
0.00

	
18286.17

	
18116.97

	
3

	
2.30

	
17

	
0.93

	
0.999




	
i16

	
1493.16

	
0

	
0.00

	
0.00

	
1493.16

	
1493.04

	
4

	
27.17

	
0

	
0.01

	
1.000




	
i17

	
4309.62

	
0

	
0.00

	
0.00

	
4309.60

	
4290.34

	
5

	
24.11

	
0

	
0.45

	
1.000




	
i18

	
4837.43

	
1

	
0.00

	
0.00

	
4837.41

	
4814.42

	
5

	
13.42

	
1

	
0.48

	
1.000




	
i19

	
6011.45

	
1

	
0.00

	
0.00

	
6011.44

	
5975.46

	
4

	
9.57

	
1

	
0.60

	
1.000




	
i20

	
4681.11

	
2

	
0.00

	
0.00

	
4681.09

	
4654.04

	
4

	
6.72

	
1

	
0.58

	
1.000




	
i21

	
6305.05

	
6

	
0.00

	
0.30

	
6305.02

	
6259.47

	
5

	
6.11

	
3

	
0.72

	
1.000




	
i22

	
8828.11

	
9

	
0.00

	
0.12

	
8828.07

	
8798.12

	
4

	
5.56

	
5

	
0.34

	
1.000




	
i23

	
9267.65

	
15

	
0.00

	
0.01

	
9267.63

	
9206.66

	
4

	
4.99

	
7

	
0.66

	
1.000




	
i24

	
10790.93

	
23

	
0.00

	
0.12

	
10790.89

	
10723.01

	
4

	
4.66

	
10

	
0.63

	
1.000




	
i25

	
11447.20

	
27

	
0.00

	
0.00

	
11447.16

	
11425.13

	
4

	
4.10

	
13

	
0.19

	
1.000




	
i26

	
12055.98

	
50

	
0.00

	
0.26

	
12060.39

	
11956.46

	
4

	
4.33

	
17

	
0.86

	
1.000




	
i27

	
13219.74

	
66

	
0.00

	
0.11

	
13219.70

	
13164.98

	
4

	
4.05

	
21

	
0.41

	
1.000




	
i28

	
14471.91

	
73

	
0.00

	
0.00

	
14471.80

	
14354.60

	
4

	
3.74

	
23

	
0.81

	
1.000




	
i29

	
15745.76

	
234

	
0.00

	
0.20

	
15745.65

	
15583.45

	
4

	
3.85

	
43

	
1.03

	
1.000




	
i30

	
16959.35

	
310

	
0.00

	
0.11

	
16959.28

	
16871.14

	
4

	
2.88

	
55

	
0.52

	
1.000




	
i31

	
1258.93

	
0

	
0.00

	
0.00

	
1258.93

	
1258.36

	
3

	
26.60

	
0

	
0.05

	
1.000




	
i32

	
3369.60

	
1

	
0.00

	
0.00

	
3369.58

	
3346.01

	
5

	
22.62

	
0

	
0.70

	
1.000




	
i33

	
3362.89

	
2

	
0.00

	
0.29

	
3362.88

	
3347.11

	
6

	
15.49

	
2

	
0.47

	
1.000




	
i34

	
4458.54

	
5

	
0.00

	
1.71

	
4458.53

	
4376.95

	
5

	
12.71

	
3

	
1.83

	
1.000




	
i35

	
2896.83

	
8

	
0.00

	
0.64

	
2903.19

	
2873.44

	
4

	
7.77

	
4

	
1.02

	
0.998




	
i36

	
4162.12

	
20

	
0.00

	
0.19

	
4162.09

	
4149.79

	
5

	
7.77

	
9

	
0.30

	
1.000




	
i37

	
6062.25

	
58

	
0.00

	
1.13

	
6062.24

	
5987.31

	
5

	
7.46

	
20

	
1.24

	
1.000




	
i38

	
6061.98

	
94

	
0.00

	
0.00

	
6061.99

	
6052.23

	
5

	
6.91

	
21

	
0.16

	
1.000




	
i39

	
7390.02

	
202

	
0.00

	
0.51

	
7390.02

	
7320.83

	
5

	
6.78

	
43

	
0.94

	
1.000




	
i40

	
7804.28

	
248

	
0.00

	
0.00

	
7804.25

	
7794.15

	
5

	
6.51

	
63

	
0.13

	
1.000




	
i41

	
8242.77

	
370

	
0.00

	
0.45

	
8242.75

	
8158.03

	
5

	
5.93

	
98

	
1.03

	
1.000




	
i42

	
9406.53

	
527

	
0.00

	
0.32

	
9406.51

	
9315.12

	
6

	
6.55

	
219

	
0.97

	
1.000




	
i43

	
10301.57

	
960

	
0.00

	
0.42

	
10301.55

	
10258.50

	
6

	
5.67

	
212

	
0.42

	
1.000




	
i44

	
11477.28

	
5005

	
0.00

	
1.65

	
11487.01

	
11253.92

	
7

	
6.36

	
679

	
2.03

	
0.999




	
i45

	
21758.80

	
7200

	
43.04

	
43.04

	
12516.76

	
12311.39

	
7

	
6.05

	
1454

	
1.64

	
1.738




	
i46

	
1011.21

	
0

	
0.00

	
0.00

	
1011.21

	
1011.21

	
3

	
22.64

	
0

	
0.00

	
1.000




	
i47

	
2366.58

	
0

	
0.00

	
0.00

	
2366.58

	
2360.26

	
5

	
21.95

	
1

	
0.27

	
1.000




	
i48

	
1891.93

	
2

	
0.00

	
0.00

	
1891.92

	
1883.47

	
5

	
13.57

	
2

	
0.45

	
1.000




	
i49

	
2666.35

	
8

	
0.00

	
1.92

	
2666.34

	
2614.44

	
6

	
13.75

	
6

	
1.95

	
1.000




	
i50

	
1297.19

	
7

	
0.00

	
0.00

	
1297.16

	
1295.34

	
5

	
10.52

	
6

	
0.14

	
1.000




	
i51

	
1940.13

	
20

	
0.00

	
0.00

	
1940.11

	
1937.68

	
6

	
9.54

	
16

	
0.13

	
1.000




	
i52

	
2791.39

	
233

	
0.00

	
6.78

	
2791.36

	
2602.21

	
8

	
10.64

	
122

	
6.78

	
1.000




	
i53

	
2715.34

	
299

	
0.00

	
6.63

	
2719.01

	
2532.23

	
7

	
9.21

	
141

	
6.87

	
0.999




	
i54

	
3600.35

	
1368

	
0.00

	
9.22

	
3617.04

	
3268.32

	
8

	
9.25

	
322

	
9.64

	
0.995




	
i55

	
3829.49

	
1484

	
0.00

	
8.13

	
3842.71

	
3517.26

	
8

	
8.94

	
497

	
8.47

	
0.997




	
i56

	
3779.41

	
1410

	
0.00

	
4.18

	
3780.68

	
3608.18

	
7

	
7.76

	
463

	
4.56

	
1.000




	
i57

	
4560.92

	
6181

	
0.00

	
6.05

	
4562.18

	
4277.17

	
8

	
7.99

	
1271

	
6.25

	
1.000




	
i58

	
4844.79

	
4086

	
0.00

	
4.24

	
4844.73

	
4639.30

	
9

	
7.70

	
1779

	
4.24

	
1.000




	
i59

	
47146.58

	
7200

	
100.00

	
89.16

	
5438.35

	
5093.18

	
8

	
7.12

	
2623

	
6.35

	
8.669




	
i60

	
57708.76

	
7200

	
100.00

	
90.08

	
5995.50

	
5726.92

	
9

	
6.92

	
5717

	
4.48

	
9.625
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