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Abstract: This work proposes a state estimation strategy over mobile sensor–actuator networks with
missing measurements for a class of distributed parameter systems (DPSs) with time-varying delay.
Initially, taking advantage of the abstract development equation theory and operator semigroup
method, this kind of delayed DPSs described by partial differential equations (PDEs) is derived for
evolution equations. Subsequently, the distributed state estimators including consistency component
and gain component are designed; the purpose is to estimate the original state distribution of the
delayed DPSs with missing measurements. Then, a delay-dependent guidance approach is presented
in the form of mobile control forces by constructing an appropriate Lyapunov function candidate.
Furthermore, by applying Lyapunov stability theorem, operator semigroup theory, and a stochastic
analysis approach, the estimation error systems have been proved asymptotically stable in the mean
square sense, which indicates the estimators can approximate the original system states effectively
when this kind of DPS has time-delay and the mobile sensors occur missing measurements. Finally,
the correctness of control strategy is illustrated by numerical simulation results.

Keywords: state estimation; missing measurements; distributed parameter systems; time-varying
delay; mobile sensor–actuator networks

1. Introduction

Mobile sensor and actuator networks have played a central role in the artificial intelli-
gence (AI) engineering based on wireless communication technology, which are upgraded
of traditional fixed sensor–actuator networks. The sensors and actuators are no longer
arranged in a fixed location, they can move intelligently and change network topology
according to various control requirements. Mobile sensor and actuator networks have been
applied in multiple domains such as in coordinated control of target objects, water quality
monitoring and pollution removal, target tracking, and environmental control [1–5]. How-
ever, the failures of sensors/actuators themselves or faults occurring in communication
transmission can lead to missing measurements, resulting in the system being difficult
to control timely and accurately [6,7]. Therefore, it is absolutely significant to carry out
research on the state estimation strategy of mobile sensor–actuator networks with missing
measurements [8,9].

The estimation with missing measurements is always an interesting and significant
issue which has aroused many researchers’ interests, and abundant achievements have
been obtained. For instance, the main methods of Lyapunov function technique, stochastic
analysis, or linear matrix inequality are used to solve the problem about missing measure-
ments, such as in [10–13]. Some of the specific representative achievements for missing
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measurements are Kalman filter assimilation in [14], adaptive event-triggered H∞ filter
in [15], identification of jump Markov autoregressive exogenous systems in [16], and dis-
tributed recursive filtering for multi-sensor networked systems in [17]. Many researchers
regarded the missing measurements as a random uncertainty probability phenomenon. For
instance, by designing a distributed state estimator to approximate the state of dynamic
sensor network systems in [18], H∞ estimation by utilizing stochastic analysis technique
in [19], and state estimation with unknown inputs in [20]. Additionally, the distributed
estimation with randomly occurring nonlinearities and missing measurements in [21],
by making use of variance constraint states for stochastic coupling in [22], and recursive
state estimator under the event-triggered mechanism in [23]. Moreover, robust fusion
Kalman estimators for mixed uncertain systems [24] and a steady-state estimator with
random two-step transmission delays and missing measurements in [13]. In addition,
there are several methods that can be applied for parameter estimations in a distributed
scenario, such as a novel resampling algorithms with architectures for efficient distributed
implementation of particle filters [25], a distributed particle filter for nonlinear tracking in
wireless sensor networks [26], the uniform convergence over time for a distributed particle
filter [27], and the compressed Monte Carlo with application in particle filtering [28], which
illustrated the specially particle filters are extremely flexible and powerful.

As is well known, the states of distributed parameter systems are generally re-
lated to time and location which are described by partial differential equations, and the
PDEs reflect the system state more comprehensively than that of ordinary differential
equations [29–31]. Some achievements have been made in using a parameter estimation
based on distributed parameter system, for instance, Patan and Uciński [32] solved the
estimation problem and sensor localization with unknown parameters for a kind of DPSs.
Studener et al. [33] discussed the process parameter estimation based on a first-order par-
tial differential equation systems. Cai et al. [34] proposed a new sensor–actuator fault
detection, estimation, and prediction scheme for a class of linear DPSs. Hu et al. [35]
studied the parameters estimation and distributed tracking control for multi-agent systems.
Dash et al. [36] utilized the distributed algorithms to estimate in order that the network
energy system can have efficient performances. On the other hand, by utilizing the Lya-
punov technique, operator semigroup method and mobile sensor/actuator networks to
make stability analysis achieved better control performance. The team of Demetriou
acquired fruitful results about the estimation problem over mobile sensor networks or
mobile agents networks [37–40]; then, Demetriou and Egorova ulteriorly estimated the
release of gases into the atmosphere using drones and calculating fluid dynamics [41].
Mu et al. [42] improved and enhanced the estimation performance and convergence speed.
Furthermore, Jiang and Cui [43] studied the estimation problem about missing measure-
ments in the fixed sensor networks, then they extended the research to mobile sensor
networks [44]. A novel design proposed in [45]—the estimation problem of measurement
loss under moving boundary condition—was studied according to distributed parameter
systems; then, Zhang and Cui designed a centralized estimator in [46] and a distributed
estimator for the DPSs with moving boundary [47]. However, the team of Demetriou has
not considered the estimation problem with missing measurements; therefore, this issue of
state estimation with missing measurements has been addressed in [44,47] based on the
achievements of Demetriou, whereas they have not taken the time delay phenomenon into
account in the distributed parameter systems.

Drawing inspiration of the above research achievements, we consider the state estima-
tion problem for a class of distributed parameter systems with time-varying delay over
mobile sensor–actuator networks with missing measurements. The main contributions of
this paper are summarized as follows.

(1) The proposed estimation strategy is based on a class of distributed parameter sys-
tems with time-varying delay, which is complex and challenging and has not been
studied, the achievements complement the existing results and are valuable for the
development of engineering practice.
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(2) A new kind of distributed estimators has been constructed in order to address the
problem about mobile sensor–actuator networks occurring missing measurement,
the distributed estimators involve consistency component and gain component and
approximate the original system state well.

(3) The control forces of mobile sensor–actuator have been designed by utilizing mobile
sensor–actuator networks and Lyapunov functional technology, which have enhanced
the estimators performance and made the state of estimation error systems converge
to zero faster than that of fixed sensor–actuator networks.

The remainder of this paper is arranged as follows. The problem formulation under
consideration is described, and the state estimators of delayed DPSs with missing measure-
ments are designed in Section 2, along with some practical assumptions, useful definitions,
and other detailed expression. In Section 3, we give the guidance policy of moving sensor–
actuator pairs and, by utilizing Lyapunov functional technology, the operator semigroup
approach, and stochastic analysis method, the control forces of mobile sensors–actuators
are established and the estimation error systems are proved to be globally asymptotically
stable in the mean square sense. Numerical simulation experiments are shown to illustrate
the effectiveness of the estimation scheme in Section 4. Eventually, we come to a conclusion
in Section 5.

2. Problem Formulation and Estimator Design
2.1. Problem Formulation and Preliminaries

This class of distributed parameter systems with time-delay under research is de-
scribed by the n-input, n-output partial differential equations in one spatial dimension

∂x(t, z)
∂t

=a1
∂2x(t, z)

∂z2 − a2x(t, z) + a3x(t− τ(t), z) +
n

∑
i=1

b(z; θa
i (t))ui(t), (1)

(t, z) ∈ (0,+∞)×Ω.

y(t) =


y1(t)
y2(t)

...
yn(t)

 =


r1(t)

∫ ε
0 c(z; θs

1(t))x(t, z)dz
r2(t)

∫ ε
0 c(z; θs

2(t))x(t, z)dz
...

rn(t)
∫ ε

0 c(z; θs
n(t))x(t, z)dz

, (2)

subject to Dirichlet boundary conditions

x(t, 0) = x(t, ε) = 0, t ≥ 0, (3)

and the initial condition

x(t, z) = ϕ(t, z), (t, z) ∈ [−τ, 0]×Ω, (4)

where the variables appearing in this paper are discussed in the real range R. Suppose
that there are n sensors and n actuators in the above model, i = 1, 2, · · · n, x(t, z) ∈ R
denotes the state which is transformed with time t and position z, t ≥ 0, z ∈ Ω = [0, ε], and
ε > 0 means the upper boundary of a spatial region. b(z; θa

i (t)) is the bounded and known
distribution function of the ith mobile actuator, and θa

i (t) ∈ Ω indicates the time varying
centroid of the ith mobile actuator. The known and bounded function c(z; θs

i (t)) depicts
the spatial distribution of the ith mobile sensor, and θs

i (t) ∈ Ω is the spatial position of
the ith mobile sensor. τ(t) is the time-varying delay, which satisfies that the boundedness
0 ≤ τ(t) ≤ τ and the differentiability τ̇(t) ≤ η < 1, τ, η are positive constants, and ϕ(t, z)
is a suitable smooth function. The positive constants a1, a2, a3 describe diffusion coefficient,
reaction coefficient and state delay coefficient, respectively. ri(t) stands for a random
variable which values 0 or 1, ui(t) denotes the control input sign of this system. y(t)
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represents the measurement outputs of mobile sensors, which is known on the condition
that the sensors work well without missing measurements. However, x(t, z) is unknown
when the sensors give missing measurements, and thus it should be estimated.

Remark 1. In the above systems, the state estimation for this delayed DPSs is different from the
existed results in [44,47], which have not considered the time-delay in the DPSs. Therefore, the
proposed estimation method in this paper is based on a new kind of DPS.

Remark 2. In the above systems, ri(t) = 0 denotes that the measurement data of the ith sensor
occurs missing, and ri(t) = 1 represents that the measurement data has been obtained without loss.

The first question under consideration in this article is to design state estimators
which can approximate the original system state while occurring missing measurements.
Therefore, we make the following assumptions aiming to address the problem simply.

Assumption 1. We suppose that one sensor and one actuator in the mobile sensor–actuator
networks are collocated into a same device, which is denoted as θa

i (t) = θs
i (t) = θi(t), the spatial

distribution functions b(z; θa
i (t)) and c(z; θs

i (t)) are given by

b(z; θi(t)) = c(z; θi(t))

=

{
1, z ∈ [θi(t)− ε, θi(t) + ε],
0, otherwise,

= H(θi(t)− ε)− H(θi(t) + ε)),

for t > 0, i = 1, 2, · · · , n, and where H(θi(t)− ε) and H(θi(t) + ε) stand for the Heaviside step
function, and ε > 0 denotes the effect radius of an actuator.

Remark 3. There are two structures of sensors/actuators: one of the structures is non-collocated,
which means that the sensor/actuator is divided into two parts, such as in [48] which defined that
θa

i (t) 6= θs
i (t) and b(z; θa

i (t)) 6= c(z; θs
i (t)). However, according to the engineering application

background of multi-agents in AI technology, we reasonably suppose that one sensor and one
actuator in the mobile sensor–actuator networks are integrated into the same device, and in order to
facilitate the presentation of this paper, the agent is represented for collocated sensor–actuator pairs.

Assumption 2. In mobile agent networks, we assume that each agent is equipped with an estimator,
when one agent has a missing measurement, the estimator needs to use the data of its surrounding
agents to estimate. The communication energy consumption is depended on the number of its
surrounding agents and the distance between them. The dynamic set of neighbor agents about the
ith agent is Ni(t) = {j

∣∣|θi(t)− θj(t)| < R, j 6= i, i, j ∈ {1, 2, · · · n}}, and the distance between
any two agents should be confined to |θi(t)− θj(t)| > (2r + $) so as to avoid the mobile agents
colliding together, where r is the shape radius of agent itself, $ indicates the minimum safe distance,
and R is the maximum communication distance between the ith agent and others.

Remark 4. In the paper [40,49], the neighbor set of the ith estimator was defined as
Ni = { j

∣∣|θi − θ j | < R, i 6= j, i, j ∈ {1, 2, · · · n}}, R is the communication radius which had ig-
nored the minimum distance. In the paper [50], the team discussed the distance between two agents
in order to realize collision avoidance and gave Ni = {j

∣∣|θi − θj| > 2r, i 6= j, i, j ∈ {1, 2, · · · n}},
where r is the safety radius of each agent. In this work, we propose the dynamic estimator set
of the ith agent Ni(t) = {j

∣∣|θi(t) − θj(t)| < R, j 6= i, i, j ∈ {1, 2, · · · n}} which subjects to
|θi(t)− θj(t)| > (2r + $). Both the minimum anti-collision distance and the maximum communi-
cation distance are considered, which is more reasonable.
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Assumption 3. Considering the dynamic behavior of mobile agents, the motion equation of mobile
agents is established on the basis of the Newton’s second law of motion, which is extended as{

fi(t) = mi θ̈i(t) + di θ̇i(t) + κiθi(t),
θi(0) = θi0, θ̇i(0) = 0, i = 1, 2, · · · , n,

where mi and θi0 represent the mass and initial position of the ith agent, respectively. θ̇i(0), and
θ̈i(t), fi(t), respectively, describe the initial velocity, acceleration, and control force. di(t) < 0
denotes the agent friction coefficient, and κi ≥ 0 stands for the elastic coefficient.

Assumption 4. In an appropriate sense, the missing measurements occur due to sensor failure or
communication fault, which can be described by a random phenomenon. The stochastic variable ri(t) is
a white noise sequence, which obeys a Bernoulli distribution and satisfies the following distribution:{

Prob{ri(t) = 1} = E[ri(t)] = qi,
Prob{ri(t) = 0} = 1−E[ri(t)] = 1− qi,

(5)

for t > 0, i = 1, 2, · · · , n, where qi ∈ (0, 1] is a known positive constant, and Prob{·} denotes
probability. If the stochastic variables are independent, the distribution (5) can be given by{

E[ri(t)− qi] = 0,E[(ri(t)− qi)
2] = qi(1− qi),

E[(ri(t)− qi)(rj(t)− qj)] = 0, i 6= j,

for t > 0, i = 1, 2, · · · , n, j = 1, 2, · · · , n, where E[·] represents the mathematical expectation of a
stochastic variable.

Remark 5. From Assumption 1 and Assumption 4, and in the case of ri(t) ≡ 1, the measurement
outputs of system (2) are approximated by

yi(t) =
∫ ε

0
c(z; θi(t))x(t, z)dz

=
∫ θi(t)+ε

θi(t)−ε
x(t, z)dz

≈ 2ε× x(t, θi(t)− ε) + x(t, θi(t) + ε)

2
= ε× (x(t, θi(t)− ε) + x(t, θi(t) + ε))

2.2. System Evolution and Estimator Design

Combined with the method in the literature [38], we defineH as a Hilbert space and V
as a reflexive Banach space, V∗ is the conjugate dual of V . LetH be the inner product 〈·, ·〉
and induced norm ‖ · ‖; the induced norm of V and V∗ are denoted by ‖ · ‖V and ‖ · ‖V∗,
respectively. The relationship amongH, V , and V∗ is described by V ↪→ H ↪→ V∗, the sign
↪→ indicates both of them are embedding densely and continuously, in the sense that we
can achieve ‖φ‖ ≤ c‖φ‖V , where φ ∈ V , c is a positive constant. Additionally, the notation
〈·, ·〉 is also utilized to represent the duality pairing relationship between V and V∗.

Utilizing the operator semigroup approach, the PDE (1) and (2) can be written as
evolution equations abstractly in the Hilbert space:{

ẋ(t) = A1x(t)−A2x(t) +A3x(t− τ(t)) + B(θ(t))u(t)
y(t) = R(t)C(θ(t))x(t), t > 0,

(6)
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where A1 is a second-order operator given in [38]

A1φ = a1
∂2φ

∂z2 , a1 > 0, φ ∈ Dom(A1),

where Dom(A1) = {ψ ∈ L2(Ω)|ψ, ψ′ absolutely continuous, ψ′′ ∈ L2(Ω) and
ψ(0) = ψ(l) = 0}, which with boundedness |〈A1φ, ϕ〉| ≤ α‖φ‖‖ϕ‖, coercivity
〈−A1φ, φ〉 ≥ β‖φ‖2, and symmetry 〈A1φ, ϕ〉 = 〈φ,A1 ϕ〉, for φ, ϕ ∈ V , α > 0 and β > 0.
Both of A2, A3 are bounded operator, andR(t) = diag(r1(t), r2(t), · · · rn(t)).

B(θ(t)) is the input operator defined as

B(θ(t))u(t) = [B1(θ1(t)) · · · Bn(θn(t))]

 u1(t)
· · ·

un(t)

, 〈Bi(θi(t))ui(t), φ〉

=
∫ ε

0
b(z; θi(t))φ(z)ui(t)dz.

C(θ(t)) denotes the output operator described by

〈C(θ(t))φ, ϕ〉 =
 〈C1(θ1(t))φ, ϕ〉

· · ·
〈Cn(θn(t))φ, ϕ〉

, 〈Ci(θi(t))φ, ϕ〉 =
∫ ε

0
c(z; θi(t))φ(z)ϕ(z)dz.

Based on the PDE system (1), (2), and Assumption 2, when the missing measurement
occurs in the ith agent, the corresponding state estimator is excogitated as

∂x̂i(t, z)
∂t

=a1
∂2 x̂i(t, z)

∂z2 − a2 x̂i(t, z) + a3 x̂i(t− τ(t), z) + ki(yi(t)− qi ŷi(t))

− li ∑
j∈Ni(t)

(x̂i(t, z)− x̂j(t, z)) +
n

∑
i=1

b(z; θa
i (t))ui(t), i = 1, 2, · · · , n, (7)

where x̂i(t, z) indicates the estimation of x(t, z) about the ith estimator, li > 0 denotes the
estimator gain, ki > 0 represents the consistency gain, and ŷi(t) = Ci x̂i(t).

Remark 6. The new designed distributed estimators are superior to the centralized estimator, and
there are two disadvantages of the centralized estimator: one is that the centralized estimator usually
utilizes all the system states to make estimation which results in a large computing capacity, and the
other is that the system only designs one estimator; the estimator cannot work well when it occurs
faults. Compared with the centralized estimator, we design a number of distributed estimators
according to the system, which can reduce the computation and keep working when other estimators
break down.

Adapting a similar conduct scheme to (6), the estimator Equation (7) can also be
abstractly written as evolution equations

˙̂xi(t) =A1 x̂i(t)−A2 x̂i(t) +A3 x̂i(t− τ(t)) + Γi(yi(t)− qiCi x̂i(t))

− Li ∑
j∈Ni(t)

(x̂i(t)− x̂j(t)) + B(θ(t))u(t), i = 1, 2, · · · , n,

where x̂i(0) = x̂i0 6= x(0), Γi = kiC∗i denotes the gain operator of the ith estimator, and Li
is the consensus operator. Here, we define ei(t) = x(t)− x̂i(t), and the estimation error
system equations are achieved by

ėi(t) = A1ei(t)−A2ei(t) +A3ei(t− τ(t))− kiC∗i (yi(t)− qiCi x̂i(t)) + Li ∑
j∈Ni(t)

(ej(t)− ei(t)), (8)
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−kiC∗i (yi(t)− qiCi x̂i(t)) in (8) can be calculated by

−kiC∗i (yi(t)− qiCi x̂i(t)) =− kiC∗i ri(t)Cix(t) + kiC∗i qiCi x̂i(t)

=− kiC∗i ri(t)Cix(t) + kiC∗i qiCix(t)− kiC∗i qiCix(t) + kiC∗i qiCi x̂i(t)

=− kiqiC∗i Ciei(t)− kiC∗i (ri(t)− qi)Cix(t). (9)

Substituting (9) into (8) that we can get the estimation error system equations given by

ėi(t) =A1ei(t)−A2ei(t) +A3ei(t− τ(t))− kiqiC∗i Ciei(t)

− kiC∗i (ri(t)− qi)Cixi(t) + Li ∑
j∈Ni(t)

(ej(t)− ei(t)), (10)

where ei(0) = xi(0)− x̂i(0) 6= 0. Assuming Acl = A1 −A2 − kiqiC∗i Ci, the estimation error
system Equation (10) can be rewritten as

ėi(t) = Aclei(t) +A3ei(t− τ(t))− kiC∗i (ri(t)− qi)Cix(t) + Li ∑
j∈Ni(t)

(ej(t)− ei(t)). (11)

The output error equation is obtained by

ye(t) =

 ye1(t)
· · ·

yen(t)

 =

 r1(t)C1(θ1(t))(x(t)− x̂1(t))
· · ·

rn(t)Cn(θn(t))(x(t)− x̂n(t))

.

The corresponding expectation of output error equation is

E[ye(t)] =

 E[ye1(t)]
· · ·

E[yen(t)]

 =

 q1C1e1(t)
· · ·

qnCnen(t)

.

The second problem to be addressed is to design control forces of mobile agents by us-
ing the Lyapunov stability theorem, for the sake of making the estimation error systems (11)
achieve globally asymptotically stable. Now, we make the following definitions.

Definition 1. If the solution to estimation error systems with time-varying delay (11) satisfies [43]

lim
n→∞

E[‖ei(t)‖2] = 0, t > 0, i = 1, 2, · · · , n,

the estimation error systems (11) are globally asymptotically stable in the mean square sense.

Definition 2. Assume that the function V(t) is a random process and the operator L conforms to

LV(t) = lim
∆t→0+

E[V(t + ∆t|t)−V(t)]
∆t

, t > 0,

LV(t) can be denoted as the infinitesimal generator.

Lemma 1. (Barbalat Lemma) [51] f is a non-negative continuous function defined in [0,+∞),
and if f is Lebesgue integrable and continuous on [0,+∞), lim

n→∞
f (t) = 0 is established .

Lemma 2. The operator Acl has boundedness and coercivity along with the operator A1,
which satisfies {

|〈Aclφ, ϕ〉| ≤ (a1 + a2c2 + c2 max(kiqi)|C|2)‖φ‖‖ϕ‖
〈−Aclφ, ϕ〉 ≥

(
a1
c2 + a2 + min(kiqi)|C|2

)
|φ|2.
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where a1, a2, c, ki, qi are positive constants, and φ, ϕ ∈ V .

Proof of Lemma 2. We should give some supplementary knowledge before the proof,
such as H is the Hilbert space, for p ≤ q ∈ R, there has

∫ q
p |x|

2dt < ∞, and for x, y ∈ H,

〈x, y〉 =
∫ q

p xȳdt, ‖x‖ = (〈x, x〉) 1
2 , 〈·, ·〉 and ‖·‖ denotes the inner product and induced

norm, respectively.
Based on the properties of operator A1 [37] , we know A1 has boundedness

|〈A1φ, ϕ〉| ≤ α‖φ‖‖ϕ‖, coercivity 〈−A1φ, φ〉 ≥ β‖φ‖2, and symmetry 〈A1φ, ϕ〉 = 〈φ,A1 ϕ〉,
for φ, ϕ ∈ V , α > 0 and β > 0. Both of A2, A3 are bounded operator. Therefore, we have

|〈Aclφ, ϕ〉| =|
∫ ε

0
(a1

d2φ(z)
dz2 − a2φ(z))ϕ(z)dz| − |〈kiqiC∗i Ciφ, ϕ〉|

≤a1|
∫ ε

0

d2φ(z)
dz2 ϕ(z)dz|+ a2|

∫ ε

0
φ(z)ϕ(z)dz|+ |〈kiqiCiφ, Ci ϕ〉|

≤a1

√∫ ε

0
(

dφ(z)
dz

)2dz

√∫ ε

0
(

dϕ(z)
dz

)2dz + a2

√∫ ε

0
φ2(z)dz

√∫ ε

0
ϕ2(z)dz

+ max(kiqi)|C|2|
∫ ε

0
φ(z)ϕ(z)dz|

=a1‖φ‖‖ϕ‖+ a2|φ||ϕ|+ max(kiqi)|C|2|φ||ϕ|
≤a1‖φ‖‖ϕ‖+ a2c2‖φ‖‖ϕ‖+ c2 max(kiqi)|C|2‖φ‖‖ϕ‖
=(a1 + a2c2 + c2 max(kiqi)|C|2)‖φ‖‖ϕ‖.

〈−Aclφ, φ〉 =
∫ ε

0
(−a1

d2φ(z)
dz2 + a2φ(z))φ(z)dz + |〈kiqiCiφ, Ciφ〉|

≥ −a1

∫ ε

0

d2φ(z)
dz2 φ(z)dz + a2

∫ ε

0
φ(z)φ(z)dz + min(kiqi)|C|2

∫ ε

0
φ(z)φ(z)dz

= a1‖φ‖2 + a2|φ|2 + min(kiqi)|C|2|φ|2

≥ (
a1

c2 + a2 + min(kiqi)|C|2)|φ|2,

the properties about boundedness and coercivity of operatorAcl have been demonstrated.

3. Main Results

In this section, the two questions raised above will be solved by using the Lyapunov
stability method and stochastic analysis approach; the main results are given by the
following theorem.

Theorem 1. Consider this class of distributed parameter systems with time-varying delay de-
scribed by (1)–(4), and the state estimators are excogitated as (7) when the agents exist missing
measurements, the control force of the ith mobile agent is designed as

fi(t) = −2λ1kiE[〈ei(t),
∂C∗i

∂θi(t)
yei(t)〉] + di θ̇i(t)−

(λ1ρ2
clb + λ2)

n
∑

i=1
E[‖ei(t)‖2]

nθ̇i(t)
. (12)

t > 0, i = 1, 2, · · · , n. If θ̇i(t) = 0, fi(t) can be dealt with

fi(t) =− 2λ1kiE[〈ei(t),
∂C∗i

∂θi(t)
yei(t)〉] + di θ̇i(t). (13)

Suppose that there exist some positive constants λ1, λ2, λ3, di, which make the following
inequalities be satisfied λ1k2

i |C∗i Ci|2 − λ3 < 0 and λ2η − λ2 + a3λ1 < 0, the estimated error
systems (11) are globally asymptotically stable in the mean square sense.
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Proof of Theorem 1. According to the Lyapunov function method [38,45,49], we choose
the following Lyapunov functional candidate

V(t) = V1(t) + V2(t) + V3(t) + V4(t), t > 0,

where V(t) is a comprehensive Lyapunov function which involves V1(t), V2(t), V3(t), V4(t).
V1(t) is designed on the basis of Lemma 2. The purpose of V2(t) is to settle the time-delay
problem in the DPSs, V3(t) considers the missing measurements, and V4(t) is to make an
establishment for mobile forces on moving sensor/actuators.

V1(t) = −λ1

n

∑
i=1
〈ei(t),Aclei(t)〉, V2(t) = λ2

n

∑
i=1

∫ t

t−τ(t)
〈ei(s), ei(s)〉ds,

V3(t) =
n

∑
i=1

qi(1− qi)〈x(t), x(t)〉, V4(t) =
1
2

n

∑
i=1

(mi(θ̇i(t))2 + κi(θi(t))2).

It is straightforward to find that V1(t) > 0 due to the coercivity of Acl in Lemma 1,
where we obtain V(t) > 0. Based on Definition 2 , we have

E[LV1(t)] =− λ1

n

∑
i=1

E[〈ėi(t),Aclei(t)〉]− λ1

n

∑
i=1

E[〈ei(t), Ȧclei(t)〉]− λ1

n

∑
i=1

E[〈ei(t),Acl ėi(t)〉]

=− 2λ1

n

∑
i=1

E[〈ėi(t),Aclei(t)〉] + λ1

n

∑
i=1

E[〈ei(t),
d
dt

(kiqiC∗i Ci)ei(t)〉]

=− 2λ1

n

∑
i=1

E[〈Aclei(t) +A3ei(t− τ(t))− kiC∗i (ri(t)− qi)Cix(t)

+ Li ∑
j∈Ni(t)

(ej(t)− ei(t)),Aclei(t)〉] + λ1

n

∑
i=1

E[〈ei(t),
d
dt

(kiqiC∗i Ci)ei(t)〉]

=− 2λ1

n

∑
i=1

E[〈Aclei(t),Aclei(t)〉]− 2λ1

n

∑
i=1

E[〈A3ei(t− τ(t)),Aclei(t)〉]

+ 2λ1

n

∑
i=1

E[〈kiC∗i (ri(t)− qi)Cix(t),Aclei(t)〉]

− 2λ1Li

n

∑
i=1

E[〈 ∑
j∈Ni(t)

(ej(t)− ei(t)),Aclei(t)〉]

+ λ1

n

∑
i=1

E[〈ei(t),
d
dt

(kiqiC∗i Ci)ei(t)〉].

It is necessary to separately solve the complex expression of E[LV1(t)], where

λ1

n

∑
i=1

E[〈ei(t),
d
dt

(kiqiC∗i Ci)ei(t)〉] = 2λ1

n

∑
i=1

E[〈ei(t),
dC∗i
dt

kiqiCiei(t)〉]

= 2λ1

n

∑
i=1

E[〈ei(t), θ̇i(t)
∂C∗i

∂θi(t)
kiyei(t)〉]. (14)
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Utilizing the internal machine inequality 2〈x, y〉 ≤ 〈x, x〉+ 〈y, y〉, we can obtain

−2λ1

n

∑
i=1

E[〈A3ei(t− τ(t)),Aclei(t)〉] ≤λ1

n

∑
i=1

E[〈A3ei(t− τ(t)),A3ei(t− τ(t))〉]

+ λ1

n

∑
i=1

E[〈Aclei(t),Aclei(t)〉]

=a3λ1

n

∑
i=1

E[‖ei(t− τ(t))‖2] (15)

+ λ1

n

∑
i=1

E[〈Aclei(t),Aclei(t)〉],

and

2λ1

n

∑
i=1

E[〈kiC∗i (ri(t)− qi)Cix(t),Aclei(t)〉]

≤ λ1

n

∑
i=1

E[〈kiC∗i (ri(t)− qi)Cix(t), kiC∗i (ri(t)− qi)Cix(t)〉]

+ λ1

n

∑
i=1

E[〈Aclei(t),Aclei(t)〉]. (16)

By means of Assumption 4, one composition of (16) can be inferred

λ1

n

∑
i=1

E[〈kiC∗i (ri(t)− qi)Cix(t), kiC∗i (ri(t)− qi)Cix(t)〉] = λ1

n

∑
i=1

E[‖kiC∗i (ri(t)− qi)Cix(t)‖2]

= λ1

n

∑
i=1

E[k2
i qi(1− qi)‖C∗i Cix(t)‖2]

= λ1

n

∑
i=1

k2
i qi(1− qi)‖C∗i Cixi(t)‖2. (17)

Therefore, (16) is rewritten by

2λ1

n

∑
i=1

E[〈kiC∗i (ri(t)− qi)Cix(t),Aclei(t)〉] ≤ λ1

n

∑
i=1

k2
i qi(1− qi)‖C∗i Cixi(t)‖2

+ λ1

n

∑
i=1

E[〈Aclei(t),Aclei(t)〉]. (18)

Here, we define the Li=−A−1
cl that can get

−2λ1Li

n

∑
i=1

E[〈 ∑
j∈Ni(t)

(ej(t)− ei(t)),Aclei(t)〉] = −λ1

n

∑
i=1

∑
j∈Ni(t)

E[‖ei(t)− ej(t)‖2]. (19)

According to the above results (14)–(19), E[LV1(t)] is given by

E[LV1(t)] ≤a3

n

∑
i=1

E[‖ei(t− τ(t))‖2] + λ1

n

∑
i=1

k2
i qi(1− qi)‖C∗i Cix(t)‖2

− λ1

n

∑
i=1

∑
j∈Ni

E[‖ei(t)− ej(t)‖2] + 2λ1ki

n

∑
i=1

E[〈ei(t), θ̇i(t)
∂C∗i

∂θi(t)
yei(t)〉]. (20)
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Meanwhile, E[LV2(t)] can be deduced by

E[LV2(t)] = λ2

n

∑
i=1

E[〈ei(t), ei(t)〉]− λ2(1− τ̇(t))
n

∑
i=1

E[〈ei(t− τ(t)), ei(t− τ(t))〉]

= λ2

n

∑
i=1

E‖ei(t)‖2 + (λ2τ̇(t)− λ2)
n

∑
i=1

E‖ei(t− τ(t))‖2

≤ λ2

n

∑
i=1

E‖ei(t)‖2 + (λ2η − λ2)
n

∑
i=1

E‖ei(t− τ(t))‖2. (21)

Because of the infinitesimal production definition, we can obtain

E[LV3(t)] ≤ −λ3

n

∑
i=1

qi(1− qi)‖x(t)‖2, λ3 > 0. (22)

Making use of Assumption 3, E[LV4(t)] is calculated by

E[LV4(t)] =
1
2

n

∑
i=1

(2mi θ̇i(t)θ̈(t) + 2κiθi(t)θ̇i(t))

=
n

∑
i=1

θ̇i(t)(mi θ̈i(t)− di θ̇i(t))

=
n

∑
i=1

θ̇i(t)( fi(t)− di θ̇i(t)). (23)

Based on (20)–(23), we can get

E[LV(t)] ≤a3λ1

n

∑
i=1

E[‖ei(t− τ(t))‖2] + λ1

n

∑
i=1

k2
i qi(1− qi)‖C∗i Cix(t)‖2 + λ1

n

∑
i=1

E[‖Aclei(t)‖2]

− λ1

n

∑
i=1

E[‖Aclei(t)‖2]− λ1

n

∑
i=1

∑
j∈Ni(t)

E[‖ei(t)− ej(t)‖2]

+ 2λ1ki

n

∑
i=1

E[〈ei(t), θ̇i(t)
∂C∗i

∂θi(t)
yei(t)〉] + λ2

n

∑
i=1

E[‖ei(t)‖2]

+ (λ2η − λ2)
n

∑
i=1

E[‖ei(t− τ(t))‖2]− λ3

n

∑
i=1

qi(1− qi)‖x(t)‖2

+
n

∑
i=1

θ̇i(t)( fi(t)− di θ̇i(t)). (24)

From Lemma 1, we can suppose ρ2
cla‖ei(t)‖2 ≤ ‖Aclei(t)‖2 ≤ ρ2

clb‖ei(t)‖2,
ρclb > ρcla > 0, (24) can be ulteriorly evolved by

E[LV(t)] ≤(λ2η − λ2 + a3λ1)
n

∑
i=1

E[‖ei(t− τ(t))‖2] +
n

∑
i=1

(λ1k2
i ‖C∗i Ci‖2 − λ3)qi(1− qi)‖x(t)‖2

− λ1

n

∑
i=1

∑
j∈Ni(t)

E[‖ei(t)− ej(t)‖2]− λ1ρ2
cla

n

∑
i=1

E[‖ei(t)‖2]

+
n

∑
i=1

θ̇i(t)( fi(t)− di θ̇i(t) + 2λ1ki

n

∑
i=1

E[〈ei(t),
∂C∗i

∂θi(t)
yei(t)〉]

+

(λ1ρ2
clb + λ2)

n
∑

i=1
E[‖ei(t)‖2]

nθ̇i(t)
). (25)
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Assume there exist positive constants λ1, λ2, λ3, η, ki to make λ1k2
i |C∗i Ci|2 − λ3 < 0,

λ2η − λ2 + a3λ1 < 0 be established, fi(t) is presumed to (12) and (13), then (25) can be
gained by

E[LV(t)] ≤ −λ1ρ2
cla

n

∑
i=1

E[‖ei(t)‖2]. (26)

From (26), we have

E[V(∞)]−E[V(0)] ≤ −λ1ρ2
cla

n

∑
i=1

E[‖ei(t)‖2].

It can be indicated that
∫ ∞

0 E[‖ei(t)‖2]dt < +∞ due to V(∞) ≥ 0 and V(0) < +∞, and
can be deduced that lim

n→∞
E[‖ei(t)‖2] = 0 on account of Barbalat Lemma 1. This completes

the proof of Theorem 1; the estimation error systems (11) are globally asymptotically stable
in the mean square sense.

Remark 7. In Theorem 1, the mobile control force fi(t) contains −
(λ1ρ2

clb+λ2)
n
∑

i=1
E[‖ei(t)‖2]

nθ̇i(t)
, but

fi(t) will be infinitely great when θ̇i(t) = 0. Therefore, fi(t) has been dealt with
fi(t) = −2λ1kiE[〈ei(t),

∂C∗i
∂θi(t)

yei(t)〉] + di θ̇i(t). In order to realize the simulation in Matlab,

we define that fi(t) meets (13) when θ̇i(t) ≤ 0.001θ̇i(0).

4. Numerical Results

In this section, we will illustrate the effectiveness of the control strategy proposed in
this manuscript, which includes the estimators performances designed in (7), the asymptot-
ically stability of estimation error systems (11), and the mobile control force (12) that acts
on the dynamic agent.

We simulate the PDE systems (1)–(2) with initial condition ϕ(t, z) = 30 sin(πz)e−3z2

(t + 0.1), τ = 0.1, z ∈ [0, 2], which satisfies Dirichlet boundary conditions
x(t, 0) = x(t, 2) = 0. The time-varying delay is τ(t) = 0.1| sin(πt)|, η = 0.2, and the
relevant parameters are defined as the diffusion coefficient a1 = 0.001, the reaction coeffi-
cient a2 = 2, and the state delay coefficient a3 = 1.

The initial locations of four agents are set as θ1(0) = 0.4, θ2(0) = 0.8, θ3(0) = 1.2,
θ4(0) = 1.6, and the maximum communication distance R = 0.6, the shape radius r = 0.025,
the minimum safe distance $ = 0.1, and the probability of agents appear missing mea-
surement 1− qi = 0.2. The initial conditions of four estimators are chosen as x̂1(0, z) = 0,
x̂2(0, z) = 80 sin(πz), x̂3(0, z) = 50 cos(πz)− 1, x̂4(0, z) = 20− 20 cos(πz).

Figure 1 shows the measurement outputs of four mobile agents with date missing
probability 1− qi(t) = 0.2. From Figure 1a–d, we can find the measurement outputs yi(t)
have date loss because of the missing measurements.
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Figure 1. The outputs of four agents under stochastic measurement with date missing probability 1− qi(t) = 0.2. (a) Output
of agent 1. (b) Output of agent 2. (c) Output of agent 3. (d) Output of agent 4.
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Figure 2 describes the spatial states of four estimator under different initial conditions,
where we discover that estimator 1 approximates the original system accurately because
of the initial condition x̂1(0, z) = 0, other estimators have errors at the beginning duo to
initial conditions with relatively large differences, but they can work well after 2–3 s.
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Figure 2. The spatial states of four estimators. (a) Spatial state of estimator 1. (b) Spatial state of estimator 2. (c) Spatial state
of estimator 3. (d) Spatial state of estimator 4.

In order to illustrate the effectiveness of estimators, the spatial states distribution of
the actual system and four estimators at different times are shown in Figure 3, the evolution
of estimation error systems states on four different locations are depicted in Figure 4.
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Figure 3. The spatial states distribution of the actual system and the four estimators at four different times. (a) t = 0 s.
(b) t = 2 s. (c) t = 4 s. (d) t = 8 s.
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Figure 4. The evolution of estimation error states on four different locations. (a) z = 0.4. (b) z = 0.8. (c) z = 1.2. (d) z = 1.6.

We notice that the estimator includes the consistency component and the gain compo-
nent, which has different effect on estimation error systems, so Figure 5 makes a compara-
tive analysis about the evolution of state L2 norms for estimation error systems with the
consensus component and without the one, where we find the estimation error systems
converge to zero fast with the consensus component.
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Figure 5. The evolution of state L2 norms about estimation error system. (a) L2 norm without
consensus. (b) L2 norm with consensus.

Figure 6 depicts the trajectories of four agents under the control forces; the difference
between Figure 6a,b is whether there exists a random missing measurement. It is obviously
found that the agents collide together in a moment in Figure 6a; we deduce that the random
missing measurement has affected the trajectory and meant that the agents cannot be
controlled in the minimum safe distance.
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Figure 6. The trajectories of four mobile agents under different missing measurement probability. (a)
1− qi(t) = 0.2. (b) 1− qi(t) = 0.

The simulation results from Figures 1–6 are obtained under mobile sensor–actuator
networks, for the sake of comparing the effects between mobile control and fixed control,
the L2 norms of estimation error e(t) are illustrated in Figure 7. Figure 7 shows the L2
norms of estimation error e1(t), e2(t), e3(t), e4(t) under the fixed control and mobile control,
although these four figures about Figure 7a–d are similar, the vertical coordinates of the
four figures are different because the initial condition of x̂1(0, z), x̂2(0, z), x̂3(0, z), x̂4(0, z)
have made various error; however, it is easily observed from Figure 7 that the control
strategy under mobile control is superior to the fixed control.
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Figure 7. The L2 norms of estimation error e(t) under fixed control and mobile control. (a) L2 norm of e1(t). (b) L2 norm of
e2(t). (c) L2 norm of e3(t). (d) L2 norm of e4(t).
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5. Conclusions

In this paper, the state estimation problem for a class of distributed parameter systems
with time-varying delay over mobile sensor–actuator networks with missing measurements
has been discussed and solved. The state estimation problem for a class of distributed
parameter systems with time-varying delay over mobile sensor–actuator networks with
missing measurements has been discussed and solved. One of the contributions is that
we have projected a new kind of estimator to settle the estimation trouble which is based
on the delayed DPSs, and the estimators are added with consistency component and gain
component in order to approximate the system states effectively. The other contribution is
that the designed estimators can restore the original system states when this delayed DPSs
with stochastic missing measurements. In terms of proof of theory, we have constructed
the estimation error systems by using the operator semigroup approach and the stochastic
analysis method, and the estimation error systems are guaranteed to be globally asymptoti-
cally stable in the mean square via Lyapunov functional technology and mobile control
forces. In the aspect of simulation verification, a large number of simulation experiments
have been obtained to illustrate the effectiveness of this proposed estimation scheme, the
simulation results indicate that the estimators have good estimation performance, and
the states of estimation error systems converge to zero fast under mobile sensor–actuator
network than that of fixed control.

Note that we consider the missing measurements as a random phenomenon when the
sensors break down, which means that the data are lost with some probability. However,
the original results of this paper can be extended to solve other problems such as the
bad sensors give an abnormal data, only if we append a special mathematical function in
the model.
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