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Abstract: This paper studies the buckling of standing columns under self-weight and tip load. An
emphasis is placed on linearly tapered columns with regular polygons cross-section whose volume
is constant. Five end conditions for columns are considered. The differential equation governing
the buckling shapes of the column is derived based on the equilibrium equations of the buckled
column elements. The governing equation is numerically integrated using the direct integration
method, and the eigenvalue is obtained using the determinant search method. The accuracy of the
method is verified against the existing solutions for particular cases. The effects of side number, taper
ratio, self-weight, and end condition on the buckling load and mode shape are investigated. The
contribution of self-weight acting alone to the buckling response is also explored. For a given column
volume, especially, the buckling length and its stress distribution of the columns with different
geometries and end conditions are estimated.

Keywords: heavy column; buckling load; bucking length; self-weight; tapered column; constant volume

1. Introduction

Columns are elements of the structures in various engineering fields that are subjected
to external compressive loads. Long and slender columns have been erected for highways,
bridges, offshore facilities, plant structures, etc. In the design of slender mega-columns, self-
weight effects are important and must be included in buckling analysis. Such columns are
also referred to as heavy columns [1,2]. Tapered members behave differently than uniform
members because their variable cross-sections create effective coupling between internal
forces and efficient stress distributions [3]. Based on their space utilization, esthetics,
safety, optimization, and economic benefits, tapered members are commonly used in
engineering practice. Because a tapered member is controlled by its cross-sectional shape
and column volume, which affect structural behaviors, various shapes of cross-section are
frequently used in practical engineering. Over the past few decade, many efforts have
been made to improve structural analyses, including column analysis based on the topics
described above.

A short literature review of these topics is provided below. Wang and Drachman [1]
investigated the self-weight buckling of a cantilever heavy column with an end load based
on a second-order differential equation in terms of the arc length of the buckled column.
Interestingly, they applied an inverted cantilever column, which is a column hanging from
its fixed end that is subjected to an upward end load. Greenhill [4] studied the maximum
stable column lengths (i.e., buckling lengths) of heavy columns such as mast poles. As
indicated by the title of the paper, column buckling length was compared to the maximum
height at which trees considered as cantilever columns could grow. Since then, small
amounts of impactful research have been performed on the buckling analysis of heavy
columns: Grishcoff [5] used the infinite series to study the buckling loads of cantilever
columns by combining the effects of self-weight and axial loading; Wang and Ang [6]
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derived buckling load equations for a heavy column subjected to an axial compressive load
and restrained by internal supports. Chai and Wang [7] determined the minimum critical
buckling load of self-weighted heavy columns under various end conditions using the
differential transformation technique. Duan and Wang [2] derived the exact buckling loads
of heavy columns under various end conditions in terms of generalized hypergeometric
functions. Lee and Lee [8] studied the buckling of a prismatic heavy column under various
end conditions, where the buckling length of the column was calculated by considering only
its self-weight (without any axial compressive load). Regarding the optimization of heavy
columns, tall columns with variable cross-sections and constant volumes were investigated
by Keller and Niordson [9], Atanackovic and Glavardanov [10], and Sadiku [11].

For tapered beam/column analysis, various taper functions [3,12,13] along the col-
umn axis, including linear, parabolic, sinusoidal, and exponential functions, have been
considered. The effects of various cross-sectional shapes [14,15], including rectangular,
circular, elliptical, and regular polygons, on the optimization of column buckling have been
examined. Additionally, the initial imperfection affecting column behavior was discussed
in the open literature [16,17]. The stability of standing heavy column with the intermediate
supports, i.e., laterally braced column, was discussed by Wang [18].

Despite the considerable works discussed above, no buckling solutions have been
presented in the open literature with a focus on tapered heavy columns and self-weight
with regular polygon cross-sections and constant volumes. This study focused on the
buckling loads and buckling self-weights of columns under various end conditions. Based
on the small deflection theory, a differential equation is derived from the equilibrium
equations of the buckled column elements. A direct integral method is developed for
integrating the governing equation and the determinant search method is adopted for
determining eigenvalues. The predicted results for the buckling load and buckling self-
weight are compared to reference values. Numerical results for the buckling load, buckling
length, and buckling stress with corresponding mode shapes are presented.

2. Mathematical Formulation

Figure 1a presents an ideal and linear elastic column of span length l placed in a
Cartesian coordinate (x, y) system originating at the toe end t. The toe end t (x = 0) is
either hinged or clamped and the head end h (x = l) is either free, hinged, or clamped.
Therefore, five end condition combinations are possible: “hinged-hinged (H-H)”, “hinged-
clamped (H-C)”, “clamped-free (C-F)”, “clamped-hinged (C-H)”, and “clamped-clamped
(C-C)”, where the former end represents the toe end and the latter end represents the head
end. Columns with H-F end condition were not considered in this study because they are
unstable in the structural mechanism from an engineering point of view.

The target columns are linearly tapered with cross-sectional shapes of k (≥ 3)-sided
regular polygons with circumradii r measured from the centroid to a vertex at any coor-
dinate x. At the toe end t, r is represented as rt. At the head end h, r is represented as rh.
The column volume V is always constant. The cross-sectional area and second moment
of the plane area at x are denoted as A and I, respectively. In the buckling analysis in this
study, self-weight effects were included. Such effects are a major concern in the analysis
of heavy columns. The internal self-weight intensity, which is the downward self-weight
per unit of axial length induced by column mass and gravity, is represented as Fw (= γA),
where γ is the weight density of the column material. The column is subjected to an
external compressive load P at the head end and its own self-weight W (= γV). When P
increases and reaches the buckling load B, the column with a buckling length l buckles and
forms the buckled-mode shape represented by the solid curve. After column buckling, the
internal forces of the axial force N, shear force Q, and bending moment M are applied to
the buckled column at x.
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Figure 1. (a) Schematic diagram of a buckled heavy column with a k-sided regular polygon cross-
section and (b) forces imposed on a buckled element.

To express the taper function of r at x mathematically, the taper ratio n, which is
defined as the ratio of the head radius rh to the toe radius rt is introduced.

n =
rh
rt

. (1)

The linear taper function, which is one of the most practical functions in field engi-
neering, of r is expressed in terms of x as follows:

r = rtF1, F1 = n1
x
l
+ 1, (2)

where n1 = n − 1.
By using r in Equation (2), the variable functions of A and I for the k-sided regular

polygon at x can be obtained as follows [19]:

A = c1r2 = c1r2
t F2

1 , (3)

I = c2r4 = c2r4
t F4

1 , (4)

where c1 and c2 are
c1 = k sin

(π

k

)
cos
(π

k

)
, (5)

c2 =
k

12
sin
(π

k

)
cos3

(π

k

)[
3 + tan2

(π

k

)]
, (6)

where k (≥ 3) is the integer side number and k = ∞ for the circular cross-section.
The column volume V is determined as

V =
∫ l

0
Adx = c1r2

t

∫ l

0
F2

1 dx = c1c3r2
t l, (7)
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where c3 is

c3 =
1
3

(
n2 + n + 1

)
. (8)

Note that the length l in Equation (7) is the buckling length of the column subjected to
an external buckling load B and self-weight W (= γV).

Based on Equation (7), the circumradius rt can be obtained in terms of V as

rt =

√
V

c1c3l
. (9)

By using Equations (3) and (4) with Equation (9), A and I can be obtained in terms of
V as

A =
V
c3l

F2
1 , (10)

I =
c2V2

c2
1c2

3l2
F4

1 . (11)

Figure 1b presents a free-body diagram with an infinitesimal length dx for a buckled
column element, which is in an equilibrium state based on the internal forces (N,Q,M) and
self-weight Fw(= γA). By setting ∑ Fx = 0, ∑ Fy = 0, and ∑ M = 0, the three equilibrium
equations can be established as

dN
dx

+ Fw = 0, (12)

dQ
dx

= 0, (13)

dM
dx

− N
dy
dx

− Q = 0. (14)

Differentiating Equation (14) yields the second derivative d2M/dx2 as

d2M
dx2 − dN

dx
dy
dx

− N
d2y
dx2 − dQ

dx
= 0. (15)

Substituting Equations (12) and (13) into Equation (15) yields

d2M
dx2 + Fw

dy
dx

− N
d2y
dx2 = 0. (16)

The self-weight intensity Fw at x caused by the γ value of the column material is given
by

Fw = γA =
γV
c3l

F2
1 . (17)

Considering B and Fw in Equation (17), the axial force N at x is obtained as

N = B + γV −
∫ x

0
Fwdx = B + γV

(
1 − F2

c3

)
, F2 =

n2
1

3
x3

l3 + n1
x2

l2 +
x
l

, (18)

where the term γV is equal to the total column weight W.
The bending moment M is given by the relationship between load and deformation

based on the small deflection theory [19] as

M = −EI
d2y
dx2 . (19)
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Differentiating Equation (19) twice yields

d2M
dx2 = −E

d2 I
dx2

d2y
dx2 − 2E

dI
dx

d3y
dx3 − EI

d4y
dx4 . (20)

Substituting Equations (17), (18), and (20) into Equation (16) yields

d4y
dx4 = −2

I
dI
dx

d3y
dx3 − 1

I
d2 I
dx2

d2y
dx2 − 1

EI

[
B + γV

(
1 − F2

c3

)]
d2y
dx2 +

γV
c3l

F2
1

EI
dy
dx

. (21)

From Equation (11), the first and second derivatives of I are determined, respectively:

dI
dx

=
4n1c2V2

c2
1c2

3l3
F3

1 , (22a)

d2 I
dx2 =

12n2
1c2V2

c2
1c2

3l4
F2

1 . (22b)

Substituting Equation (22a,b) into Equation (21) yields

d4y
dx4 = −8n1

lF1

d3y
dx3 −

12n2
1

l2F2
1

d2y
dx2 −

c2
1c2

3
c2

l2

EV2

[
B + γV

(
1 − F2

c3

)]
1
F4

1

d2y
dx2 +

c2
1c3

c2

γl
EV

1
F2

1

dy
dx

. (23)

To facilitate numerical analysis and obtain the most general results for this class of
problems, the following system parameters are cast into non-dimensional forms:

ξ =
x
l

, (24)

η =
y
l

, (25)

β =
Bl4

EV2 , (26)

λ =
γl4

EV
, (27)

where (ξ, η) are non-dimensional Cartesian coordinates, β is the buckling load parameter,
and λ is the self-weight parameter.

By using Equations (24)–(27), Equation (23) in dimensional units can be transformed
into the non-dimensional differential Equation (28), which governs the buckled shape of
the heavy column as

d4η

dξ4 = −8n1

f1

d3η

dξ3 −
12n2

1
f 2
1

d2η

dξ2 −
c2

1c2
3

c2

[
β + λ

(
1 − f2

c3

)]
1
f 4
1

d2η

dξ2 +
c2

1c3

c2

λ

f 2
1

dη

dξ
, (28)

where f1 = n1ξ + 1 and f2 =
(
n2

1/3
)
ξ3 + n1ξ2 + ξ. The eigenvalues of (β, λ) in Equation (28)

are conjugated with each other. This means that for a given λ value, the eigenvalue β is unique,
and vice versa.

Now, consider the boundary conditions in Equation (28). At the top free end (x = l),
M in Equation (19) and Q in Equation (14) are both equal to zero. Therefore, the non-
dimensional boundary conditions of the head free end (ξ = 1) are obtained as follows:

d2η

dξ2 = 0,
d3η

dξ3 +
c2

1c2
3

n4c2

dη

dξ
β = 0. (29)
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For the toe and head hinged ends (x = 0 and x = l), y and M are both zero and the
non-dimensional boundary conditions at ξ = 0 and ξ = 1 are obtained:

η = 0,
d2η

dξ2 = 0. (30)

For the toe and head clamped ends (x = 0 and x = l), y and dy/dx are both zero and
the non-dimensional boundary conditions at ξ = 0 and ξ = 1 are obtained:

η = 0,
dη

dξ
= 0. (31)

By using the differential equation in Equation (28) subjected to the selected boundary
conditions in Equations (29)–(31), the conjugate eigenvalues of (β, λ) can be computed
using appropriate numerical solution methods for a given set of column parameters for the
end conditions (k and n).

It is possible for a column to buckle under its self-weight W, even if no external load
P = 0 is applied. The buckling self-weight parameter Γ for P = 0 was introduced using
Equation (27) and can be formulated as

Γ =
γL4

EV
, (32)

where L is the self-weight buckling length for which the column buckles under self-weight
alone. Setting β = 0 and using Γ instead of λ in Equation (28) yields the following equation:

d4η

dξ4 = −8n1

f1

d3η

dξ3 −
12n2

1
f 2
1

d2η

dξ2 −
c2

1c2
3

c2
Γ
(

1 − f2

c3

)
1
f 4
1

d2η

dξ2 +
c2

1c3

c2

Γ
f 2
1

dη

dξ
, (33)

where the buckling self-weight parameter Γ is the eigenvalue in the differential equation of
Equation (33).

After calculating the conjugate eigenvalues (β, λ) from Equation (28) for a given set of
E, V, and γ, the buckling length l is calculated using Equation (26) or Equation (27), and
the buckling stress σ at x is obtained as

l = 4

√
EV2

B
β, (34)

σ =
N
A

=
c3EV

l3

[
β

f 2
1
+

(
1 − f2

c3

)
λ

f 2
1

]
, (35)

where A and N in Equation (35) are given by Equations (10) and (18), respectively. In
particular, the self-weight buckling length L and self-weight buckling stress σ caused only
by the self-weight W with P = 0 are obtained using Equations (36) and (37), respectively.

L = 4

√
EV
γ

Γ, (36)

σ =
c3EV

l3

(
1 − f2

c3

)
Γ
f 2
1

. (37)

3. Solution Methods

Based on the mathematical formulations above, two FORTRAN computer programs
were written to solve the conjugate eigenvalues of (β, λ) in Equation (28) and the eigenvalue
Γ in Equation (33). The input column parameters are the end conditions, as well as the
side number k and taper ratio n for Equations (28) and (33), respectively. To calculate the
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mode shape (ξ, η), Equations (28) and (33), which are boundary problems subjected to
the end conditions selected from Equations (29)–(31), are integrated numerically using a
direct integration method such as the Runge–Kutta method [20]. The eigenvalues (β, λ)
and Γ are calculated using the determinant search method [15,19] enhanced by the Regula–
Falsi method [20]. By using these solution methods, the eigenvalues (β, λ) and Γ with
their corresponding mode shapes (ξ, η) for various end conditions can be calculated. Five
different end conditions are considered, as discussed in Section 2. These types of solution
methods for boundary and eigenvalue problems such as Equations (28) and (33) have been
described in detail in [15,21], and interested readers should refer to these previous studies.

Before executing the numerical methods described above, it is important to choose a
suitable step size ∆ξ when applying the Runge–Kutta scheme, which is computed using the
following equation for a given number of dividing elements ne for the unit buckling length:

∆ξ =
1
ne

. (38)

Convergence analysis considering the buckling load parameter β was performed to
obtain a suitable ne (= 1/∆ξ) and the results of the H-H column with a circular cross-
section (k = ∞) with λ = 1 and n = 0.5 are presented in Figure 2. The solution β
with ne = 10 converges at a ratio of 0.9996 (= 0.26865/0.26876) to the solution β with
ne = 200, meaning that β with ne = 10 is sufficiently converged. Additionally, the solution
β with ne = 20 agrees well with that with ne = 200 (within four significant figures). All
computations in this study were conducted on a PC with a GPU. The solutions for β with
ne = 20 were computed within one-third of a second.

Figure 2. Convergence analysis for a suitable ne (= 1/∆ξ) in the Runge–Kutta scheme.

4. Results and Discussion

Numerical experiments on the effects of column parameters on the conjugate eigenvalues
of (β, λ) in Equation (28) and the eigenvalue Γ in Equation (33) with their corresponding mode
shapes (ξ, η) were performed. For validation purposes, the buckling loads B and buckling self-
weight parameters Γ in this study and various references [2,6,8,22] are compared in Tables 1 and 2,
respectively. First, the B values for a concrete column with V = 15 m3, E = 20 GPa, and λ = 0
(i.e., without self-weight, with varying end conditions, a side number k, and taper ratio n) are
compared. The results of this study and those presented by Riley [22] are in good agreement
(0.3% error). Second, the buckling self-weight parameters c2

1c2
3Γ/c2 (= γAL3/EI) for n = 1

(i.e., uniform column) in this study and previous studies [2,6,8] with various end conditions
are compared. Note that the parameters of c2

1c2
3Γ/c2 for the buckling self-weight parameter
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Γ have also been adopted in the literature [2,6]. If n = 1, then the parameters are the same,
regardless of k. The results of this study and the references [6] agree well, and the results
of this study and the references [2,8] are the same to within five significant figures. Thus,
the analytical theories and numerical methods developed in this study are validated when
considering all of the column parameters, including the end conditions, k, and n.

Table 1. Comparisons of buckling load B * for λ = 0.

End Condition, k and n
Buckling Load B in MN

This Study Riley [22] % Error

H-H, k = 3, n = 0.4 49.95 49.95 0.
H-C, k = 4, n = 0.5 109.88 109.72 0.15
C-F, k = 5, n = 0.6 22.07 22.01 0.27
C-H, k = 6, n = 0.7 132.39 132.33 0.05
C-C, k = ∞, n = 0.8 270.17 270.17 0.

* l = 15 m, V = 15 m3, and E = 20 GPa for the concrete column.

Table 2. Comparisons of buckling self-weight parameter Γ in terms of c2
1c2

3Γ/c2 for n = 1 *.

End Condition
c2

1c2
3Γ/c2

H-H H-C C-F C-H C-C

This study 18.5687 30.0094 7.8373 52.5007 74.6286
Duan and Wang [2] 18.5687 - 7.8373 52.5007 74.6286
Wang and Ang [6] 18.58 - 7.84 53.91 78.96

Lee and Lee [8] 18.5687 30.0094 7.8373 52.5007 74.6286

* If n = 1, c2
1c2

3Γ/c2(= γAL3/EI) are identical regardless of k.

Table 3 shows the effects of the side number k on the buckling load parameter β
with a conjugate eigenvalue of λ = 1 and n = 0.5 for each end condition. As k increases,
β decreases. One can see that an equilateral triangle (k = 3) column is the strongest
column with the largest β value for a given column volume. This is because the area
is the same regardless of k in the same volume, but the circumradius r and the second
moment of the plane area I depend on k and are greater from k = 3 to k = ∞ (see the
ratio of Ik/Ik=3 in the last column of the table). The β value of the equilateral triangle
column is 1.464 (= 0.3934/0.2688) times larger than the circular column (k = ∞) for the
H-H condition. The value of β depends heavily on the end conditions, as indicated by C-C
column maximum and C-F column minimum. For the circular cross-section, the β value of
the C-C column is 19.79 (= 2.0759/0.1049) times larger than that of the C-F column.

Table 3. Effects of side number k on β with λ = 1 and n = 0.5.

k
Buckling Load Parameter β Ratio of

H-H H-C C-F C-H C-C Ik/Ik=3

3 (triangle) 0.3934 1.0123 0.1578 1.2814 2.5595 1.0
4 (square) 0.2970 1.8193 0.1170 1.0896 2.1850 0.8660

5 (pentagon) 0.2789 0.7833 0.1092 1.0538 2.1152 0.8410
6 (hexagon) 0.2734 0.7722 0.1069 1.0428 2.0936 0.8333
∞(circular) 0.2688 0.7630 0.1049 1.0337 2.0759 0.8270

Figure 3 presents β versus n curves for a conjugate eigenvalue of λ = 1 and circular
cross-section. Columns subjected to an external load p are in the stability domain under the
β versus n curves (i.e., p < b), meaning they are not buckled. As n increases, β increases,
reaches a peak coordinate (β, n) marked with N, and then decreases. At the peak point
of (β, n) of each curve, the taper ratio n is optimized, implying that the column with the
optimized n has the maximum β. For example, for the C-H column, the column achieves
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the maximum β = 1.2814 with an optimized n = 0.8501. One can see that the β values with
n = 1, excluding the C-F column, are nearly identical to the β values with the optimized
n. Figure 3 also highlights the stability region of n. For the C-F column, the columns with
0 < n < 0.7383 are stable (i.e., not buckled), unless p < b. In contrast, the columns with
n > 0.7383 are unconditionally unstable (i.e., buckled), even if p = 0, implying that the
columns are buckled by the self-weight parameter λ = 1. For the C-C and C-H columns,
the lower limit of stability for n is n = 0 (see marks of �) and the upper limit of n does
not appear until n = 1. For the H-C and H-H columns, the lower limits of stability for n
are n = 0.0949 and n = 0.1426 (see marks of �), respectively, and upper limits of n do not
appear until n =1.

Figure 3. Curves of β versus n.

Figure 4 presents a graphical chart of the conjugated eigenvalues of the buckling
load parameter and self-weight parameter (β, λ) for a circular cross-section with n = 0.5.
In the governing differential equation, namely, Equation (28), there are two conjugated
eigenvalues of (β, λ) that are unique. As λ increases, β decreases. β is the largest at λ = 0
when excluding the self-weight effect and the effect of λ on β is significant. For example,
β with λ = 2 is 25.5% smaller than β with λ = 0 (2.3035/1.8353 = 1.255; see marks of
•). Eventually, β becomes zero at λ = 8.6443 (i.e., the buckling self-weight parameter
Γ = 8.6443). Therefore, the column with λ = 8.6443 buckles under the column self-weight
alone, without any external load. In this figure, values of Γ marked by � are presented for
a given set of column parameters.

Figure 4. Chart of conjugate eigenvalues of (β, λ).
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Figure 5 presents the buckled mode shapes (ξ, η) for each end condition with a circular
cross-section, λ = 1, and n = 0.5. In this figure, the buckling load parameters β shown
in Table 3 and the positions ξ of the maximum deflection for each end condition are also
presented. Note that the coordinate η of the deflection represents relative deflection,
rather than absolute deflection. The buckling length parameter λ = 1 for each end
condition is the same, but the value of β heavily depends on the end condition. The
location of the maximum deflection depends on the end condition. The location of the
maximum deflection of a column like a utility pole may be controlled by guywires to
prevent unexpected buckling stemming from undesirable column imperfections.

Figure 5. Example buckling mode shapes for λ = 1, k = ∞, and n = 0.5.

Table 4 shows the effects of the side number k on the buckling self-weight parameter
Γ with n = 0.5 for each end condition. As k increases, Γ decreases. An equilateral triangle
(k = 3) column is the strongest column with the largest Γ value for a given column volume.
The Γ value of the triangle column is 1.209 (= 2.1405/1.7701) times larger than that of the
circular column (k = ∞) for the H-H condition. The value of Γ depends heavily on the
end conditions, as indicated by the C-C column maximum and C-F column minimum. For
the circular cross-section, the Γ value of the C-C column is 5.257 (= 8.6443/1.6443) times
greater than that of the C-F column. Therefore, selecting proper end conditions is one of the
most important design criteria for heavy column design, as discussed previously regarding
Table 3.

Table 4. Effect of side number k on Γ for n = 0.5.

k
Buckling Self-Weight Parameter Γ

H-H H-C C-F C-H C-C

3 (triangle) 2.1405 3.2497 1.9883 8.0144 10.453
4 (square) 1.8537 2.8143 1.7219 6.9407 9.0523

5 (pentagon) 1.8002 2.7331 1.6772 6.7403 8.7911
6 (hexagon) 1.7837 2.7080 1.6569 6.6787 8.7106
∞(circular) 1.7701 2.6874 1.6443 6.6278 8.6443

Figure 6 presents Γ versus n curves for the circular cross-section, where the values
of Γ with n = 0.5 listed in Figure 4 are also represented as � marks. Columns with the
self-weight parameter λ are in the stability domain under the Γ versus n curves (i.e., λ < Γ)
and are not buckled by self-weight. As n increases, Γ increases, reaches a peak at the
coordinates (Γ, n) marked with N, and then decreases. At the peak point of (Γ, n) on each
curve, the taper ratio n is optimized to avoid buckling under self-weight, implying that
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the column with the optimized n has the maximum Γ. For example, for a H-C column, the
column achieves the maximum Γ = 2.7164 with an optimized n = 0.5863.

Figure 6. Curves of Γ versus n.

Figure 7 presents the buckling stresses σ in dimensional units for columns subjected to
(a) self-weight without an external load (P = 0) and (b) an external buckling load of B = 5
MN, where the buckling column length l, stress σt at the column toe (ξ = 0), and stress σh
at the pile head (ξ = 1) are presented. The column parameters considered are a circular
cross-section, n = 0.5, V = 10 m3, E = 20 GPa, and γ = 23 kN/m3 for a concrete material.
In the case of (a) self-weight, σ decreases along the column axis and σ is maximized as
σmax = σt at ξ = 0, which is the expected behavior. For the buckling column length L,
the C-C column is the longest and the C-F column is the shortest, which is the expected
behavior. Considering the ultimate stress of σu = 40 MPa for the concrete material, σt
values between 0.825 and 1.249 MPa are relatively small compared to σu, meaning heavy
column ruptures are caused by buckling, rather than fracturing. In the case of (b), the
external load of B = 5 MN, σ increases along the column axis, where σ is minimized as
σmin = σt and maximized as σmax = σh because the column is subjected to an external load
and the column area decreases (i.e., n = 0.5). Additionally, the buckling length l of the C-C
column is the largest and that of the C-F column is the smallest. Even when an external
load is applied to the column, the column ruptures as a result of buckling, rather than
fracturing, just as in the case of self-weight buckling.

Tables 5 and 6 summarizes the tallest non-buckling column lengths of (L, l) pro-
vided in Figure 7. These tables also include numerical results for a steel heavy column
with a square cross-section, E = 210 GPa, and γ = 77 kN/m3, with the other parame-
ters kept constant. The buckling behavior of steel columns is similar to that of concrete
columns. It is noteworthy that the self-eight buckling length L (see Equation (36)) and
buckling length l (see Equation (34)) of the steel column do not increase significantly
beyond those of the concrete column, despite the Young’s moduli of E = 20 GPa for
the concrete column and E = 210 GPa for the steel column. Note that under the same
column parameters given above, if the length of a particular column is shorter than the
tallest length L or l shown in Tables 5 and 6, the column is safe from column buckling.
For example, the H-H column with a specific column length of 10 m (< L = 62.64 m)
will not be buckling. The corresponding circumradii of the column are rt = 0.752 m and
rh = 0.376 m (n = 0.5, V = 10 m3 and column length = 10 m), which are practical in
real engineering systems. The column stress σt(= γV/At) at the toe end is computed as
σt = 0.129 MPa (< σall = 2 MPa, approximately), and therefore this column is safe from
self-weight buckling.
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Figure 7. Examples of buckling stress σ for a concrete column with a circular cross-section, n = 0.5, V = 10 m3, E = 20 GPa,
and γ = 23 kN/m3: (a) self-weight buckling (P = 0) and (b) external load buckling (B = 5 MN).

Table 5. Tallest buckling length L and buckling stresses σt of heavy columns * without compressive load.

L and σt H-H H-C C-F C-H C-C

(a) Circular (k = ∞) concrete column
L (m) 62.64 69.52 61.49 87.13 93.11

σt (MPa) 0.840 0.933 0.825 1.169 1.249
(b) Square (k = 4) steel column

L (m) 84.32 93.60 82.78 117.3 125.3
σt (MPa) 3.787 4.204 3.718 5.269 5.630

* Buckling due to self-weight W.

Table 6. Tallest buckling length * l and buckling stresses σh of heavy columns * with compressive load.

l and σh H-H H-C C-F C-H C-C

(a) Circular concrete column
l (m) 21.53 25.87 17.26 25.94 30.77

σh (MPa) 25.11 30.18 20.14 30.26 35.90
(b) Square steel column

l (m) 39.41 46.97 31.66 47.34 55.94
σh (MPa) 45.98 54.80 36.93 55.24 65.26

* Buckling due to external compressive load P = 5 MN including self-weight W.
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5. Concluding Remarks

This paper presents the buckling of heavy column included its own self-weight. The
column is linearly tapered, the cross-section is a regular polygon, and the column volume
is held in constant. Five end conditions of the column are considered. Using equilibrium
equations of the buckled column element based on the small deflection beam theory, the
fourth-order ordinary differential equation governing the buckled mode shape of such
column is derived. For integrating the differential equation, the direct integration method
such as Runge–Kutta method is used and for calculating eigenvalues, i.e., buckling load
and self-weigh buckling length, is applied as the solution methods. Predicted buckling
loads and self-weight buckling lengths agree well with those of references. Numerical
results of the buckling load, self-weight buckling length, buckled mode shape, and buckling
stress are presented herein and are extensively discussed. The results of this study are
expected to be utilized in the design of heavy columns including the self-weight effect.
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