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Abstract: The difficulties of predictive maintenance of power grids are related to the large spread of
electrical infrastructures and the definition of early warning indicators. Such indicator is the partial
discharge activities—which can be very informative about the rising insulation problems of electrical
materials. However, the detection and the localization of the partial discharges are very complicate
tasks and are currently subject to intensive studies in both theoretical and practical domains. The
traditional way to approach the global surveillance of partial discharge sources is to first detect it and
the second is to attempt to localize their positions. Despite the numerous proposed approaches, based
on advanced transient signal processing tools, there is no any operational technique to efficiently
asses the partial discharge sources in a real power network. In this context, our paper proposes a
new approach based on the global evaluation of entropy of transient phenomena detected in a power
network, without needing any localization of the sources of these phenomena. We will show that
this approach provides an effective evaluation of partial discharges sources. Moreover, since the
technique requires a reduced number of sensors, it is very advantageous to use in real contexts.

Keywords: spectral entropy; phase diagram-based entropy; phase diagram representation; electrical
transient; partial discharges

1. Introduction

In the last few years, more and more research has been conducted on the study of the
systems we depend on in our daily lives from the perspective of analyzing their operation
in order to obtain information on possible defects and degradations that can lead to system
problems [1–4]. A typical case where this type of research is conducted is the surveillance
of the power networks.

This is a crucial operation for maintaining the security of energy supply, and is vital for
all economic (industry, transport, telecommunications, etc.) and social (supplying energy
to individuals) activities. The major issue is the early warning of the sources of problems,
which, if not detected, will cause power failures with significant losses. Network managers
are faced with an aging network that must withstand two-way demands, in particular from
intermittent energy production. In this context, the continuous monitoring of electrical
networks with distributed sensors is the solution that is being globally explored, with
several new technologies currently in the study and development phase. The distributed
sensors are generally aimed to detect the partial discharge activities, which represent early
signs of faults that could become problematic in time [5]. In this context, the accurate
detection of partial discharge activity is nowadays a general research topic of great interest,
both theoretical and practical.

The detection techniques used are generally energetic, with thresholds determined
for each type of configuration (also called energy-based detection methods) and, using
GPS technology, they can allow for the localization of the sources [6]. Another type

Mathematics 2021, 9, 648. https://doi.org/10.3390/math9060648 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1561-3286
https://doi.org/10.3390/math9060648
https://doi.org/10.3390/math9060648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9060648
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9060648?type=check_update&version=1


Mathematics 2021, 9, 648 2 of 14

of approach is based on the projection on dictionaries (wavelets, for example), which
amounts to detecting the presence of a transient via its resemblance to the waveforms of
the dictionary [7]. Both the energy-based and wavelet methods have been studied and
compared in the field of partial discharges detection [8].

In order to characterize a transient phenomenon, new methods have been developed
that complement those listed above. The most important are based on a new space of inter-
pretation that exploits the sparsity of the transient given by compressive sensing [9,10], the
phase diagram analysis as way to analyze electrical transients [11], and the entropy defined
in the time-frequency domain [12]. In this state-of-the-art context, the idea behind our
contribution is to consider the entropy as a statistical notion of the system that can highlight
the specific time where transient phenomena occur. Through this, we manage to perform a
scan of the entire system in terms of transient generated, thus being able to identify various
disruptive sources that do not find their place in the normal operating conditions of the
system. We will show that this entropy-based approach makes important contributions
to existing techniques from the perspective of system scanning and analysis of acquired
signals, and we will show that it can be easily used in characterizing existing systems.

The structure of the paper shows the following: Section 2 presents the signal model
considered in this paper as well as the methods we propose, and Section 3 describes the
results obtained by applying the methods of analysis and performance. Section 4 discusses
the interpretation of the obtained results, and the Section 5 presents the conclusions of this
paper and the future perspectives that are foreseen.

2. Signal Processing Methods

The monitoring of large size systems, such as a power network, is nowadays a chal-
lenging topic from different perspectives: sensing strategy, information management, and
decision, but all of these are asking for signal analysis methods able to extract useful signals
(corresponding to faults) from the observed signals that also contain coherent components,
often much stronger than the useful signals. In the context of a power network, monitoring
useful signals corresponds to partial discharge’s appearing at an arbitrary range with
respect of the sensing point—Figure 1. At the same time, very close to sensing points
(placed generally at the main substation level), we receive signals corresponding to loads
and, because of the proximity with sensing point, they are much more energetic than the
useful signals.
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This system’s behavior can be expressed in terms of the sensed signal model as:

x(t) = ∑
k

sk(t− Tk(t)) + ∑
m

um(t) + N, ‖sk‖2 >> ‖um‖2, (1)

where sk(t) is the signal close to the sensing point that is usually not subject to propagation,
um(t) is the signal specific to partial discharge and can be described by Equation (2), and N
is the amount of noise added.

um(t) = Hm{pm(t)}. (2)

The description of the partial discharge signal includes one parameter for modeling
the propagation effect Hm and the local transient specific to the partial discharge pm(t).
For instance, if we have only a delay and attenuation on the cable, Hm will be defined
according to the mathematical relation:

Hm : α · δ(t− tα). (3)

In order to detect these weak useful signals, our approach is to evaluate the entropy
variation at a global level based on the following consideration: if the event of the useful
signals is weaker than the corrupting one, then they are propagating in the system and the
effect of the propagation (reflection but also dispersion) will add natural behavior that will
modify the entropy of the entire system. Using this information, we can highlight the time
moments in which different transient signals appear in the analyzed system. This will be
useful for the control part of the network, so different decisions can be made regarding the
maintenance of the network. For our studies, two definitions of the entropy are: classical
spectral entropy and phase diagram-based entropy estimation.

2.1. Spectral Entropy

The spectral entropy is a method used in the signal processing field in order to express
the spectral distribution of power for an analyzed signal [13]. Starting from a signal x[n], it
is necessary to determine its power spectrum S(t, m):

S(t, m) = |X[m]|2, (4)

where X[m] represents the discrete Fourier Transform of the signal. To compute the
instantaneous spectral entropy, it is necessary to convert the spectrum into a probability
density function, which can be performed by normalization over all frequency components,
using Equation (5). In order to be able to highlight the evolution of the spectral entropy in
time, we are interested in its value in each moment of time from the analyzed signal.

P(t, m) =
S(t, m)

∑ f S(t, f )
, (5)

where P(t, m) is the probability distribution at time t and S(t, f ) is the time-frequency
power spectrogram [13]. Then the spectral entropy at time t is determined by the equation:

H(t) = −
N

∑
m=1

P(t, m) log2 P(t, m). (6)

Using the propriety of estimating the uniformity of signal power distribution in the
frequency domain, this method was used to differentiate different faults [14,15]. Its main
advantage consists of highlighting the changes that take place in the evolution of a system.
Thus, we can quantify the time moments specific to signals of interest.
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2.2. Phase Diagram-Based Entropy

The phase diagram analysis is a method used in non-linear data analysis in order
to characterize a dynamical system [16,17]. Based on the advantage of not having a data
analysis model, it can indicate changes in system behavior based on certain nonlinear
properties. Starting from the studied signal in the form of a time series, we move on to a
representation in a multidimensional space, with the help of vectors

→
v[i].

x = {x[1], x[2], . . . , x[N]}, (7)

→
v[i] =

m

∑
k=1

x[i + (k− 1)d] ·→ek, i = 1, . . . , M, (8)

where
→
v[i] are the phase space vectors,

→
ek are the axis unit vectors, m is the embedding

dimension, d is the delay between the samples, and M = N − (m− 1)d, with N as the
length of the time series. Usually, the delay is computed using the false nearest neighbor
method [18,19] or the multi-lag phase-space analysis [20,21]. The embedding dimension
is chosen using the false nearest neighbor method [18,19]. In order to be able to reach the
statistical result of interest, it is necessary to evaluate all the samples of the signal, a fact for
which the value 1 is chosen for the delay.

For each vector in the phase space, it is possible to create a quantity with the help of
the degree of similarity between the vector

→
v[i] and another vector of the space

→
v[j], which

can be verified [22] by the equation:

Cm
i (r) =

1
N −m + 1 ∑

j 6=i
Θ
{

r− d
[ →
v[i],

→
v[j]

]}
, j = 1, 2, . . . , N −m + 1, (9)

where Θ is the Heaviside function, r is a threshold value, and d[·] is the operator of
Euclidean distance.

Θ(x) =

{
1, x ≥ 0
0, x < 0

. (10)

The logarithm of the expression Cm
i (r) is computed:

Φm =
1

N −m + 1

N−m+1

∑
i=1

log(Cm
i ), (11)

and from here, the phase diagram-based entropy is defined by the equation:

PDEn = Φm −Φm+1. (12)

The tolerance threshold r does not have an exact value; it is often defined as a percent-
age of the standard deviation of the analyzed time series.

3. Results

In order to develop the considerations highlighted in Section 2, in this paper, we
considered testing the methods using simulated signals and real signals obtained from the
realization of a reduced scale facility of an electrical network.

3.1. Normal and Faulty Operation of the Electrical Network in Simulation

For the simulation part, two cases are studied, one that reflects normal operation
and one that reflects malfunction. The malfunction signal consists of a Gaussian transient
specific to an external load and two defects equivalent to two partial discharges. One defect
is located on the positive side and another on the negative side of the axis. The signal has
a sampling frequency of 10 KHz, a duration of 300 ms, and a white noise signal with a
variance of 0.02 was added over it. The normal operation signal is a white noise signal
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with a variance of 0.02, which is of the same length as the previous signal. Both signals can
be seen in Figure 2.
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The first method of analysis used is spectral entropy. Using the two available signals,
their spectral entropy is calculated by calculating the instantaneous spectral entropy for
each time moment from the analyzed signal. In Figure 3, a comparison was made between
the two cases. The white noise signal has the highest spectral entropy. If the analyzed
signal contains information, in our case, faults, the spectral entropy decreases, so the two
signals can be distinguished. It is also possible to determine the time moments at which
the two defects appear, at the values 50 ms and 250 ms.
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The following considerations were used to use the secondary method. First, a
20-sample analysis window was chosen. This window was slid with one sample for
the entire duration of the signal. The window covers the entire signal specific to a fault
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in the network and was used as a signal that will be represented with the phase diagram
method. Using the algorithm described in Section 2, it was possible to calculate the phase
diagram-based entropy in each sliding analysis window. By concatenating the values,
it was possible to obtain the graphs from Figure 4 specific to the two analyzed signals.
In order to choose the parameter of the threshold used, a value of 0.2 from the window
variance was used.
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Figure 4. Phase diagram-based entropy of the two simulated signals for r = 0.2× var(w).

As can be seen in Figure 4, we can identify the time of appearance of a defect in the
network because, at that time, the phase diagram-based entropy has a significant increase
compared to the time when we have no additional activity on the analyzed signal.

3.2. Normal and Faulty Operation of the Electrical Network in Real Case

In order to study the methods on a real, practical system, a benchmark of a three-phase
electrical power network with two workstations was used, which provided the signals of
interest, as it can be seen in Figure 5.
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Figure 5. The experimental benchmark.

Network monitoring and signal acquisition were performed via TiePie acquisition and
preprocessing boards (https://www.tiepie.com/ accessed on 21 February 2021) and high
frequency current transformer sensors. The acquisition board has four inputs, one for each
sensor. Three sensors were positioned on the three electrical cables specific to the network

https://www.tiepie.com/
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phases and one sensor on the ground. In the first phase, a visual analysis of the signals
carried in the network was performed using the Handyscope HS4 USB oscilloscope.

With its help, it was possible to perform a scan of the entire evaluated network. This
system is shown in Figure 6. After ascertaining the existence of the partial discharge
signals, the signals were recorded, and the two methods of analysis discussed were applied
to them.

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 14 
 

 

high frequency current transformer sensors. The acquisition board has four inputs, one 
for each sensor. Three sensors were positioned on the three electrical cables specific to the 
network phases and one sensor on the ground. In the first phase, a visual analysis of the 
signals carried in the network was performed using the Handyscope HS4 USB oscillo-
scope. 

With its help, it was possible to perform a scan of the entire evaluated network. This 
system is shown in Figure 6. After ascertaining the existence of the partial discharge sig-
nals, the signals were recorded, and the two methods of analysis discussed were applied 
to them. 

 
Figure 6. The acquisition and monitoring system. 

Figure 7 shows a comparison in the time domain of the two states of the analyzed 
electrical network. It also observes, on the left side, the appearance of two partial dis-
charges over the signal transmitted through the network around 2 ms. The signals were 
acquired from a power distribution network at a sampling frequency of 6.25 MHz and 
have a duration of 5 ms. 

  
(a) (b) 

Figure 7. (a) Faulty operation of the system; (b) normal operation of the system. 

Using the graphs in Figure 8, it can be observed that the spectral entropy can be used 
to determine the moments of time in which changes occur in the state of the system; the 

Figure 6. The acquisition and monitoring system.

Figure 7 shows a comparison in the time domain of the two states of the analyzed
electrical network. It also observes, on the left side, the appearance of two partial discharges
over the signal transmitted through the network around 2 ms. The signals were acquired
from a power distribution network at a sampling frequency of 6.25 MHz and have a
duration of 5 ms.
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Using the graphs in Figure 8, it can be observed that the spectral entropy can be used
to determine the moments of time in which changes occur in the state of the system; the
two maximums were discovered corresponding to the two partial discharges. Thus, an
analysis of the activity carried out on the cables of the electrical network can be performed.
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Figure 8. The spectral entropy of the two analyzed states of the system.

With the help of the phase diagram-based entropy, the appearance of partial discharges
in the network is highlighted. As can be seen in Figure 9, the two maxima of the phase
diagram-based entropy render the two specific moments of the occurrences of the faults.
The threshold used is a sensitive parameter and, depending on its value, the result has a
more or less high accuracy. In order to calculate the phase diagram-based entropy, a value
of 0.6 from the sliding window variance was used.
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Figure 9. The phase diagram-based entropy of the two analyzed states of the system for r = 0.2× var(w).

3.3. Characterization of the Faulty Condition of the Electrical Network

In order to further analyze the faulty state of the system, in addition to the real signal
captured by the network, we also studied a calibration case by introducing a rectangular
pulse in the network. As parameters, the signal had a pulse width of 1 us at a repetition
period of 1 ms. We chose this signal in order to be able to study the effect of signal distortion
in terms of partial discharges, with the two cases being observed below. The signal was
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generated with the signal generator built into the Handyscope HS5 USB oscilloscope
equipment and was introduced into the analyzed electrical network. The purpose of the
calibration operation was to introduce in a controlled manner electrical signals in the
network, which when subjected to deformations due to propagation will be similar to the
partial discharge signals. Zooming in on the two signals from Figure 10 shows both the
discharge and its reflection on the cable.
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In the study of these two cases, in addition to the two methods that we proposed, we
compared the results obtained with a state-of-the-art technique widely used for partial
discharge detection: spectrogram approach. To determine the spectrogram of the signals,
we considered the following parameters: a Hamming window of 64 samples size, the
number of overlapped samples 60, and the number of Fast Fourier Transform points 64.
After which, the sum of the columns was applied to the spectrogram, and the detection
curves from Figure 11 were obtained.
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As can be seen, this method does not always offer high performance. In the case of
the calibration signal, the time moments of the occurrence of the transients are detected.
In the case of the network signal, although the two-time moments of the transients are
highlighted, there are problems in choosing the detection threshold. This can lead to false
alarms in the detection process.

It is observed in Figure 12 that the spectral entropy provides the answers we need
regarding the detection of time moments corresponding to cable activities that are not part
of the normal functioning of the network.
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By isolating each signal of interest, we can make a transition to the representation
plan of the phase diagram, and the representations for the two partial discharges and
two reflections can be observed. In Figure 13, we can see the four representations in the
phase space. In order to reach these results, the optimal value equal to m = 3 for the
encapsulation size was determined with the help of false nearest neighbors and, for the
time delay, the value d = 1 was chosen so that it corresponds to the implications of the
algorithm for determining the phase diagram-based entropy. It is observed that each
analyzed signal class has a unique representation in this space, a specific pattern that each
type of signal analyzed follows from the perspective of the trajectory. Using the information
provided by the phase diagram and the fact that each type of detected signal has a different
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representation, we can identify for each signal its generating source. Thus, specific signal
classes can be made (for example: transients, sag, swell, harmonics, etc.). In this sense, the
signal specific to the partial discharge can be separated from the other existing signals in
the network.
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In order to characterize the analyzed electrical network based on the phase diagram-
based entropy, a sliding window was implemented through, with which successive signal
pieces will be analyzed based on the representation in the phase diagram. The results
obtained can be viewed in Figure 14.
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It is observed that the phase diagram-based entropy can be used to discover a change
in the signal trajectory, which leads to the appearance of a foreign signal in the analyzed
network, highlighting all the triggering moments for them.

As these results indicate that the transients are properly detected, which allows an
accurate estimation of the times of arrival of the transient waves received in different
sensing points of the network.

For the localization part, the concept presented in [23] can be used. Off course, the
localization of the partial discharge sources is a very important aspect in the diagnostic
of power cables. There are two main elements ensuring the accuracy of the localization
procedure. The first one is the proper detection of any transient that naturally will conduct
to accurate estimation of the times of arrival of the detected transient waves. The second
element—the accurate synchronization (using GPS-based systems) between the sensing
points of the network as well as the geometrical configuration of the sensing points—will
allow the localization of transient sources. Nevertheless, for underground cables, the
synchronization is a major problem. This is why the work proposed in [23] is referenced
as a potential way to accurately localize the transient sources in a network. In this paper,
we address only the detection problem, which is the main requirement allowing for the
accurate localization via the innovation proposed in [23].

4. Discussion

The choice of monitoring electrical cables is based on the fact that at the moment we
are dependent on many electrical applications. Because of this, the part of preventing
major defects plays an extremely important role. Decisions regarding the operating status
of electrical cables must be made in a timely manner, so that no downtime occurs in the
operation of a system.

To achieve this, several methods of analysis can be used, each with its own advantages
and disadvantages. The two methods of statistical analysis described in this paper have
the following main advantages: the signal processing is carried out in a simplistic manner;
no additional processing of intermediate results is needed so that we reach a conclusion,
and the accuracy of the results is high, as we are able to identify each activity that takes
place on the cable.

It has been shown that using spectral entropy can distinguish between two states
of a system; moreover, it is a good detection method, with a low computational time to
determine possible activities that may occur on an electrical cable.

The analysis based on the extraction of information related to the phase diagram-based
entropy from the nonlinear phase space completes and strengthens the detection part of the
methods. By using this approach, there is the possibility of assigning spatial characteristics
to the signals detected by representing them using the phase diagram method.
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5. Conclusions

This paper is based on the analysis and statistical interpretation of an electrical system,
according to which a characterization of its operating state can be made.

Two statistical methods based on entropy were studied so that there is a common
reference point in the analysis. As entropy is the most pertinent measure to characterize a
system, it can provide us with sufficient information in order to make a decision based on
statistical interpretation.

In this paper, an entropy-based algorithm is proposed for the accurate detection of
defective activities on an electric cable. Spectral entropy and phase diagram-based entropy
are used as a major feature to separate cable activities from voltage signal or noise signals.

Particular attention must be paid to the choice of the threshold parameter from the
calculation of the phase diagram-based entropy. By not having a fixed value, its value can
vary, and the results obtained can be influenced in terms of accuracy.

Another important parameter that can lead to uncertain results is the size of the
sliding window used. If the window is too small, it will not be able to capture the entire
activity, which will make it impossible to perform detection, and if the window is too large
problems will occur related to the exact determination of the time of activity, introducing
false detection times.

Future work is based on the integration of machine learning elements in this ap-
proach, creating an automated system so that all detected activities can be characterized
and classified.

Also, a future research direction will be based on the extraction of some parameters
and estimators from the phase diagram and the implementation of new ways of quantifying
the information provided by it. Thus, the process of classification and characterization of
the signals will become easier, and we will give up the visual stage of the diagrams.
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