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Abstract: The mathematical modeling of dusty Cu-Al2O3/water nanofluid flow driven by a perme-
able deformable sheet was explored numerically. Rather than no–slip conditions at the boundary,
velocity slip and thermal slip were considered. To achieve the system of nonlinear ordinary differen-
tial equations (ODEs), we employed some appropriate transformations and solved them numerically
using MATLAB software (built–in solver called bvp4c). The influences of relevant parameters on fluid
flow and heat transfer characteristics are discussed and presented in graphs. The findings showed
that double solutions appeared in the case of stretching and shrinking sheets which contributed to the
analysis of stability. The stability analysis, therefore, confirmed that merely the first solution was a
stable solution. The addition of nanometer-sized particles (Cu) was found to significantly strengthen
the heat transfer rate of the dusty nanofluid. Meanwhile, an upsurge in the velocity and thermal slip
was shown to decrease the local Nusselt number. The result also revealed that an increment of fluid
particle interaction decreased the boundary layer thickness.

Keywords: dusty hybrid nanofluid; dual solution; stability analysis; stretching/shrinking; slip effect

1. Introduction

For a number of years, studies of the heat transfer characteristics of dusty fluid flow
(two-phase fluid)—in terms of understanding various real-world problems, especially
in atmospheric, physiological and engineering fields—have captivated the attention of
numerous researchers. For instance, the application of dust particles can be seen in the
petroleum industry, soil erosion by natural winds, purification of crude oil, aerosol and
paint spraying, fluidization, dust entrainment during a nuclear explosion in a cloud and
waste water treatment [1–3]. Saffman [4] first formulated dusty fluid flow equations
and evaluated the stability of the laminar flow of a dusty gas wherein particles were
evenly scattered. After some years, Chakrabarti [5] conducted a study of dusty gas using
boundary layer theory, and soon thereafter, Datta and Mishra [6] and Vajravelu and
Nayfeh [7] examined dusty fluid flow over a semi-infinite flat plate and stretching sheet,
respectively. Further, a number of mathematicians such as Attia [8], Ajadi [9], Damseh [10],
Gireesha et al. [11], Makinde and Chinyoka [12] and Prasannakumara et al. [13] conducted
investigations in this field. An exact analytical solution of magnetohydrodynamic (MHD)
dusty fluid caused by a stretching sheet was studied by Jalil et al. [14]. Unlike in previous
research, Hamid et al. [15] explored the permeable shrinking surface in a dusty fluid and
observed the occurrence of dual solutions. Gireesha et al. [16] numerically studied the
nonlinear thermal radiation and hall current impact on a dusty fluid in a heated stretching
sheet, while Abbas et al. [17] examined dusty fluid flow in a porous medium and took the
impact of slip and MHD into consideration. Recently, the dusty fluid flow in a Riga plate
with MHD and convective boundary conditions was studied by Prasannakumara et al. [18].
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All of the above-mention studies only involved viscous fluids. The inclusion of
nanoparticles in a conventional fluid can change its flow and heat transfer capabilities, i.e.,
boosting its thermal conductivity. It seems that Choi and Eastman [19] first conceived the
idea of a nanofluid, i.e., nanoparticles suspended in a base fluid. Since then, nanofluids have
been widely used in industrial cooling applications [20,21], biomedical technology [22],
solar thermal applications [23] and many others. Numerous researchers, such as Motsumi
and Makinde [24], Bachok et al. [25], Pop et al. [26] and Anuar et al. [27,28] have explored
the concept of nanofluid flow and heat transfer. However, there have been fewer studies on
two-phase fluids. The investigation of MHD flows of a dusty nanofluid in a porous medium
over an exponentially stretching sheet was explored by Gorla et al. [29]. Afterwards,
Naramgari and Sulochana [30] performed a numerical study of dusty nanofluid flow
when the sheet was stretched, and concluded that the rate of heat transfer was enhanced
by an upsurge interaction between the nanofluid and the particle phase. An analysis of
the MHD flow of dusty Fe3O4-ethylene glycol nanofluid was performed by Ghadikolaei
et al. [31]. Siddiqa et al. [32] numerically analyzed the natural convective flow of a dusty
nanofluid driven by a wavy vertical surface. Recently, Kalpana et al. [33], Mishra et al. [34],
Saha et al. [35] and Ibrahim and Gamachu [36] explored the dusty nanofluid flow problem
with different surfaces and aspects.

New kinds of nanofluids, known as hybrid nanofluids, which can efficiently im-
prove heat transfer, are being introduced in industry. A hybrid nanofluid is a mixture of
two types of nanoparticles suspended in a base fluid. This new kind of fluid, however,
provides a great advance in heat conductivity, as proved by the work of Madhesh and
Kalaiselvam [37], Tahat and Benim [38] and Devi and Devi [39]. A few researchers have
undertaken mathematical investigations of the boundary layer flow of hybrid nanofluids
on various surfaces such as in stretching/shrinking sheet [40–42], thin needle [43], curved
surface [44] and Riga plate [45]. Ghadikolaei et al. [46] studied the behavior of a hybrid
nanofluid (Cu-Al2O3) in a micropolar dusty fluid. In another study, Raizah [47] conducted
a mathematical simulation on a dusty hybrid nanofluid in an enclosure with two inclined,
heated fins. Recently, Reddy et al. [48] presented a remarkable study of a Darcy porous
medium in a hybrid dusty nanofluid. However, research related to hybrid nanofluids
suspended with dust particles is limited. Hence, the main purpose of this investigation is
to address the behavior of a hybrid nanofluid flow suspended with uniform distribution of
dust particles in a deformable sheet, i.e., stretching and shrinking. It should be pointed
out that the deformable sheet is not a new topic among researchers in this field, since such
applications are well recognized in processing industries, especially in polymer processing,
glass fiber production, the cooling and drying of paper, and many others [49].

Other issues discussed in this work are the simultaneous effect of velocity and thermal
slip. Most of the research literature ignores slip boundary conditions; however, the slip
effect should be considered in some situations, for example, in a rarefied fluid problem, fluid
flow on multiple interfaces, the polishing of artificial heart valves, etc. Andersson [50] and
Wang [51] conducted earlier work that took the velocity slip boundary condition driven by
a stretching sheet into account. Their concept was utilized by Bhattacharyya et al. [52], who
investigated velocity and the thermal slip effect in an unsteady stagnation flow. Afterwards,
Mukhopadhyay [53] examined both slip effects on an exponentially stretching sheet and
observed that an increase in thermal slip decreased the temperature. By taking into
consideration the impact of slips (velocity, thermal and solutal), Ibrahim and Shankar [54]
examined the flow of a permeable stretching sheet in a nanofluid. Further, Khan et al. [55]
numerically studied the viscous fluid flow induced by a nonlinear stretching cylinder with
radiation, MHD, suction/blowing and velocity and thermal slip effects. In a recent study,
Kho et al. [56] observed the reduction of boundary layer thickness for increasing velocity
and thermal slip parameters in their investigation of Williamson nanofluid flow. Motivated
by the aforementioned work, our aim is to examine the effect of both velocity and thermal
slip on the heat transfer of a dusty hybrid nanofluid.
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In brief, this research paper is an extension of the work of Gireesha et al. [57], who
considered the flow of MHD nanofluid embedded with dust particles over a stretching
sheet. They studied the dusty nanofluid model using copper as the nanoparticle, analyzed
it numerically and obtained a unique solution. Therefore, the present study aims to
theoretically study the dusty hybrid nanofluid in stretching/shrinking sheet and take into
consideration the effect of slips. The utilization of alumina (Al2O3) and copper (Cu) as
hybrid nanoparticles with water as a base fluid have not been previously applied in studies
on the dusty fluid problem with velocity and thermal slip effects. In addition, this study also
comprises a novel attempt to discover the shrinking features of a dusty hybrid nanofluid.
The existence of nonunique solutions is acknowledged in the literature [25,27,28,40,42,49];
hence, this paper focuses on obtaining a nonunique solution as well as performing a stability
analysis thereof. It is expected that these findings will help engineers and researchers to
understand the heat transfer mechanism in dusty hybrid nanofluids. It is worth mentioning
that this study is original, and the numerical results presented herein have never been
published before.

2. Mathematical Framework
2.1. Basic Equation

The steady two-dimensional flow of a dusty fluid suspended in a hybrid nanofluid
driven by a deformable sheet with surface temperature Tw is investigated. The geometry
of the problem is depicted in Figure 1. With velocity Uw(x) = ax, where a is a positive
constant, the surface is stretched or shrunk linearly in the x-direction, whilst the y-axis is
normal to it. Further, the temperature far from the surface is denoted by T∞ and the mass
transfer velocity at the surface by vw(x).
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Figure 1. Physical model (stretching, λ > 0 and shrinking, λ < 0 ).

Under this circumstance, the partial differential equations are as follows (see Devi and
Devi [39] and Gireesha et al. [57]):

Fluid phase:
∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 +

KN
ρhn f

(
up − u

)
(2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

NCp f(
ρCp

)
hn f τT

(
Tp − T

)
+

N(
ρCp

)
hn f τv

(
up − u

)2 (3)

Dust phase:
∂up

∂x
+

∂vp

∂y
= 0 (4)
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up
∂up

∂x
+ vp

∂up

∂y
=

K
m
(
u− up

)
(5)

up
∂Tp

∂x
+ vp

∂Tp

∂y
=

Cp f

Cm f τT

(
T − Tp

)
(6)

Here, u is the velocity components of the dust particle and fluid phases in the x direction,
while v is the velocity component along the y axis, Tp and T are the temperature of the dust
particle and hybrid nanofluid, respectively, N, m and K are the dust particle number, the
mass of the dust particle and the Stokes drag coefficient, respectively, Cp f and Cm f are the
specific heat of nanofluid and dust particles, respectively, and τv and τT are the relaxation
time and thermal equilibrium time of the dust particle, respectively, i.e., the time needed
by a dust cloud to adapt its velocity and temperature to the nanofluid. Further, ρhn f is
the density of the hybrid nanofluids, khn f , µhn f and

(
ρCp

)
hn f are the thermal conductivity,

dynamic viscosity and heat capacity, respectively, of Cu–Al2O3/water.
The boundary conditions are as follows (Ibrahim and Shankar [53]):

u = λ Uw(x) + Ls

(
∂u
∂y

)
, v = vw(x), T = Tw + LT

(
∂T
∂y

)
at y = 0

vp → v, up → 0, u→ 0, Tp → T∞ T → T∞, as y→ ∞
(7)

Here, λ corresponds to the stretching and shrinking parameter where λ < 0 and
λ > 0 signify the shrinking and stretching sheet, respectively, while λ = 0 signifies
that of the static plate. In addition, Ls and LT symbolize the velocity and thermal slip
lengths, respectively. It is important to note that when Ls = LT = 0, the no slip condition
is indicated.

2.2. Thermophysical Properties

The thermophysical properties of nanofluids and hybrid nanofluids given by Devi
and Devi [39] are presented in Table 1. In Table 1, subscript s, n f , hn f and f denote
the nanoparticle, nanofluid, hybrid nanofluid and fluid, respectively, whereas 1 and 2
indicate the first and second nanoparticles, respectively. Furthermore, ϕ1 represents the first
nanoparticle volume fraction, while ϕ2 denotes the second. In this study, copper (Cu) and
alumina (Al2O3) are taken into consideration as the second and first nanoparticle volume
fractions, respectively, and water acts as a base fluid (Oztop and Abu-Nada [58]). Table 2
displays the thermophysical traits of base fluid and nanoparticles. It is important to note
that Al2O3 is originally disseminated into the water to achieve the desired hybrid nanofluid
(Cu-Al2O3/water). Afterwards, Cu is disseminated into the Al2O3/water nanofluid. In
a remarkable study by Turkyilmazoglu [59], the nanofluids were shown to act as non-
Newtonian fluids when the nanoparticle volume fraction exceeded 5–6%. Thus, in this
study, the volume fraction of Al2O3 nanoparticles was set to 1%, and Cu was fluctuated
from 0 to 2%, in correspondence with the work of [59]. Since the base fluid was water, the
value of the Prandtl number was set to 6.2, i.e., room temperature, or nearly 295.15 K.

Table 1. Physical properties of hybrid nanofluids.

Properties Nanofluid Hybrid Nanofluid

Density ρn f = (1− ϕ)ρ f + ϕρs ρhn f = (1− ϕ2)
[
(1− ϕ1)ρ f + ϕ1ρ1

]
+ ϕ2ρ2

Heat capacity
(
ρCp

)
n f = (1− ϕ)

(
ρCp

)
f + ϕ

(
ρCp

)
s

(
ρCp

)
hn f = (1− ϕ2)

[
(1− ϕ1)

(
ρCp

)
f + ϕ1

(
ρCp

)
1

]
+ ϕ2

(
ρCp

)
2

Dynamic viscosity µn f =
µ f

(1−ϕ)2.5 µhn f =
µ f

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal conductivity kn f
k f

=
ks+2k f−2ϕ(k f−ks)
ks+2k f +ϕ(k f−ks)

khn f
kb f

=
k2+2kb f−2ϕ2(kb f−k2)
k2+2kb f +ϕ2(kb f−k2)

where kb f
k f

=
k1+2k f−2ϕ1(k f−k1)
k1+2k f +ϕ1(k f−k1)
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Table 2. Thermo physical properties of Cu, Al2O3 and water.

Physical Properties Cu Water Al2O3

k (Wm-1K-1) 400 0.613 40
Cp (J kg-1K-1) 385 4179 765

ρ (kg m-3) 8933 997.1 3970

2.3. Similarity Solution

The following similarity variables are introduced (Naramgari and Sulochana [30]):

u = a x f ′(η), v = −√a ν f f (η), up = a x f ′p(η), vp = −√a ν f fp(η)

θ(η) = T−T∞
Tw−T∞

, θp(η) =
Tp−T∞
Tw−T∞

, η =
√

a
ν f

y (8)

where η is the similarity variable, ν f is the kinematic viscosity, f and θ are the dimensionless
function for fluid phase, and fp and θp are the dimensionless function for dust phase.
Further, primes denote the differentiation with respect to η. In order for similarity solutions
of Equations (1)–(6) together with Equation (7) to exist, we use

vw = −√a ν f s and Tw = T∞ + A(x/l)2 (9)

where s is the transpiration rate constant, wherein s > 0 and s < 0 signify suction and
injection, respectively, while s = 0 refers to an impermeable plate. A is a constant and
l =

√
ν f /a is a characteristic length. Invoking Equation (8), Equations (1) and (4) are

identically fulfilled, and Equations (2), (3), (5) and (6) transform into the following ordinary
differential equation:

Fluid phase:

µhn f /µ f

ρhn f /ρ f
f ′′′ − f ′2 + f f ′′ +

Lβv

ρhn f /ρ f

(
f ′p − f ′

)
= 0 (10)

khn f /k f

(ρCp)hn f /(ρCp) f

1
Pr θ′′ + f θ′ − 2 f ′θ + LβT

m(ρCp)hn f /(ρCp) f

(
θp − θ

)
+ Lβv Ec

m(ρCp)hn f /(ρCp) f

(
f ′p − f ′

)2
= 0

(11)

Dust phase:
fp f ′′ p − f ′p

2 + βv

(
f ′ − f ′p

)
= 0 (12)

fpθp
′ − 2 f ′pθp + f ′p + ε βT

(
θ − θp

)
= 0 (13)

where βT and βv are the fluid–particle interaction parameters for temperature and velocity,
respectively, L is the mass concentration of dust particles, ε is the ratio of specific heats, and
Ec and Pr are the Eckert and Prandtl numbers, respectively, which are given as:

βv =
1

aτv
, βT =

1
aτT

, L =
N m
ρ f

, Pr =

(
µCp

)
f

k f
, ε =

Cp f

Cm f
, Ec =

U2
w

Cp f (Tw − T∞)
=

a2l2

Cp f A
(14)

The boundary conditions are:

f (0) = s, f ′(0) = λ + σ1 f ′′ (0), θ(0) = 1 + σ2 θ′(0),
f ′(η)→ 0, f ′p(η)→ 0, fp(η)→ f (η), θ(η)→ 0, θp(η)→ 0 as η → ∞ (15)

where σ1 = Ls

√
a/ν f and σ2 = LT

√
a/ν f are the velocity and thermal slip parameters,

respectively.
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In this study, the physical quantities of interest are:

C f =
µhn f

ρ f U2
w

(
∂u
∂y

)
y=0

, Nux = −
x khn f

k f (Tw − T∞)

(
∂T
∂y

)
y=0

(16)

where C f denotes the skin friction coefficient and Nux is the local Nusselt number. Using
Equations (8) and (16), we get:

C f Re1/2
x =

µhn f

µ f
f ′′ (0), NuxRe−1/2

x = −
khn f

k f
θ′(0) (17)

where Rex = Uex/ν f is the local Reynolds number.

3. Stability of the Solutions

Due to the occurrence of nonuniqueness in the present research, the stability anal-
ysis was performed by referring to the work of Merkin [60], Weidman et al. [61] and
Harris et al. [62]. These analyses have been implemented by other researchers too (see,
for example, the work of Hamid et al. [15], Anuar et al. [27,28], Waini et al. [43] and
Khashi’ie et al. [45]). Some important steps were implemented to identify the stability
of solutions, i.e., (i) considering an unsteady governing equation; (ii) introducing new
dimensionless time variables and similarity variables; (iii) implementing linear eigenvalue
equations, and (iv) relaxing the boundary conditions.

3.1. Unsteady-State Problem

First, Equations (1)–(6) were converted into an unsteady case (dependent of time). So,
continuity Equations (1) and (4) remain the same, while the other equations become:

Fluid phase:
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 +

KN
ρhn f

(
up − u

)
(18)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

NCp f(
ρCp

)
hn f τT

(
Tp − T

)
+

N(
ρCp

)
hn f τv

(
up − u

)2 (19)

Dust phase:
∂up

∂t
+ up

∂up

∂x
+ vp

∂up

∂y
=

K
m
(
u− up

)
(20)

∂Tp

∂t
+ up

∂Tp

∂x
+ vp

∂Tp

∂y
=

Cp f

Cm f τT

(
T − Tp

)
(21)

subjected to the following boundary conditions:

t < 0 : u = 0, v = 0, up = 0, vp = 0, T = Tw for any x, y
t ≥ 0 : u = λ Uw(x) + Ls

(
∂u
∂y

)
, v = vw(x), T = Tw + LT

(
∂T
∂y

)
at y = 0

vp → v, up → 0, u→ 0, Tp → T∞ T → T∞, as y→ ∞
(22)

where t denotes the time.

3.2. New Similarity Transformation

Next, a new time-dependent, dimensionless variable had to be introduced. Hence, we
have (Hamid et al. [15]):

τ = a t (23)
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while Equation (8) is replaced by:

u = a x ∂ f
∂η (η, τ), v = −√a ν f f (η, τ), up = a x ∂ fp

∂η (η, τ), vp = −√a ν f fp(η, τ)

θ(η, τ) = T−T∞
Tw−T∞

, θp(η, τ) =
Tp−T∞
Tw−T∞

, η =
√

a
ν f

y
(24)

By substituting Equations (23) and (24) into Equations (18)–(22), we get:
Fluid phase:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+

Lβv

ρhn f /ρ f

(
∂ fp

∂η
− ∂ f

∂η

)
− ∂2 f

∂η∂τ
= 0 (25)

khn f /k f

(ρCp)hn f /(ρCp) f

1
Pr

∂2θ
∂η2 + f ∂θ

∂η − 2 ∂ f
∂η θ + LβT

m(ρCp)hn f /(ρCp) f

(
θp − θ

)
+ Lβv Ec

m(ρCp)hn f /(ρCp) f

(
∂ fp
∂η −

∂ f
∂η

)2
− ∂θ

∂τ = 0
(26)

Dust phase:

fp
∂2 fp

∂η2 −
(

∂ fp

∂η

)2

+ βv

(
∂ f
∂η
−

∂ fp

∂η

)
−

∂2 fp

∂η∂τ
= 0 (27)

fp
∂θp

∂η
− 2

∂ fp

∂η
θp +

∂ fp

∂η
+ ε βT

(
θ − θp

)
−

∂θp

∂τ
= 0 (28)

and the boundary conditions are:

f (0) = s, ∂ f
∂η (0) = λ + σ1

∂2 f
∂η2 (0), θ(0) = 1 + σ2

∂θ
∂η (0),

∂ f
∂η (η)→ 0, ∂ fp

∂η (η)→ 0, fp(η)→ f (η), θ(η)→ 0, θp(η)→ 0 as η → ∞
(29)

3.3. Introducing Linear Eigenvalue Equations

The stability of the steady flow solutions can be explored by setting f (η) = f0(η),
fp(η) = fp0(η), θ(η) = θ0(η) and θp(η) = θp0(η), which satisfies the boundary value
Equations (10)–(13) and Equation (15). Thus, the following equations are introduced
(Weidman et al. [61]):

f (η, τ) = f0(η) + e−γτ F(η, τ), fp(η, τ) = fp0(η) + e−γτ Fp(η, τ),
θ(η, τ) = θ0(η) + e−γτ H(η, τ), θp(η, τ) = θp0(η) + e−γτ Hp(η, τ)

(30)

where F(η, τ), Fp(η, τ), H(η, τ), Hp(η, τ) and their derivatives are relatively smaller than
f0(η), fp0(η), θ0(η) and θp0(η). In addition, γ is the unknown eigenvalue which will be
used to specify the stability of the solutions. Substituting Equation (30) into Equations
(25)–(29) and letting τ → 0 , in which F(η) = F0(η), Fp(η) = Fp0(η), H(η) = H0(η) and
Hp(η) = Hp0(η), we have:

Fluid phase:

µhn f /µ f

ρhn f /ρ f
F0
′′′ + f0F0

′′ + F0 f0
′′ − 2 f0

′F0
′ +

Lβv

ρhn f /ρ f

(
Fp0
′ − F0

′)+ γF0
′ = 0 (31)

khn f /k f

(ρCp)hn f /(ρCp) f

1
Pr H0

′′ + f0H0
′ + F0θ0

′ − 2θ0F0
′ − 2H0 f0

′ + LβT
m(ρCp)hn f /(ρCp) f

(
Hp0 − H0

)
+ γH0

+ Lβv Ec
m(ρCp)hn f /(ρCp) f

(
2 fp0

′Fp0
′ − 2 fp0

′F0
′ − 2 f0

′Fp0
′ + 2 f0

′F0
′) = 0

(32)

Dust phase:

fp0 Fp0
′′ + Fp0 fp0

′′ − 2 fp0
′Fp0

′ + βv
(

F0
′ − Fp0

′)+ γFp0
′ = 0 (33)

fp0 Hp0
′ + Fpθp0

′ − 2θp0 Fp0
′ − 2Hp0 fp0

′ + ε βT
(

H0 − Hp0

)
+ γHp0 = 0 (34)
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The conditions now take the following form:

F0(0) = 0, F0
′(0) = σ1 F0

′ ′(0), H0(0) = σ2 H0
′(0),

F0
′(η)→ 0, Fp0

′(η)→ 0, Fp0(η)→ F0(η), H0(η)→ 0, Hp0(η)→ 0 as η → ∞
(35)

3.4. Relaxation of Boundary Condition

To solve the stability model, we needed to relax the boundary conditions as proposed
by Harris et al. [62]. For that reason, the conditions F0

′(η)→ 0 as η → ∞ were replaced
by new conditions F0

′′(0) = 1. It should be pointed out that the linearized boundary value
Equations (31)–(35), together with new conditions F0

′′(0) = 1, yielded the unlimited set of
unknown eigenvalues (γ1 < γ2 < γ3 < . . .). If the smallest eigenvalues γ showed a posi-
tive sign, the solutions observed an initial decay of perturbation, and accordingly indicated
a stable solution. On the other hand, as the smallest eigenvalues γ showed a negative sign,
an early growth of disruption was noticed, which signified an unstable solution.

4. Numerical Solutions and Discussions

To solve the boundary value Equations (10)–(13) with the boundary conditions given
by Equation (15), we adopted a built-in function called bvp4c from Matlab package. Bvp4c
is a finite difference code that applies the three stage Lobato IIIa formula (Shampine
et al. [63], Kierzenka and Shampine [64]). In this research, the appropriate finite values of
η∞ was set to be 10. Further, to ensure the precision of the current algorithm, the current
results of skin friction coefficient f ′′ (0) were compared with previously reported solutions
of Hayat et al. [65] and Ibrahim and Shankar [53]. These comparative solutions are revealed
in Table 3 for selected values of velocity slip parameter σ1. Additionally, a comparison of
the values of heat transfer −θ′(0) for the present method with those obtained by Gireesha
et al. [57] and Naramgari and Sulochana [30] was made; see Table 4. It can be observed from
these tables that good agreement with these methods was achieved, thereby confirming
the consistency of the present approach.

Table 3. Values of f ′′ (0) for extended sheet (λ = 1) when ϕ1 = ϕ2 = L = Bv = 0 and s = 0.

σ1
Hayat et al. [65]

(Homotopy Analysis Method)
Ibrahim and Shankar [53]

(Shooting)
Present Result

(Bvp4c)

0 −1.000000 −1.0000 −1.000000
0.1 −0.872082 −0.8721 −0.872083
0.2 −0.776377 −0.7764 −0.776377
0.5 −0.591195 −0.5912 −0.591196
2.0 −0.283981 −0.2840 −0.283981
5.0 −0.144841 −0.1448 −0.144842

Table 4. Comparative values of −θ′(0) for stretching sheet (λ = 1) when ϕ1 = ϕ2 = L = BT = Bv =

Ec = 0 and σ2 = 0.

Pr Gireesha et al. [57] Naramgari and Sulochana [30] Present Result

0.72 1.0885 1.088561 1.088527
1 1.3333 1.333333 1.333333

10 4.7968 4.796817 4.796873

In this section, the results of local skin friction C f Re1/2
x , Nusselt number NuxRe−1/2

x ,
velocity profiles for fluid phase f ′(η) and dust phase fp

′(η), as well as the temperature
profiles for the fluid phase θ(η) and dust phase θp(η) are illustrated graphically to exam-
ine the impact of some governing parameters, namely, Cu nanoparticle volume fraction
(0 ≤ ϕ2 ≤ 0.02), suction parameter (s > 1), velocity slip parameter (0 ≤ σ1 ≤ 0.2), thermal
slip parameter (0 ≤ σ2 ≤ 0.2), fluid interaction parameter for velocity (0 ≤ Bv ≤ 1), fluid
interaction parameter for temperature (0 ≤ BT ≤ 1) and mass concentration (0 ≤ L ≤ 1).
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Figures 2 and 3 depict the influence of the Cu nanoparticle volume fraction parameter
ϕ2 toward suction parameter s on the local skin friction C f Re1/2

x and Nusselt number
NuxRe−1/2

x for the shrinking sheet (λ = −1), as given in Equation (17). From these figures,
it is interesting to see that two solutions are likely to occur for a particular range of suction
parameters. For instance, when ϕ2 = 0, the solutions are bound to exist when s > 1.54382,
while as ϕ2 increases to 0.01 and 0.02, the range of suction increases, i.e., s > 1.52027 and
s > 1.49934. It should also be mentioned that the increment of the volume fraction of
Cu nanoparticle ϕ2 from 0 to 0.02 enhances both C f Re1/2

x and NuxRe−1/2
x . Moreover, the

values of C f Re1/2
x and NuxRe−1/2

x for the first solution increase as suction parameter s
increases, while the opposite was observed for the second solution.
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Figure 2. C f Re1/2
x with s for various ϕ2.
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x with s for various ϕ2.

The effects of Cu nanoparticle volume fraction ϕ2 against stretching/shrinking pa-
rameter λ on the local skin friction C f Re1/2

x and Nusselt number NuxRe−1/2
x are shown in

Figures 4 and 5. It is apparent from these figures that for all values of stretching/shrinking
parameter λ, dual solutions occurred. However, it should be noted that no solution exists
when λ < λc, which indicates that the boundary layer separates from the surface and
the principles of boundary layer theory are no longer valid. Moreover, λc is the critical
point that connects the first and second solutions. From Figure 4, it may be seen that an
increase in the Cu nanoparticle volume fraction ϕ2 enhances the local skin friction C f Re1/2

x
when the sheet is shrinking (λ < 0) in both solutions, while it decreases when the sheet
is stretched (λ > 0) in both solutions. In addition, it is evident from Figure 5 that the
enhancement in a Cu nanoparticle volume fraction ϕ2 improves the local Nusselt number
in the first and second solutions. This finding proves that the increment of Cu nanoparticle
volume fraction ϕ2 can improve the heat transfer efficiency. This also implies that the dusty
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hybrid nanofluid provides better heat performance than the dusty nanofluid. Furthermore,
an enhancement of the Cu nanoparticle volume fraction ϕ2 on C f Re1/2

x and NuxRe−1/2
x

can delay the boundary layer flow separation. Figures 6 and 7 demonstrate the velocity
f ′(η), fp

′(η) and temperature θ(η), θp(η) profiles when the Cu nanoparticle volume frac-
tion ϕ2 varies from 0 to 0.02 for both the fluid and dust phases. It reveals that increasing
the Cu nanoparticle volume fraction ϕ2 decreases the momentum and thermal boundary
layer thickness in the first solution of both phases. However, the opposite was observed
with the second solution. Furthermore, we can see that the boundary layer thickness of the
first solution and dust phase was slimmer than that of the fluid phase. In addition, all the
published profiles are asymptotically satisfied with Equation (15) when η∞ = 10 is used in
the bvp4c function (MATLAB); this supports the findings in Figures 4 and 5.
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Figure 5. NuxRe−1/2
x with λ for various ϕ2.

Figures 8 and 9 show the impact of the no-slip parameter (σ1 = σ2 = 0) and slip pa-
rameters (σ1 = σ2 = 0.1 and σ1 = σ2 = 0.2) on the local skin friction C f Re1/2

x and Nusselt
number NuxRe−1/2

x toward the permeable stretching/shrinking parameter λ. The occur-
rence of slip parameters (velocity, σ1 and thermal, σ2) consequently diminishes the local
skin friction C f Re1/2

x when the sheet is shrinking (λ < 0), but increases it for a stretching
sheet (λ > 0) in both solutions. In Figure 9, the local Nusselt number shows a declining
trend in both solutions, along with a simultaneous increment of slip parameters (σ1, σ2). A
simultaneous increase in both the velocity and thermal slip parameters postpones bound-
ary layer separation, as shown in Figures 8 and 9. A diminished momentum boundary
layer thickness was observed in the first solution when the velocity slip parameter σ1 in-
creased on the dusty hybrid nanofluid for both phases, as shown in Figure 10; however, the
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opposite occurred for the second solution. Note that when σ1 = 0, σ2 = 0.2, it corresponds
to thermal slip only, while when σ1 = 0.2, σ2 = 0, it corresponds to velocity slip only. On
the other hand, Figures 11 and 12 illustrate the variation of the temperature profile of the
fluid θ(η) and dust phases θp(η) when velocity σ1 and thermal σ2 slip parameters fluctuate
from 0 to 0.2, respectively. It is interesting to observe from these figures that for the first
and second solutions, the thermal boundary layer thickness decreased with an increase in
velocity and thermal slip parameters. However, we did not plot the velocity profiles for
thermal slip parameter σ2, as this parameter caused no changes in the velocity profiles.
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Figure 10. f ′(η), fp
′(η) for selected values of σ1.
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Figure 11. θ(η), θp(η) for selected values of σ1.

The distribution of velocity f ′(η), fp
′(η) and temperature θ(η), θp(η) profiles for

selected values of fluid particle interaction parameters for velocity Bv and temperature
BT are plotted in Figures 13 and 14. For increasing velocity fluid particle interaction
parameter Bv, the momentum boundary layer thickness decreased for the fluid phase,
while the opposite occurred for the dust phase in the first solution. Nevertheless, the
thickness of the momentum boundary layer increased in the second solution for both
phases. Additionally, the temperature profile θ(η) in Figure 14 indicates that the thermal
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boundary layer thickness for the first and second solutions was diminished with increasing
values of BT . Meanwhile, the temperature profile in the dust phase θp(η) showed the
opposite result from the fluid phase in both solutions. It is evident from Figures 13 and 14
that a very high value of Bv and BT will eventually cause the velocity and temperature for
both phases to be the same.
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Figures 15 and 16 are plotted to indicate the impact of mass concentration of dust
particles L on the velocity f ′(η), fp

′(η) and temperature θ(η), θp(η) profiles for the fluid
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and dust phases in a permeable shrinking sheet (λ = −1). When the mass concentration
increases, the thickness of the momentum boundary layer decreases for the fluid and dust
phases in the first solution, while it increases in the second. This finding can be explained
by the fact that the drag force between the hybrid nanofluid and dust particle will increase
as the mass concentration increases; this will consequently slow down the fluid motion.
On the other hand, thickening of the thermal boundary layer was noticed for the fluid and
dust phases as the mass concentration increased in both solutions.
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The boundary value Equations (10)–(13), together with Equation (15), provided
nonunique solutions for some governing parameters. The phenomenon of nonunique
solutions, namely, the first and second solutions, was proven; see Figures 2–17. Accord-
ingly, a stability analysis was performed to identify the most stable solutions. Linearized
Equations (31)–(34), along with Equation (35), were numerically with the aid of the bvp4
function in MATLAB. The smallest eigenvalues γ on the selected parameter ϕ2 and λ from
Figures 4 and 5 are listed in Table 5. The values of γ, however, drew closer to zero in both
(first and second) solutions as the stretching/shrinking parameter approached its critical
value. Apart from this, it is shown that the second solution displayed negative values of
γ, whereas the first demonstrated positive values. The smallest eigenvalues γ against λ
when ϕ1 = ϕ2 = 0.01 are plotted in Figure 17. This figure supports the findings presented
in Table 5. In reference to the previous literature, we propose that the first solution is
stable while the second is unstable. It is worth noting that this analysis is important in
identifying the stable solution when nonunique solutions exist, so that the flow behavior
can be accurately predicted.
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Table 5. Smallest eigenvalues γ for selected values of ϕ2 and λ.

ϕ2 λ 1st Solution 2nd Solution

0 −1.6121 0.0026 −0.0027
−1.612 0.0131 −0.0130
−1.61 0.0590 −0.0580

0.01 −1.6677 0.0115 −0.0114
−1.667 0.0363 −0.0359
−1.66 0.1158 −0.1120

0.02 −1.7207 0.0085 −0.0085
−1.72 0.0359 −0.0355
−1.7 0.1924 −0.1825

5. Conclusions

The flow of a dusty hybrid nanofluid over a permeable deformable sheet with velocity
and thermal slip was investigated numerically. The similarity solutions were produced by
utilizing the bvp4c function in the MATLAB software (R2018a, MathWorks, Natick, MA,
USA). The impact of emerging parameters was examined and illustrated graphically. The
conclusions can be summarized as follows:

• The presence of double solutions is noticeable for a stretching and shrinking sheet
when suction parameter (s > sc) is imposed.

• A stability analysis was carried out and the first solution proved to be stable, whereas
the other solution was not.

• An increase in the Cu nanoparticle volume fraction ϕ2 in the dusty nanofluid has a ten-
dency to improve the local Nusselt number for all range of λ, and to increase the local
skin friction for shrinking sheet; however, the opposite is true for a stretching sheet.

• The simultaneous increase of velocity σ1 and thermal σ2 slip parameters decrease the
local Nusselt number for fluid phase.

• The similarity solutions can be widened with an increase in Cu nanoparticle vol-
ume fraction ϕ2 and slip parameters (velocity σ1 and thermal σ2), thereby delaying
boundary layer separation.

• The momentum thickness in fluid phase decreases and dust phase increases as velocity
fluid interaction parameter Bv increases.

• An upsurge of fluid interaction for temperature parameter BT decreases the ther-
mal boundary layer thickness of the fluid phase, while it does the opposite in the
dust phase.

• The mass concentration of dust particle L decreases the momentum thickness but
increases the thermal thickness in both phases.
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41. Roşca, N.C.; Roşca, A.V.; Jafarimoghaddam, A.; Pop, I. Cross flow and heat transfer past a permeable stretching/shrinking sheet

in a hybrid nanofluid. Int. J. Numer. Methods Heat Fluid Flow 2020. [CrossRef]
42. Lund, L.A.; Omar, Z.; Khan, I.; Sherif, E.S.M. Dual solutions and stability analysis of a hybrid nanofluid over a stretch-

ing/shrinking sheet executing MHD flow. Symmetry 2020, 12, 276. [CrossRef]
43. Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow past a permeable moving thin needle. Mathematics 2020, 8, 612. [CrossRef]
44. Khan, M.R.; Pan, K.; Khan, A.U.; Nadeem, S. Dual solutions for mixed convection flow of SiO2− Al2O3/water hybrid nanofluid

near the stagnation point over a curved surface. Phys. A Stat. Mech. Appl. 2020, 547, 123959. [CrossRef]
45. Khashi’ie, N.S.; Arifin, N.M.; Pop, I. Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-

Al2O3/Water Nanofluid. Mathematics 2020, 8, 912. [CrossRef]
46. Ghadikolaei, S.S.; Hosseinzadeh, K.; Hatami, M.; Ganji, D.D. MHD boundary layer analysis for micropolar dusty fluid containing

Hybrid nanoparticles (Cu-Al2O3) over a porous medium. J. Mol. Liq. 2018, 268, 813–823. [CrossRef]
47. Raizah, Z.A. Natural Convection of Dusty Hybrid Nanofluids in an Enclosure Including Two Oriented Heated Fins. Appl. Sci.

2019, 9, 2673. [CrossRef]
48. Reddy, M.G.; Rani, M.V.V.N.L.S.; Kumar, K.G.; Prasannakumar, B.C.; Lokesh, H.J. Hybrid dusty fluid flow through a Cattaneo–

Christov heat flux model. Phys. A Stat. Mech. Appl. 2020, 551, 123975. [CrossRef]
49. Bhattacharyya, K. Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a

stretching/shrinking sheet. Int. Commun. Heat Mass Transf. 2011, 38, 917–922. [CrossRef]
50. Andersson, H.I. Slip flow past a stretching surface. Acta Mech. 2002, 158, 121–125. [CrossRef]
51. Wang, C.Y. Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations. Chem. Eng. Sci.

2002, 57, 3745–3747. [CrossRef]
52. Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C. Slip effects on an unsteady boundary layer stagnation-point flow and heat

transfer towards a stretching sheet. Chin. Phys. Lett. 2011, 28, 094702. [CrossRef]

http://doi.org/10.2147/NSA.S260374
http://www.ncbi.nlm.nih.gov/pubmed/32801669
http://doi.org/10.1016/j.egypro.2014.12.017
http://doi.org/10.1088/0031-8949/86/04/045003
http://doi.org/10.1115/1.4023303
http://doi.org/10.22075/JHMTR.2014.154
http://doi.org/10.1016/j.cjph.2020.03.003
http://doi.org/10.1016/j.aej.2020.01.024
http://doi.org/10.1166/jon.2015.1175
http://doi.org/10.1016/j.asej.2015.05.015
http://doi.org/10.1016/j.molliq.2018.02.106
http://doi.org/10.1016/j.ijheatmasstransfer.2017.10.067
http://doi.org/10.1002/htj.21630
http://doi.org/10.1016/j.icheatmasstransfer.2020.104967
http://doi.org/10.1140/epjp/s13360-020-00759-0
http://doi.org/10.1155/2020/9163081
http://doi.org/10.1016/j.proeng.2014.12.317
http://doi.org/10.4028/www.scientific.net/DDF.374.148
http://doi.org/10.1108/HFF-03-2020-0149
http://doi.org/10.1108/HFF-05-2020-0298
http://doi.org/10.3390/sym12020276
http://doi.org/10.3390/math8040612
http://doi.org/10.1016/j.physa.2019.123959
http://doi.org/10.3390/math8060912
http://doi.org/10.1016/j.molliq.2018.07.105
http://doi.org/10.3390/app9132673
http://doi.org/10.1016/j.physa.2019.123975
http://doi.org/10.1016/j.icheatmasstransfer.2011.04.020
http://doi.org/10.1007/BF01463174
http://doi.org/10.1016/S0009-2509(02)00267-1
http://doi.org/10.1088/0256-307X/28/9/094702


Mathematics 2021, 9, 643 18 of 18

53. Ibrahim, W.; Shankar, B. MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with
velocity, thermal and solutal slip boundary conditions. Comput. Fluids 2013, 75, 1–10. [CrossRef]

54. Khan, M.I.; Tamoor, M.; Hayat, T.; Alsaedi, A. MHD boundary layer thermal slip flow by nonlinearly stretching cylinder with
suction/blowing and radiation. Results Phys. 2017, 7, 1207–1211. [CrossRef]

55. Das, K. Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Comput. Fluids 2012, 64, 34–42.
[CrossRef]

56. Kho, Y.B.; Hussanan, A.; Mohamed, M.K.A.; Sarif, N.M.; Ismail, Z.; Salleh, M.Z. Thermal radiation effect on MHD Flow and
heat transfer analysis of Williamson nanofluid past over a stretching sheet with constant wall temperature. J. Phys. Conf. Ser.
2017, 890, 012034. [CrossRef]

57. Gireesha, B.J.; Chamkha, A.J.; Rudraswamy, N.G.; Krishnamurthy, M.R. MHD flow and heat transfer of a nanofluid embedded
with dust particles over a stretching sheet. J. Nanofluids 2015, 4, 66–72. [CrossRef]

58. Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids.
Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [CrossRef]

59. Turkyilmazoglu, M. A Note on the correspondence between certain nanofluid flows and standard fluid flows. J. Heat Transf.
2015, 137, 024501. [CrossRef]

60. Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [CrossRef]
61. Weidman, P.D.; Kubitschek, D.G. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng.

Sci. 2006, 44, 730–737. [CrossRef]
62. Harris, S.D.; Ingham, D.B.; Pop, I. Mixed convection boundary layer flow near the stagnation point on a vertical surface in porous

medium: Brinkman model with slip. Transp. Porous Media 2009, 77, 267–285. [CrossRef]
63. Shampine, L.F.; Kierzenka, J.; Reichelt, M.W. Solving boundary value problems for ordinary differential equations in MATLAB

with bvp4c. Tutor. Notes 2000, 2000, 1–27.
64. Kierzenka, J.; Shampine, L.F. A BVP solver based on residual control and the Maltab PSE. ACM Trans. Math. Softw. (TOMS)

2001, 27, 299–316. [CrossRef]
65. Hayat, T.; Qasim, M.; Mesloub, S. MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int. J. Numer.

Methods Fluids 2011, 66, 963–975. [CrossRef]

http://doi.org/10.1016/j.compfluid.2013.01.014
http://doi.org/10.1016/j.rinp.2017.03.009
http://doi.org/10.1016/j.compfluid.2012.04.026
http://doi.org/10.1088/1742-6596/890/1/012034
http://doi.org/10.1166/jon.2015.1126
http://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
http://doi.org/10.1115/1.4028807
http://doi.org/10.1007/BF00042775
http://doi.org/10.1016/j.ijengsci.2006.04.005
http://doi.org/10.1007/s11242-008-9309-6
http://doi.org/10.1145/502800.502801
http://doi.org/10.1002/fld.2294

	Introduction 
	Mathematical Framework 
	Basic Equation 
	Thermophysical Properties 
	Similarity Solution 

	Stability of the Solutions 
	Unsteady-State Problem 
	New Similarity Transformation 
	Introducing Linear Eigenvalue Equations 
	Relaxation of Boundary Condition 

	Numerical Solutions and Discussions 
	Conclusions 
	References

