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Abstract: The µ-basis is a newly developed algebraic tool in curve and surface representations and it is
used to analyze some essential geometric properties of curves and surfaces. However, the theoretical
frame of µ-bases is still developing, especially of surfaces. We study the µ-basis of a rational surface
V defined parametrically by P( t ), t = (t1, t2) not being necessarily proper (or invertible). For
applications using the µ-basis, an inversion formula for a given proper parametrization P( t ) is
obtained. In addition, the degree of the rational map φP associated with any P( t ) is computed. If
P( t ) is improper, we give some partial results in finding a proper reparametrization of V . Finally, the
implicitization formula is derived from P (not being necessarily proper). The discussions only need
to compute the greatest common divisors and univariate resultants of polynomials constructed from
the µ-basis. Examples are given to illustrate the computational processes of the presented results.

Keywords: µ-basis; rational surfaces; inversion; improper; reparametrization; implicitization; resultant

1. Introduction

The study of representations of rational curves and surfaces is a fundamental task in
computer aided geometric design (CAGD) and computer algebra. There exist two typical
problems in the study of representations.

• Implicitization: for a rational parametric curve or surface, implicitization is to find an
algebraic expression of the curve or surface.

• Proper Reparametrization: for an improper rational parametric curve or surface,
proper reparametrization is to find a proper parametric expression of the curve or
surface.

The parametric expression of a curve or surface is widely used in geometric modeling,
such as NURBS representations. The algebraic equation, which is also called implicit
equation, is another important representation, and this is much better than the parametric
expression in determining whether or not a point is on the curve or surface. Hence the
implicitization problem is classical in CAGD and there are implicitization algorithms for
rational curves and surfaces proposed over the past several decades [1–14]. Among all of
these techniques, the Gröbner bases [2] is well-known, since it is theoretically complete.
However, this method has exponential computational complexity and, thus, it is ineffi-
cient. This is the reason that people can not apply the Gröbner basis method for practical
implicitization in application. Alternatively, in computational application, people prefer
to find the implicit equations from certain implicit matrices. The implicit matrices can
be constructed as resultant matrices or matrices of moving curves/surfaces. The implicit
matrix of the curve is much simpler than that of the surface, since the curve only introduces
one variable. Actually, the construction of bivariate resultant is not uniform and it is
still a developing technique in computer algebra [15–21]. The implicit matrix of moving
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curves/surfaces was introduced in [10] and developed by more researchers [5,11,22–25].
The µ-basis of a curve or surface was later defined by moving lines or moving planes with
certain properties [5,23].

The implicit equation of the surface is generally included as a factor in its constructed
resultants, but a constructed resultant may have extraneous factors that are not easy to
identify and remove. For implicit matrices, some works attempt to construct the matrix
whose determinant is exactly the implicit equation [10,24,26,27], but the ways to construct
such implicit matrices are not complete for general surfaces. In the implicit matrix, there
is more information than the implicit equation, such as singularities with multiplicity
counting. Accordingly, people sometimes construct the implicit matrix by simple way
and then the determinant of this matrix may have extraneous factors other than the
implicit equation [22]. For the matrix constructed from the µ-basis of arbitrary three
linearly independent syzygies, the extraneous factors are identified completely based on
the analysis of base points or to parameters at infinity of tensor product surfaces [11,25],
but some computations need the Gröbner bases of a zero dimensional algebraic variety.

When considering the proper reparametrization problem, an essential question is to
decide whether a rational parametrization is proper. If a given rational parametrization is
not proper, also called improper, a generic point lying on the variety corresponds to more
than one parameter. On the other side, if a rational parametrization is improper, we ask
whether it can be reparameterized, such that we can get a new proper parametrization. For
algebraic curves, is well-known that the existence of a proper reparametrization for a given
improper rational parametrization is certified by Lüroth’s Theorem [28]. One can have a
look, for instance, at a previous bibliography, as, for instance, [29–31], where some efficient
methods are proposed to find a proper reparametrization for an improper parametrization
of an algebraic curve. For a given algebraic surface, Castelnuovo’s Theorem states that
unirationality and rationality are equivalent over algebraically closed fields, but only some
partial algorithmic methods approaching the problem are known (see [30,32]).

The µ-basis was first used in [17]. Here, the authors provided a representation for
the implicit equation of a given curve defined parametrically. The µ-basis developing as
a new algebraic tool can be used to obtain the parametric equation of a rational curve
or a rational surface, in order to compute the implicit equation defining these varieties,
and to study singularities and intersections [33]. There are several methods to compute
the µ-basis for rational curves by computing two moving lines that satisfy the required
properties [17], based on Gröbner basis [34] or based on vector elimination [23]. The µ-basis
has also been generalized to rational surfaces [5], although the case of rational surfaces is
different; for instance, the degrees of the µ-basis elements can be different. An algorithm
to compute a µ-basis of a rational surface is designed that is based on polynomial matrix
factorization [35]. Another possible way is to compute a basis of the syzygy module of
the surface with the application of Quillen–Suslin Theorem [36,37]. In order to avoid the
extraneous factor in implicitization, people tried to find the strong µ-bases of surfaces that
have the very similar properties of the µ-bases of curves. However, the surfaces with strong
µ-bases are relatively rare [25,38].

The µ-basis has shown different advantages by assuming that the given parametriza-
tion is always proper. A recent result attempts to find inverse formula, proper reparametriza-
tion, and algebraic equation for an improper parametrization of an algebraic curve by using
µ-basis [39]. In this paper, we pay attention to the µ-basis of an improper parametrization
of an algebraic surface and then apply the µ-basis in the problems of proper reparametriza-
tion and implicitization. There are intrinsical differences in the discussions between the
surface and the curve; hence, some results of the curve can not be extended to the surface
straightforward. After we give the definition of µ-basis of a rational parametric surface
defined parametrically by P( t ), we find the inversion formula (if P is proper) and the
degree of the rational map that is induced by P while using the µ-basis. Although the
proper reparametrization problem is still opening, we address the problem of proper
reparametrization partially based on the latest results and the properties of the µ-basis. As
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an important application, we derive the implicitization formula from the µ-basis from a
given parametrization not being necessarily proper. Starting from the µ-basis, the compu-
tations only involve greatest common divisors (gcds) and univariate resultants of some
polynomials constructed from the µ-basis. While the surface implicitization form µ-basis
involved the computation of Gröbner bases in [5].

We have structured the article, as indicated below. In Section 2, we present some
important definitions and properties for the µ-basis of rational surfaces. In Section 3, given
a rational parametrization P , we study the inversion computation (if P is proper) and the
degree of the induced rational map. In Section 4, we focus on the proper reparametrization
problem while using µ-basis. In Section 5, we come to the implicitization problem from a
given rational parametrization not necessarily proper using µ-basis. We finish the paper
with Section 6, where we present a brief summary of our work.

2. µ-Basis for Rational Surfaces: Definition and Previous Results

Let R denote the polynomial ring K[t1, t2] over an algebraically closed field K of
characteristic zero and Rm denote the set of m−dimensional row vectors with entries in the
polynomial ring R. A submodule M of Rm is a subset of Rm, for which this condition holds:
for any f1, f2 ∈ M and h1, h2 ∈ R, we have h1f1 + h2f2 ∈ M. A set of elements fi ∈ M,
for i = 1, . . . , k, is called a generating set of M if for any m ∈ M, there exist hi ∈ R, for
i = 1, . . . , k satisfying that

m = h1f1 + . . . + hkfk.

The Hilbert Basis Theorem states that every submodule M ⊂ Rm has a finite generating set.
If, for any m ∈ M, the above expression is unique, then {f1, . . . , fk} is called a basis of the
module M. If a module has a basis, then it is called a free module. For any (f1, . . . , fk) ∈ Rk,
the set

syz(f1, . . . , fk) := {(h1, . . . , hk) ∈ Rk|h1f1 + . . . + hkfk = 0}

is a module over R, called a syzygy module [40]. An important result regarding syzygy
modules is that if a, b, c, d ∈ R[t1, t2] are four relatively prime polynomials then, the syzygy
module syz(a, b, c, d) is a free module of rank 3 (see [5]).

Let Va be a rational affine irreducible surface, and let

Pa( t ) =
(
℘1( t )
℘4( t )

,
℘2( t )
℘4( t )

,
℘3( t )
℘4( t )

)
∈ K( t )3, t = (t1, t2)

be a rational affine parametrization of Va, where gcd(℘1,℘2,℘3,℘4) = 1. Sometimes, we
write the parametrization in the homogenous coordinate form P( t ) = (℘1( t ) : ℘2( t ) :
℘3( t ) : ℘4( t )) and, in this case, we denote the surface in the projective space as V .

A moving surface of degree l is a family of algebraic surfaces with parameter pairs (t1, t2)

S( x , t ) =
σ

∑
i=1

fi( x )bi( t )

, where fi( x ), i = 1, . . . , σ are polynomials of degree l, and bi( t ) ∈ R[ t ], i = 1, . . . , σ
(called blending functions) are linearly independent. We say that a moving surface follows
the rational surface P if

℘4( t )lS
(
Pa( t ), t

)
= 0.

We observe that the implicit equation of a given rational surface V is a moving surface
of P . A moving plane is a moving surface of degree one. We denote the next moving plane

A( t )x1 + B( t )x2 + C( t )x3 + D( t )x4

by L( t ) := (A( t ), B( t ), C( t ), D( t )) ∈ R[ t ]4. In the following, we denote, by L t , the set
of the moving planes that follow the rational surface that is parametrized by P . Thus, L t
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is exactly the syzygy module syz(℘1,℘2,℘3,℘4). Now, we define the µ-basis of the rational
surface P .

Definition 1. Let p, q, r ∈ L t be three moving planes satisfying that [p, q, r] = kP( t ), where k
is a nonzero constant. Subsequently, it is said that p, q, r form a µ-basis of the rational surface P .
In the following, [p, q, r] denotes the outer product of p, q, r.

Geometrically, the above definition means that the point of rational surface P can be
represented as the intersection of three moving planes p, q, r. This definition is generalized
from the moving lines of a rational curves [23]. Notice that the result in the curve case
was proposed twenty years ago, but the surface case has been a mystery for a long time.
The µ-bases surfaces that have the very similar properties of the µ-bases of curves is called
strong µ-basis, but the strong µ-bases are relatively rare [25]. Therefore, we have to study
the µ-basis of the surface from initial definition and, here, we review some basic theorems
in [5].

Theorem 1. For any rational surface P , there always exist three moving planes p, q, r, such that
[p, q, r] = k · P( t ) holds. In fact, any basis p, q, r of syz(℘1( t ),℘2( t ),℘3( t ),℘4( t )) satisfies
the above equality.

Theorem 2. Let p, q, r be a µ-basis of the rational surface P . Thus, p, q, r provide a basis for the
module L t (hence, L t is a free module). That is, for any l( t ) ∈ L t , there exist some polynomials
hi( t ), i = 1, 2, 3, satisfying that

l( t ) = h1p + h2q + h3r.

In addition, the above expression is unique.

An immediate consequence of the above theorems is that if p, q, r form a µ-basis if
and only if p, q, r are a basis of syz(℘1( t ),℘2( t ),℘3( t ),℘4( t ))

3. Inversion and Degree Using µ-Basis

LetK be an algebraically closed field of characteristic zero. We denote, by f (x1, x2, x3) ∈
K[x1, x2, x3], the defining polynomial of a rational affine irreducible surface Va defined by
the rational affine parametrization

Pa( t ) =
(
℘1( t )
℘4( t )

,
℘2( t )
℘4( t )

,
℘3( t )
℘4( t )

)
∈ K( t )3, t = (t1, t2).

The homogeneous implicit polynomial defining the corresponding the projective rational
surface V will be denoted as F(x1, x2, x3, x4) ∈ K[x1, x2, x3, x4], where F(x1, x2, x3, x4) =

xdeg( f )
4 f (x1/x4, x2/x4, x3/x4), and the parametrization in the homogenous coordinate form

is given as P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )).
Besides implicitization, other applications of µ-basis include, as in the case of algebraic

curves, point inversion and, in general, the computation of the fiber. The point inversion
problem can be stated, as follows: given a point Q on the space, decide whether the point
is on a rational surface V defined parametrically by P( t ) or not, and, in the affirmative
case, compute the corresponding parameter values t1, t2, such that P(t1, t2) = Q. In this
section, we recall some efficient algorithms that allow for computing the point inversion
and, in general, the computation of the degree of the rational map that is induced by P .
For this purpose, we will use µ-basis.

In order to deal with these problems, we first recall that, associated with the parametriza-
tion Pa( t ), we consider the induced rational map φP : K −→ Va ⊂ K3; t 7−→ Pa( t ).
We denote, by deg(φP ), the degree of the induced rational map φP (see [41] p. 143, and
[42] p. 80). Observe that the birationality of φP , which is the properness of the input
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parametrization, is characterized by deg(φP ) = 1 (see [41,42]). We additionally remind
that deg(φP ) determines the cardinality of the fiber of a generic element (see Theorem 7,
p. 76 in [41]). The degree measures the number of times the parametrization traces the
curve when the parameter takes values in K2. Finally, let FP (Q) be the fiber of a point
Q ∈ Va; that is FP (Q) = P−1

a (Q) = { t ∈ K2 | Pa( t ) = Q}.
In the following, given the projective parametrization P( t ) of a surface V and

p( t ) = (p1, p2, p3, p4), q( t ) = (q1, q2, q3, q4), r( t ) = (r1, r2, r3, r4)

a µ-basis for P( t ), we consider a generic point Q = (x1, x2, x3, x4) on the surface, and the
polynomials

pP ( t , x ) = p( t ) ·Q, qP ( t , x ) = q( t ) ·Q, rP ( t , x ) = r( t ) ·Q, x = (x1, x2, x3, x4).

Remind that pP ( t ,P( t )) = qP ( t ,P( t )) = rP ( t ,P( t )) = 0 (p, q, r is a µ-basis for P( t )).
We denote, by V1, V2, V3, the auxiliary curves over K(V), defined, respectively, by the
polynomials pP ( t , x ), qP ( t , x ), rP ( t , x ) ∈ K(V)[ t ], where K(V) is the field of rational
functions of the given surface.

Finally, let

SP (t1, x ) = pp x (ContZ(Rest2(pP , qP + ZrP ))) ∈ K(V)[t1],

where Contx(h) returns the content of a polynomial h w.r.t. some variable x, ppx(h) returns
the primitive part of a polynomial h with respect to a variable x and Resx(h1, h2) returns the
resultant of two polynomials h1 and h2 w.r.t. some variable x. Similarly, one also considers
the polynomial

TP (t2, x ) = pp x (ContZ(Rest1(pP , qP + ZrP ))) ∈ K(V)[t2].

The computation of SP , TP can be done in two different ways. First, we consider
that the implicit equation defining the input surface is known. In this case, we carry
out the arithmetic over K(V) while using this implicit equation. We observe that, since
I(V) = 〈F〉 (I(V) represents the ideal of V), the basic arithmetic on K[V ] can be carried
out by computing polynomial remainders. Thus, we conclude that the quotient field K(V)
is computable. Furthermore, we note that we calculate the resultants of polynomials in
K(V)[ t ], which is a unique factorization domain, and we compute gcds of univariate
polynomials over K(V) and, thus, in an Euclidean domain. In the second way, we avoid
the requirement on the implicit equation. More precisely, the elements are represented
(not uniquely) as function of polynomials in the variables x1, x2, x3, x4. We check the
zero equality while using the input rational parametrization. This way could be too time
consuming. In order to avoid this problem, one may test zero–equality by substituting
a random point on the surface. The result of this test is correct with probability almost
one. Additionally, one may also test the correctness of the computation of the inverse by
checking it on a randomly chosen point on the given surface. In this way, we avoid the
computation of the implicit polynomial.

In the following theorem, we provide the technique for computing the components of
the inverse of a given rational proper parametrization P( t ). Additionally, we characterize
the properness of P( t ). We illustrate this result in Example 1.

Theorem 3. The rational parametrization P( t ) is proper if and only if for a generic point
Q = (x1, x2, x3, x4) on the surface, it holds that degt1

(SP ) = 1. In this case, the t1-coordinate of
the inverse of P( t ) is given by solving SP (t1, x ) = 0 w.r.t the variable t1.

Proof. Using the results shown in [43] (see Proposition 1), we deduce that the non-constant
t1-coordinates of the intersections points in Vi, i = 1, 2, 3 are given by the roots of the
polynomial SP (t1, x ). Thus, we only have to prove that P( t ) is proper if and only there
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exists one unique point A = (A1, A2) ∈ (V1 ∩V2 ∩V3)∩ (K \K)2 (K denotes the algebraic
closure of the field K(V); i.e K = K(V)). Indeed: first, let M = (M1( x ), M2( x )) be the
inverse of the rational proper parametrization P( t ). Subsequently, M(P) = t and, thus,
pP (M(P),P) = qP (M(P),P) = rP (M(P),P) = 0, which implies that

M ∈ V1 ∩V2 ∩V3 ∩ K2.

In addition, since M is the inverse of P( t ), one has that M ∈ (K \K)2. Hence, M ∈ (V1 ∩
V2 ∩V3) ∩ (K \K)2. Now, let us see that M is unique. Let M∗ ∈ (V1 ∩V2 ∩V3) ∩ (K \K)2.
The equalities pP (M∗, x ) = qP (M∗, x ) = rP (M∗, x ) = 0 imply that

pP (R( t ),P) = qP (R( t ),P) = rP (R( t ),P) = 0, R( t ) = M∗(P).

Afterwards, by the properties of resultants and by Lemma 1, we get that P( t ) = kP(R( t ))
and since P is proper we deduce that R( t ) = M∗(P( t )) = t . Thus, left composing by
P−1, we get that M∗ = P−1 = M.

Reciprocally, because there exists a unique point in (V1 ∩ V2 ∩ V3) ∩ (K \K)2, A is
fixed under the action of the Galois group and, thus, A ∈ K(V)2. Reasoning similarly, as
we did for the uniqueness in the above implication, one gets that A ◦ P = t and, then, we
conclude that A is the inverse of P .

Remark 1. Theorem 3 can be stated similarly for TP (t2, x ). More precisely, P( t ) is proper if and
only if, for a generic point Q = (x1, x2, x3, x4) on the surface, it holds that degt2

(TP ) = 1. In this
case, the t2-coordinate of the inverse of P( t ) is given by solving TP (t2, x ) = 0 w.r.t the variable t2.

We also note that we may work over the affine space (i.e., x4 = 1) and the obtained results are
the same, but over the affine space. If x4 = 1, then the computations are more efficient.

Example 1. Let V be the rational surface that is defined by the parametrization

P( t ) = (t2t1 : t2 + t1 : t2 − t1 : t2
2 + t2

1 + 2).

First, we compute the polynomials

pP ( t , x ) = p( t ) · x = −2x1 + t1x2 + t1x3,
qP ( t , x ) = q( t ) · x = −2t1x1 + (t2

1 + 1 + t2t1)x2 − x3 − t1x4,
rP ( t , x ) = r( t ) · x = (−2t2 + 2t1)x1 + (t2

2 − t2
1)x2 + 2x3 + (−t2 + t1)x4,

where the µ-basis is given as

p( t ) = (−2, t1, t1, 0),
q( t ) = (−2t1, t2

1 + 1 + t2t1,−1,−t1),
r( t ) = (−2t2 + 2t1, t2

2 − t2
1, 2,−t2 + t1).

Now, we determine SP (t1, x ) and TP (t2, x ). We obtain

SP (t1, x ) = −2x1 + t1x2 + t1x3,

TP (t2, x ) = −2x1x4x2 − 2x1x4x3 + 2x1x2
2t2 + 2x1x2t2x3 − 4x2

1x3 − x2x2
3 − x3

3 + x3
2 + x3x2

2.

Because degt1
(SP ) = 1, we conclude that P is proper and the first coordinate of the inverse is

given as

I1 =
2x1

x2 + x3
.
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Reasoning similarly with TP , we obtain the second coordinate of the inverse, which is given as

I2 =
2x1x4x2 + 2x1x4x3 + x3

3 − x3
2 + 4x2

1x3 + x2x2
3 − x3x2

2
2x1x2(x2 + x3)

.

Based upon the above theorem, we may compute FP (Q) for a generic point Q and,
thus, to obtain the degree of the rational map induced by deg(φP ). For this purpose, we
consider Q = Pa( s ), where s = (s1, s2) are new variables, and the polynomials

SP (t1, s ) = pp s (ContZ(Rest2(pP , qP + ZrP ))) ∈ K[t1, s ],

TP (t2, s ) = pp s (ContZ(Rest1(pP , qP + ZrP ))) ∈ K[t2, s ],

where

pP ( t , s ) = p( t ) · P( s ), qP ( t , s ) = q( t ) · P( s ), rP ( t , s ) = r( t ) · P( s ).

Remind that pP ( t , t ) = qP ( t , t ) = rP ( t , t ) = 0 (p, q, r is a µ-basis for P( t )). We denote,
by V1, V2, V3, the auxiliary curves over K( s ) defined, respectively, by the polynomials
pP ( t , s ), qP ( t , s ), rP ( t , s ) ∈ K[ t , s ]. Thus, one obtains the following proposition.

Theorem 4. For a generic point Q = Pa( s ), it holds that

deg(φP ) = Card(FP (Q)) = degt1
(SP (t1, s )) = degt2

(TP (t2, s )).

Proof. First, we use Proposition 1 in [43], and we deduce that the non-constant t1-coordinates
of the intersections points in Vi, i = 1, 2, 3 are given by the roots of the polynomial SP (t1, s ).
Thus, we only have to prove that M ∈ FP (Q) if and only if M ∈ V1 ∩V2 ∩V3 ∩ (K \K)2,
where K = K( s ) is the algebraic closure of the field. Indeed, if M ∈ V1 ∩V2 ∩V3 ∩ (K \K)2

thus pP (M, s ) = qP (M, s ) = rP (M, s ) = 0, which implies that

p(M) · P( s ) = q(M) · P( s ) = r(M) · P( s ) = 0.

Because
p(M) · P(M) = q(M) · P(M) = r(M) · P(M) = 0

, we get that P(M) = kP( s ) with k 6= 0 (since M 6∈ K2), which implies that Pa(M) =
Pa( s ). Hence, M ∈ FP (Q).

Reciprocally, let M ∈ FP (Q). Subsequently, Pa(M) = Pa( s ) which implies that
P(M) = kP( s ) with k 6= 0. Because

p(M) · P(M) = q(M) · P(M) = r(M) · P(M) = 0,

we get that
p(M) · P( s ) = q(M) · P( s ) = r(M) · P( s ) = 0.

Thus, pP (M, s ) = qP (M, s ) = rP (M, s ) = 0 and, hence, M ∈ V1 ∩V2 ∩V3. Furthermore,
since M ∈ FP (Q), we also get that M ∈ (K \K)2.

Clearly, Theorem 4 can be also stated for a generic point Q = (x1, x2, x3, x4) on the
surface, and the polynomials

pP ( t , x ) = p( t ) ·Q, qP ( t , x ) = q( t ) ·Q, rP ( t , x ) = r( t ) ·Q, x = (x1, x2, x3, x4).

(remind that pP ( t ,P( t )) = qP ( t ,P( t )) = rP ( t ,P( t )) = 0 ([p, q, r] = kP( t )). For this
purpose, one considers the polynomials

SP (t1, x ) = pp x (ContZ(Rest2(pP , qP + ZrP ))) ∈ K(V)[t1],
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and
TP (t2, x ) = pp x (ContZ(Rest1(pP , qP + ZrP ))) ∈ K(V)[t2].

where computation can be done, as we described in the paragraph before Theorem 3, i.e.,
over the field of rational functions K(V). Thus, one has the following corollary.

Corollary 1. For a generic point Q = (x1, x2, x3, x4) ∈ V , it holds that

deg(φP ) = Card(FP (Q)) = degt1
(SP (t1, x )) = degt2

(TP (t2, x )).

Remark 2. From the proof of Theorem 4, we deduce that FP (Q) = V1 ∩V2 ∩V3 ∩ (K \K)2.

Example 2. Let V be the rational surface that is defined by the parametrization

P( t ) = (t2
2t2

1 − t4
1 : −t2 + t3

2 + t2t4
1 : −t2

1 + t2t2
1 + t2

2t2
1 − t4

1 : −t2
1 + t2

2t2
1 + t4

1).

We determine the polynomials pP ( t , s ) = p( t ) · P( s ), qP ( t , s ) = q( t ) · P( s ), rP ( t , s ) =
r( t ) · P( s ), where the µ-basis is given by

p( t ) = (t2t2
1 + 2t2

1 + 4t4
2 + 6t3

2 − 4t2 − 4,−2t2
1,

−2t2t2
1 − t2

1 − 4t4
2 − 4t3

2 + 4t2 + 2, t2t2
1 + t2

1 + 2t3
2 − 2)

q( t ) = (−2t2t2
1 − 3t2

1 + t2 + 1, 0, 2t2t2
1 + 2t2

1 − t2 − 1,−t2
1 + 1)

r( t ) = (−2t2
2 − t2 + 2, 0, 2t2

2 − 1,−t2 + 1).

Now, we determine SP (t1, s ) (similarly, if we compute TP (t2, s )), and we obtain

SP (t1, s ) = pp s (ContZ(Rest2(pP , qP + ZrP ))) = t2
1 − s2

1 ∈ K[t1, s ].

Therefore, applying Theorem 4, we conclude that P is not proper and in fact deg(φP ) = 2.
Furthermore,

FP (Pa( s )) = {(s1, s2), (−s1, s2)}.

4. On the Problem of the Reparametrization Using µ-Basis

In this section, we consider the problem of computing a rational proper reparametriza-
tion of a given algebraic surface defined by an improper parametrization. That is, given
an algebraically closed field K, and P( t ), t = (t1, t2), a rational parametrization of
a surface V over K, we want to compute a proper parametrization of V , Q( t ), and
R( t ) ∈ (K( t ) \K)2, such that

P( t ) = Q(R( t )).

Notice that we consider Q(R( t )), with R( t ) = (r1( t )/r( t ), r2( t )/r( t )) ∈ (K( t ) \
K)2, in homogenous form, i.e.,P( t ) = Q(R( t ))means thatP( t ) = Q

(
r1( t )
r( t ) , r2( t )

r( t )

)
r( t )deg(Q),

which is a polynomial vector in homogenous form.
In this section, although we do not provide a solution to the general reparametrization

problem, we show how the µ-basis can be used to provide some information concerning
R( t ) ∈ (K( t ) \K)2. We address the problem partially and the idea presented is based
in the results in [32], but we trust that we could develop deeply these new approaches in
future works, and more results concerning this topic allow us to get more advances.

The approach that is presented in this section is based on the computation of polyno-
mial gcds and univariate resultants. These techniques always work and the time perfor-
mance is very effective. The algorithm presented follows directly from the algorithm that
was developed in [39], which solves the problem for the case of curves. Accordingly, we
first outline this approach and illustrate it with an example.
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Example 3. Let C be the rational curve that is defined by the parametrization

P(t) = (−t4 + t3 + 2t2 + 2t + 1 : (t + 1)(3t2 + 2t + 2) : 2t4 + 3t3 + 5t2 + 4t + 2).

In Step 2 of the algorithm, we determine the polynomials pP (t, s) and qP (t, s), where the µ-basis is
p(t) =

(
40t2 + 40t + 40,−30t2 − 35t− 35, 20t2 + 15t + 15

)T

q(t) =
(

30t2 + 20t + 20,−25t2 − 20t− 20, 15t2 + 10t + 10
)T .

Now, we compute GP (t, s),

GP (t, s) = C0(t) + C1(t)s + C2(t)s2,

where C0(t) = −10t2, C1(t) = −10t2, and C2(t) = 10 + 10t. Because m := degt(G
P ) > 1,

we go to Step 5 of Algorithm 1, and we consider

R(t) =
C2(t)
C0(t)

=
−1− t

t2 .

Note that gcd(C0, C2) = 1. Now, we determine the polynomials

L1(s, x1) = Rest(x1℘3(t)−℘1(t), sC0(t)−C2(t)) = (x3 + sx3 + 2x1− s2x3− 3sx1 + 2s2x1)
2,

L2(s, x2) = Rest(x2℘3(t)− ℘2(t), sC0(t)− C2(t)) = (3sx3 + 2x2 − 3sx2 + 2s2x2 − 2s2x3)
2.

Finally, the algorithm outputs the proper parametrization Q(t), and the rational function R(t) (see
Step 7)

Q(t) =
(

t2 − 1− t : t(−3 + 2t) : 2− 3t + 2t2
)

, R(t) =
−1− t

t2 .

Algorithm 1 Proper Reparametrization for Curves using µ-Basis

Input a rational parametrization P(t) = (℘1(t) : ℘2(t) : ℘3(t)), of a plane algebraic
curve C.
Output a rational proper parametrization Q(t) of C, and a rational function R(t) such that
P(t) = Q(R(t)).
Steps
1. Compute a µ-basis of P . Let p(t), q(t) be this µ-basis.
2. Compute pP (t, s) = p(t) · P(s), qP (t, s) = q(t) · P(s).
3. Compute GP (t, s) = gcd(pP (t, s), qP (t, s)) = Cm(t)sm + · · · + C0(t).

Let m := degt(G
P (t, s)).

4. If m = 1, return Q(t) = P(t), and R(t) = t. Otherwise go to Step 5.

5. Consider R(t) = Ci(t)
Cj(t)

∈ K(t), such that Cj(t), Ci(t) are not associated polynomials

(i.e., Cj(t) 6= kCi(t), k ∈ K).
6. For i = 1, 2, compute

Li(s, xi) = Rest(xi℘3(t)− ℘i(t), sCj(t)− Ci(t)) = (qi2(s)xi − qi1(s))deg(R).

7. Return Qa(t) = (q11(t)/q12(t), q21(t)/q22(t)) or the equivalent projective
parametrization Q(t), and R(t) = Ci(t)/Cj(t).

The main idea of the result that we develop in this paper consists in computing a
reparametrization of two auxiliary parametrizations (defining two space curves), P1 andP2,
directly defined from a given rational parametrization of the surface P (see Definition 2).
Moreover, using that the degree of a rational map is multiplicative under composition, we
get some results that relate the degree of the rational map that is induced by P with the
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degree of Q, and the degree of the rational maps induced by P1 and P2. In addition, we
also prove the relation with the degree w.r.t. the variables t1, t2 of R( t ) ∈ K( t )2.

To start with, we first provide the following lemma that analyzes the behavior of the
µ-basis under reparametrizations.

Lemma 1. Let p̃( t ), q̃( t ) and r̃( t ) be a µ-basis for a parametrization Q( t ) of a surface V . Let
R( t ) ∈ (K( t ) \K)2. Subsequently, p( t ) = p̃(R( t )), q( t ) = q̃(R( t )), r( t ) = r̃(R( t )) is a
µ-basis for the reparametrization P( t ) = Q(R( t )).

Proof. Taking into account that p̃( t ), q̃( t ) and r̃( t ) is a µ-basis forQ( t ), from Theorem 1,
it follows that [p̃, q̃, r̃] = kQ( t ) for some non-zero constant k. Therefore, we easily get that
[p, q, r] = kP( t ) for some non-zero constant k. Hence, from Theorem 1, we conclude that
p( t ), q( t ), r( t ) is a µ-basis for P( t ).

In the next proposition, we assume that we know p, q and r and R( t ) = (r1( t ), r2( t )) ∈
(K( t ) \K)2, and we present a method for computing p̃, q̃ and r̃ from p, q and r, respec-
tively. We state Proposition 1 for p = (p1, p2, p3, p4) and p̃ = ( p̃1, p̃2, p̃3, p̃4). One reasons,
similarly, to obtain q̃ from q and r̃ from r.

We assume w.l.o.g that p4 6= 0m which implies that p̃4 6= 0 (otherwise, we consider
another non-zero component of p). Thus, we may write

(p1/p4, p2/p4, p3/p4) = ( p̃1/ p̃4, p̃2/ p̃4, p̃3/ p̃4)(R( t )).

Let us assume that gcd(p1, p4) = gcd( p̃1, p̃4) = 1 (otherwise, we simplify these rational
functions). In addition, we note that, if p1 = 0, then we easily get that p̃1 = 0. For the
case of p1 6= 0, we consider (r1, r2, p1/p4) that can be seen as an affine parametrization of
the surface defined by the irreducible polynomial p̃1(x1, x2)− x3 p̃4(x1, x2) ∈ K[x1, x2, x3]
(note that gcd( p̃1, p̃4) = 1 and p̃4 p̃1 6= 0). Hence, we only have to compute the implicit
equation of that surface by applying, for instance, the method that is presented in [44].

Reasoning, similarly, (r1, r2, pi/p4) can be seen as a parametrization of the surface
defined by the irreducible polynomial p̃i(x1, x2)− x3 p̃4(x1, x2) ∈ K[x1, x2, x3], for i = 2, 3.
Summarizing, we have the following proposition.

Proposition 1. Under the conditions that are stated above, it holds that the implicit equation of
the parametrization (r1, r2, pi/p4) is given as p̃i(x1, x2)− x3 p̃4(x1, x2), for i = 1, 2, 3.

In Remark 3, we apply the same idea that is stated in Proposition 1, but for the
particular case of curves.

Given a rational projective parametrization N ( t ) of a surface over K, in Definition 2
we introduce some auxiliary parametrizations over K(ti) that are defined from N .

Definition 2. Let N ( t ) be a parametrization with coefficients in K. We define the partial
parametrizations associated to N as the parametrizations Ni(tj) := N ( t ) with coefficients in
K[ti] (i.e., Ni is defined over K[ti]), for i, j ∈ {1, 2} and i 6= j.

We note that the partial parametrization Ni(tj) (i 6= j) determines a space curve in

K(ti)
3
, where K(ti) is the algebraic closure of K[ti]. In addition, we note that Definition 2

can also be stated for any N( t ) ∈ K( t )2. That is, given N( t ) ∈ K( t )2, one may consider
Ni(tj) := N( t ) ∈ (K[ti])(tj)

2 (i.e., N is seen defined over K[ti] and in the variable tj),
for i, j ∈ {1, 2} and i 6= j. Similarly, one also may adapt Definition 2 for any polynomial
n( t ) ∈ K( t ).

The properness of the input parametrization P of a surface V can be characterized
by means of the properness of its partial parametrizations. In particular, it is proved that
P is birational if and only if its associated partial parametrizations, Pi, are proper and
P−1

i ∈ K( x ) \K(ti), where x = (x1, x2, x3, x4) (see [32]).
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In the following, given a rational affine parametrization P( t ) of a surface V , we de-
velop an algorithm that computes a rational parametrizationQ( t ) of V , and R( t ) ∈ K( t )2,
such that P( t ) = Q(R( t )). The algorithm is based on the computation of polynomial
gcds and univariate resultants whose computing time performance is very satisfactory.

We prove that the partial parametrizations that correspond to the output parametriza-
tion, Q( t ), are proper (see Theorem 5), and we get properties relating the degree of φP
with the degree of the rational map φQ, and the degree of R( t ) (see Theorem 6). More
precisely, we prove that

deg(φP ) = deg(φQ)degt1
(S)degt2

(T)

where
R( t ) = (S( t ), T(S( t ), t2)), S, T ∈ K( t ).

In Corollaries 2 and 3, we analyze in which conditions deg(φQ) = 1 or, otherwise, the
degree of the rational map induced by Q( t ) is lower than the degree that is induced by
the input parametrization P( t ).

In Theorem 5, we have that the partial parametrizations associated to the output
parametrization, Q( t ), are proper (see [32]) but we can not ensure that Q is proper.

Theorem 5. The partial parametrizations Q1(t2) and Q2(t1) associated to the parametrization Q
computed by Algorithm 2 are proper.

Algorithm 2 Proper Reparametrization for Surfaces using µ-Basis

Input a rational parametrization P( t ) =
(
℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )

)
of an algebraic

surface V .
Output a rational parametrization Q( t ) of V , and R( t ) ∈ (K( t ) \ K)2 such that
P( t ) = Q(R( t )).
Steps
1. Compute a µ-basis of P . Let p( t ), q( t ), r( t ) be this µ-basis.
2. Apply Algorithm 1 to P2(t1). If P2 is not proper, then the algorithm returns the

proper parametrization M2(t1), and S2(t1) ∈ (K[t2])(t1) (S2(t1) = S(t1, t2) seen
with coefficients in K[t2]), such that P2(t1) =M2(S2(t1)). Otherwise, the algorithm
returnsM( t ) = P( t ) (i.eM2(t1) = P2(t1), and S2(t1) = t1).

3. Apply Algorithm 1 toM1(t2). IfM1 is not proper, the algorithm returns the proper
parametrization Q1(t2), and T1(t2) ∈ (K[t1])(t2) (T1(t2) = T(t1, t2) seen with coef-
ficients in K[t2]) such thatM1(t2) = Q1(T1(t2)). Otherwise, the algorithm returns
Q( t ) =M( t ) (i.e Q1(t2) =M1(t2), and T1(t2) = t2). Then,

P( t ) =M(S( t ), t2) = Q(t1, T( t ))(S( t ), t2) = Q(S( t ), T(S( t ), t2)).

4. Return the rational parametrization Q( t ) of the surface V , and

R( t ) = (S( t ), T(S( t ), t2)) ∈ K( t )2.

From Algorithm 2, and while using that the degree of a rational map is multiplicative
under composition, we deduce some properties that relate the degree the rational map
φP with the degree of the rational maps φQ, φM, φPi , i = 1, 2, and with deg(R), where
R( t ) = (S( t ), T(S( t ), t2)). One reasons, similarly as in [32].

Theorem 6. It holds that

deg(φP ) = deg(φQ)degt1
(S( t ))degt2

(T( t )), and

deg(φP2) = degt1
(S( t )), deg(φM1) = degt2

(T( t )).
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In addition,

deg(φP ) = deg(φM)degt1
(S( t )), deg(φM) = deg(φQ)degt2

(T( t )).

Corollary 2. The following statements are equivalent:

1. Q is proper.
2. deg(φM) = degt2

(T).
3. deg(φP ) = degt1

(S)degt2
(T).

Finally, in Corollary 3, we show in which conditions Algorithm 2 does not return a
better reparametrization than the input one (in the sense of the degree of the rational map
that is induced by the rational parametrization).

Corollary 3. It holds that deg(φQ) = deg(φP ) if and only if deg(φP2) = deg(φM1) = 1. In
particular, if deg(φPi ) = 1 for i = 1, 2, then deg(φQ) = deg(φP ).

We observe that, while using previous results, one may easily analyze whether some
families of surfaces can be properly reparametrized using the approach presented in this
paper. For instance, if deg(φPi ) 6= 1 for some i = 1, 2, and deg(φP ) = n, where n is a prime
number, then deg(φQ) = 1.

To finish this section, we illustrate Algorithm 2 with one example. The times of our
implementation performance is similar to the times that were obtained in [32].

Example 4. Let V be the rational surface that is defined by the parametrization

P( t ) = (℘4( t )) : ℘2( t ) : ℘3( t ) : ℘4( t ) =(
t4
2t2

1 − t4
1 : −t2

2 + t6
2 + t2

2t4
1 : −t2

1 + t2
2t2

1 + t4
2t2

1 − t4
1 : −t2

1 + t4
2t2

1 + t4
1

)
.

For this purpose, in Step 1 of Algorithm 2, we compute a µ-basis of P and we get that is given by

p( t ) = (t2
2t2

1 + 2t2
1 + 4t8

2 + 6t6
2 − 4t2

2 − 4,−2t2
1,−2t2

2t2
1 − t2

1 − 4t8
2 − 4t6

2 + 4t2
2 + 2, t2

2t2
1 + t2

1 +
2t6

2 − 2)

q( t ) = (−2t2
2t2

1 − 3t2
1 + t2

2 + 1, 0, 2t2
2t2

1 + 2t2
1 − t2

2 − 1,−t2
1 + 1)

r( t ) = (−2t4
2 − t2

2 + 2, 0, 2t4
2 − 1,−t2

2 + 1).

Using Theorem 4, one gets that deg(φP ) = 4. Now, we apply Algorithm 1 to P2(t1). We
obtain that

GP2(t1, s1) = s2
1 − t2

1 ∈ (K[t2])[t1, s1],

and S2(t1) = −t2
1 ∈ (K[t2])[t1] (remind that S2(t1) = S(t1, t2) is seen as a polynomial in the

variable t1 and with coefficients in K[t2]). Subsequently, we determine the polynomials

Li(s1, xi) = Rest1(xi℘4( t )− ℘i( t ), s1 − S2(t1)) = (mi,2(s1)xi −mi,1(s1))
degt1

(S)

for i = 1, 2, 3. We obtain that

M( t ) = ((−t4
2 − t1)t1 : t2

2(t
4
2 − 1 + t2

1) : (1− t2
2 − t4

2 − t1)t1 : t1(1− t4
2 + t1)).

Now, in Step 3 of the algorithm, we apply Algorithm 1 to M1(t2). For this purpose, we first
compute a µ-basis ofM and we get that it is given by (see Remark 3)

pM( t ) = (4t2
2 + 4− 4t8

2 − 6t6
2 + t2

2t1 + 2t1,−2t1,−4t2
2 − 2 + 4t8

2 + 4t6
2 − 2t2

2t1 − t1,−2t6
2 +

2 + t2
2t1 + t1)
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qM( t ) = (t2
2 + 1 + 2t2

2t1 + 3t1, 0,−t2
2 − 1− 2t2

2t1 − 2t1, 1 + t1)
rM( t ) = (−2 + 2t4

2 + t2
2, 0,−2t4

2 + 1,−1 + t2
2).

We obtain that
GM1(t2, s2) = s2

2 − t2
2 ∈ (K[t1])[t2, s2]

that is,M1 is not proper. Afterwards, we compute T1(t2) = −t2
2 ∈ (K[t1])[t2], and the polynomi-

als

Li(s2, xi) = Rest2(xim4( t )−mi( t ), s2 − T1(t2)) = (qi,2(s2)xi − qi,1(s2))
degt2

(T)

for i = 1, 2, 3 (remind that T1(t2) = T(t1, t2) is seen as a polynomial in the variable t2 and with
coefficients in K[t1]). We obtain that

Q( t ) =
(
(−t1 − t2

2)t1 : −t2(t2
2 − 1 + t2

1) : (−t1 + 1 + t2 − t2
2)t1 : t1(1 + t1 − t2

2)
)

.

In Step 4, the algorithm returns the parametrization Q( t ), and R( t ) = (S( t ), T(S( t ), t2)) =
(−t2

1,−t2
2). We observe that

degt2
(T) = 2, and degt1

(S) = 2.

Thus, since deg(φP ) = 4, by Theorem 6, we conclude that deg(φQ) = 1 and, hence, Q is proper.

Remark 3. Using Lemma 1, we may compute a µ-basis, pM, qM, rM, ofM from the µ-basis,
p, q, r, of P . Remind that P( t ) =M(S2(t1), t2), and S2(t1) = S(t1, t2) is seen as a polynomial
in the variable t1 with coefficients in K[t2]. Thus, we have a particular case (case of curves) of the
reasoning that is presented in Proposition 1 (which is stated for surfaces). More precisely, we write
p = (p1, p2, p3, p4) and pM = (pm1 , pm2 , pm3 , pm4). Observe that the implicit equation of the
parametrization (S2(t1), pi/p4) (seen with coefficients in K(t2) and in the variable t1) is given by
the polynomial pmi (x1, t2)− x2 pm4(x1, t2) ∈ (K(t2))[x1, x2] for i = 1, 2, 3 (i.e., the coefficients of
the the implicit equation are in K(t2)). In order to compute this implicit equation, we may use that

Rest1(xi p4( t )− pi( t ), x1 − S2(t1)) = (pm4(x1, t2)xi − pmi (x1, t2))
degt1

(S), i = 1, 2, 3

(see, e.g., [44]). Similarly one reasons to get qM from q and rM from r. Observe that this
is a particular case of the result presented in Proposition 1 (we apply the same idea stated in
Proposition 1, but for the particular case of curves).

5. Implicitization Using µ-Basis

In the following, we assume that we are in the affine space (i.e., x4 = 1; this simplifies
the time on the computations), and we consider the polynomials

GP1 ( t , x ) := pP ( t , x )r3( t )− rP ( t , x )p3( t ) ∈ K[ t , x1, x2]

GP2 ( t , x ) := qP ( t , x )r3( t )− rP ( t , x )q3( t ) ∈ K[ t , x1, x2]

GP3 ( t , x ) := rP ( t , x ) ∈ K[ t , x ], x = (x1, x2, x3).

Note that, then, we may write

GP1 ( t , x ) := x1(p1r3 − p3r1) + x2(p2r3 − p3r2) + (p4r3 − p3r4)

GP2 ( t , x ) := x1(q1r3 − q3r1) + x2(q2r3 − q3r2) + (q4r3 − q3r4)

GP3 ( t , x ) := x1r1 + x2r2 + x3r3 + r4.

In addition, let
SP12(t1, x ) = pp x (Rest2(G

P
1 , GP2 )) ∈ K[t1, x1, x2],
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TP12(t2, x ) = pp x (Rest1(G
P
1 , GP2 )) ∈ K[t2, x1, x2].

Finally, FP12(x1, x2) denotes the fiber of a point Q12 := π12(Q) = (x1, x2), where
Q = (x1, x2, x3) ∈ Va and π12(Va) is the (1, 2)-projection of Va. That is

FP12(Q12) = P−1
12 (Q12) = { t ∈ K2 | P12( t ) = Q12},

where P12 := (℘1/℘4,℘2/℘4) := π12(Pa).

Lemma 2. It holds that

degt1
(SP12) = degt2

(TP12) = Card(FP12(x1, x2)).

Proof. Because p, q, r is a µ-basis of P( t ), we have

p1℘1 + p2℘2 + p3℘3 + p4℘4 = 0,
q1℘1 + q2℘2 + q3℘3 + q4℘4 = 0,
r1℘1 + r2℘2 + r3℘3 + r4℘4 = 0.

(1)

Consider a generic point Q = (x1, x2, x3) on the variety generated by (℘1 : ℘2 : ℘4) and
the associated polynomials

pP ( t , x ) = p( t ) ·Q, and qP ( t , x ) = q( t ) ·Q,

where p( t ) = (p1r3 − p3r1, p2r3 − p3r2, p4r3 − p3r4), and q( t ) = (q1r3 − q3r1, q2r3 −
q3r2, q4r3 − q3r4). It holds that pP ( t ,P( t )) = qP ( t ,P( t )) = 0. In fact, pP ( t ,P( t )) =
(p1r3− p3r1)℘1 + (p2r3− p3r2)℘2 + (p4r3− p3r4)℘4 = 0 is derived by eliminating ℘3 from
the first and third equations in (1). Similarly, to find qP ( t ,P( t )) = 0 from the last two
equations in (1).

Thus, one may reason as in Theorem 4 and Corollary 1 (also see Remark 2) to get that

degt1
(SP12(t1, x )) = degt2

(TP12(t2, x )) = Card(FP12(x1, x2))

(remind that P12 := (℘1/℘4,℘2/℘4) = π12(Pa)).

Theorem 7. Let p( t ), q( t ) and r( t ) a µ-basis for P( t ). It holds that

ppx3
(h( x )) = f ( x )deg(φP )

where
h( x ) = Cont{Z,W}(Rest2(T

P
12(t2, x ), K(t2, Z, W, x ))) ∈ K[ x ],

K(t2, Z, W, x ) = Rest1(S
P
12(t1, x ), HP ( t , Z, W, x )) ∈ K[t2, Z, W, x ],

and

HP ( t , Z, W, x ) = GP3 ( t , x ) + ZGP1 ( t , x ) + WGP2 ( t , x ) ∈ K[ t , Z, W, x ].

Proof. First, we recall that

degt1
(SP12) = degt2

(TP12) = Card(FP12( x )).

Let d12 be this quantity. Clearly, d12 ≥ 1. In addition, let m = degt1
(HP ) and

k = degt2
(HP ). Regarding SP12 and HP as polynomials in K(t2, Z, W, x )[t1], and us-
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ing that the resultant of two univariate polynomials is the product of the evaluations of
one of them in the roots of the other, we get

K(t2, Z, W, x ) = Rest1(S
P
12, HP ) = A( x )m

d12

∏
i=1

HP (αi, t2, Z, W, x ),

where A is the leading coefficient of SP12 w.r.t. t1, and where {α1, . . . , αd12} are the roots of SP12
in the algebraic closure K(x1, x2) of K(x1, x2) (we regard SP12 as an univariate polynomial
in t1). Similarly,

Rest2(T
P
12, K) = B( x )k

d12

∏
j=1

K(β j, Z, W, x ),

where B is the leading coefficient of TP12 w.r.t. t2, and {β1, . . . , βd12} are the roots of TP12 in
K(x1, x2) (we regard TP12 as a univariate polynomial in t2). Therefore,

Rest2(T
P
12, K) = Bk Am·d12

d12

∏
i=1

d12

∏
j=1

HP (αi, β j, Z, W, x ).

By Lemma 2, there exist d12 pairs of points (αi, β j) being in FP12(x1, x2), and for each
U(x1, x2) ∈ FP12(x1, x2) it holds that GP1 (U, x ) = GP2 (U, x ) = 0. Thus,

Rest2(T
P
12, K) = Bk Am·d12 Q( x , Z, W) ∏

U∈FP12
(x1,x2)

GP3 (U, x ),

where
Q( x , Z, W) = ∏

1 ≤ i, j ≤ d12
(αi , β j) 6∈ FP12 (x1, x2)

H(αi, β j, Z, W, x ).

Note that for each root αi there exists a unique bj satisfying that the pair (αi, β j)

is in the fiber. Furthermore, for (αi, β j) 6∈ FP12(x1, x2), either GP1 (αi, β j, x ) 6= 0 or
GP2 (αi, β j, x ) 6= 0 (see Lemma 2). Hence, Q( x , Z, W) depends on Z or W. In addition,
each HP (αi, β j, Z, W, x ) does depend on Z or W.

Next, we show that Q( x , Z, W), regarded as polynomial in K[ x ][ x , Z, W], is primi-
tive w.r.t. the variables {Z, W}. For this purpose, we denote, by N(x3) ∈ K[x1, x2][x3], the
content of Q w.r.t. {Z, W}. Thus, there exists (αi, β j) 6∈ FP12(x1, x2) satisfying that the poly-
nomial N divides H(αi, β j, Z, W, x ); that is, N(x3) divides GP3 (αi, βi, x )+ZGP1 (αi, β j, x )+
WGP2 (αi, β j, x ) and, then, N(x3) divides GP1 (αi, β j, x1, x2) and GP2 (αi, β j, x1, x2). Taking
into account that at least one of them is not zero, we get that N ∈ K[x1, x2] and, thus, Q is
primitive w.r.t. {Z, W}. Now, using that

h( x ) = Cont{Z,W}(Rest2(T
P
12, K)),

we obtain that

h( x ) = Bk Am·d12 · N(x1, x2) · ∏
U∈FP12

(x1,x2)

GP3 (U, x ),

where N ∈ K[x1, x2]. Thus,

ppx3
(h( x )) = ppx3

 ∏
U∈FP12

(x1,x2)

GP3 (U( x ), x )

.
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Under these conditions, it holds that degx3
(ppx3

(h( x ))) = d12. Indeed, clearly one has
degx3

(ppx3
(h( x ))) ≤ d12. If degx3

(ppx3
(h( x ))) < d12, thus, there exists U ∈ FP12(x1, x2),

such that r3(U) = 0. Moreover, U ∈ K2, which is impossible since U ∈ FP12(x1, x2).
Now, we prove that

ppx3

 ∏
U∈FP12

(x1,x2)

GP3 (U( x ), x )

 = f ( x )r.

Indeed, clearly one has that

ppx3

 ∏
U∈FP12

(x1,x2)

GP3 (U( x ), x )

 = f ( x )rg( x ).

Furthermore, r ≥ deg(φP ), since GP3 (U( x ), x ) = GP3 (V( x ), x ) for U, V ∈ FP ( x ) (ob-
serve that FP ( x ) ⊆ FP12(x1, x2))). Thus, since degx3

( f ) = d12/deg(φP ) (see [44]) and
degx3

(ppx3
(h( x ))) = d12, we get that

d12/deg(φP ) · r + deg(g) = d12

, which implies that d12(1− r/deg(φP )) = deg(g) and, hence, r ≤ deg(φP ). Because
r ≥ deg(φP ), we conclude that deg(g) = 0 and r = deg(φP ).

In the following examples, we illustrate the above theorem. These examples are taken
from [5].

Example 5. Let V be the rational surface that is defined by the parametrization

P( t ) = (t2
2t1 − t2

1 : −t2 + t3
2 + t2t2

1 : −t1 + t2t1 + t2
2t1 − t2

1 : −t1 + t2
2t1 + t2

1).

We determine the polynomials pP ( t , x ) = p( t ) · x , qP ( t , x ) = q( t ) · x , rP ( t , x ) =
r( t ) · x , where the µ-basis is given by

p( t ) = (t2t1 + 2t1 + 4t4
2 + 6t3

2 − 4t2 − 4,−2t1,−2t2t1 − t1 − 4t4
2 − 4t3

2 + 4t2 + 2, t2t1 + t1 +
2t3

2 − 2)

q( t ) = (−2t2t1 − 3t1 + t2 + 1, 0, 2t2t1 + 2t1 − t2 − 1,−t1 + 1)

r( t ) = (−2t2
2 − t2 + 2, 0, 2t2

2 − 1,−t2 + 1).

Now, we determine

GP1 ( t , x ) := pP ( t , x )r3( t )− rP ( t , x )p3( t ) ∈ K[ t , x1, x2]

GP2 ( t , x ) := qP ( t , x )r3( t )− rP ( t , x )q3( t ) ∈ K[ t , x1, x2]

GP3 ( t , x ) := rP ( t , x ) ∈ K[ t , x ], x = (x1, x2, x3)

and we compute

SP12(t1, x ) = pp x (Res(GP1 , GP2 , t2)) = −t1 + 2t2
1 + x1 + 2x2

1 − x2
2t2

1x2
1 + x2

2t2
1x1 − 4x2

2t3
1x1 +

4x2
2t4

1x1 + 4x2
2t3

1x2
1 − x2

2t2
1x3

1 − 4x2
2t4

1x3
1 + 4x2

2t3
1x3

1 − 4x2
2t4

1x2
1 + 4x2

2t4
1 − 4x2

2t3
1 + x2

2t2
1 − 5x1t4

1 −
t5
1x1 − 2x4

1t1 + 2x3
1t4

1 + 2x3
1t5

1 + 2x2
1t5

1 + x5
1t2

1 + 3x5
1t4

1 − x4
1t5

1 − 3x5
1t3

1 − 7x3
1t1 + x1t3

1 − x5
1t5

1 +
16x3

1t2
1− 4x2

1t4
1− 6x2

1t3
1 + 8x4

1t2
1− 5x1t1 + 14x2

1t2
1− 9x2

1t1 + 7x1t2
1 + 6x4

1t4
1− 11x4

1t3
1− 14x3

1t3
1−

t5
1 + x3

1 − 2t4
1 + t3

1,
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TP12(t2, x ) = pp x (Res(GP1 , GP2 , t1)) = −2t5
2x1 + 4x1t3

2 − 2t4
2x2 + t2

2x2 + t5
2 + x2

1t5
2 − x2

1t3
2 +

2x1t4
2x2 − 3x1t2

2x2 + x1x2 − t2 − 2x1t2 + t3
2.

Also, let

HP ( t , Z, W, x ) = GP3 ( t , x ) + ZGP1 ( t , x ) + WGP2 ( t , x ) ∈ K[ t , Z, W, x ]

and
K(t2, Z, W, x ) = Rest1(S

P
12(t1, x ), HP ( t , Z, W, x )) ∈ K[t2, Z, W, x ].

Finally, we compute

h( x ) = Cont{Z,W}(Rest2(T
P
12(t2, x ), K(t2, Z, W, x ))) ∈ K[ x ],

and

ppx3
(h( x )) = f ( x )deg(φP ) = −1− 46x2

1x2x3 + 38x1x2x2
3 − 8x1x2x3 + 4x2

2x2
1x3 − 12x2

2x1x3

+ 10x3
1x2x3 + x2

1x2x2
3 − 10x1x2x3

3 + 4x1x2
2x2

3 − 10x2x3
3 + 8x2

2x2
3 − 4x2

2x3 + 5x2x2
3 − 5x4

1x2
+ 19x3

1x2 − 4x2
2x3

3 + 4x2x4
3 + 2x2

1x2 − 2x2
3x3

1 + 47x2
3x2

1 − 12x4
1x3 + 14x1x2

3 + 11x2
1x3

3 − 6x1x4
3

− 32x1x3
3 − 22x3x3

1 − 12x3x2
1 + 4x3x1 − 4x3

1x2
2 + 4x2

1x2
2 + 4x1x2

2 − x1x2 + 7x4
3 − 5x3

3 − 5x2
3

+ 8x5
1 + 2x2

1 + 2x3
1 + x5

3 + 3x3 − 2x1 + x2.

Observe that we may conclude that deg(φP ) = 1 and, thus, P( t ) is a proper rational
parametrization.

We have implemented this method while using Maple 2016 on a Lenovo ThinkPad Intel(R)
Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz and 16 GB of RAM, OS-Windows 10 Pro. The
time, in CPU seconds, for this example is 10.907 and using Gröbner basis, we get 0.187.

Example 6. Let V be the rational surface defined by the parametrization

P( t ) = (t2
1 + t2t1 + 2t2

2 − 2t2
2t1 : t2

1 + 2t2t1 + t2t2
1 + 2t2

2 − t2
2t1 + 2t2

2t2
1 : −t2

1 + t2t1 + 2t2t2
1 +

2t2
2 − t2

2t1 − 2t2
2t2

1 : 2t2t1 − 2t2t2
1 − 2t2

2t1 − t2
2t2

1).

We determine the polynomials pP ( t , x ) = p( t ) · x , qP ( t , x ) = q( t ) · x , rP ( t , x ) =
r( t ) · x , where the µ-basis is given by

p( t ) = (−1344390t2
2t1 + 34075368t2t1− 22657890t1− 5710808t3

2− 181563t2
2− 23392736t2−

4984080, 1344390t2
2t1 − 25195836t2t1 + 10711400t1 + 3569255t3

2 + 1074194t2
2 + 18408656t2 +

4984080, 1344390t2
2t1 − 17483628t2t1 − 11946490t1 + 2141553t3

2 − 892631t2
2 + 4984080t2,

9704572t2 − 11391246t2t1 + 6590790t1 + 2855404t3
2 + 6075203t2

2 − 2492040)

q( t ) = (−229530t2t1 − 50278t1 + 139288t2
2 − 174717t2 + 194136, 131160t2t1 + 155206t1 −

87055t2
2 + 85766t2 − 194136, 65580t2t1 + 104928t1 − 52233t2

2 + 88951t2, 131160t2t1 +
100556t1 − 69644t2

2 − 58603t2 + 97068)

r( t ) = (−8t3
2 + 11t2

2 − 4t2 + 4, 5t3
2 − 6t2

2 + 8t2 − 4, 3t3
2 − 5t2

2 − 4t2, 4t3
2 + t2

2 + 2).

Now, we determine

GP1 ( t , x ) := pP ( t , x )r3( t )− rP ( t , x )p3( t ) ∈ K[ t , x1, x2]

GP2 ( t , x ) := qP ( t , x )r3( t )− rP ( t , x )q3( t ) ∈ K[ t , x1, x2]

GP3 ( t , x ) := rP ( t , x ) ∈ K[ t , x ], x = (x1, x2, x3)
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and we compute SP12(t1, x ) and TP12(t2, x ). Additionally, let

HP ( t , Z, W, x ) = GP3 ( t , x ) + ZGP1 ( t , x ) + WGP2 ( t , x ) ∈ K[ t , Z, W, x ]

and
K(t2, Z, W, x ) = Rest1(S

P
12(t1, x ), HP ( t , Z, W, x )) ∈ K[t2, Z, W, x ].

Finally, we compute

h( x ) = Cont{Z,W}(Rest2(T
P
12(t2, x ), K(t2, Z, W, x ))) ∈ K[ x ],

and from ppx3
(h( x )), we get that

f ( x ) = −449792 + 51270879x3x1x2
2 + 13092929x2

3x1x2 − 3482416x3x2
1x2 + 22904376x3x1x2 + 675054x1x6

3 − 862596x2x6
3 −

29225028x2
1x2x3

3 + 11830146x1x2x3
3 + 32231373x1x2

2x3
3 + 110760512x5

1x2x3 − 90099948x4
1x2

2x3 − 129717124x4
1x2x2

3 +
40844546x3

1x3
2x3 + 124810810x3

1x2
2x2

3 + 74702726x3
1x2x3

3 − 19905824x2
1x4

2x3 − 64077866x2
1x3

2x2
3 − 75736662x2

1x2
2x3

3 +
18645124x1x4

2x2
3 + 9481980x1x5

2x3 + 33323142x1x3
2x3

3 − 40980736x6
1x2 − 50645760x6

1x3 + 34182816x5
1x2

2 + 54875936x5
1x2

3 −
24633612x4

1x3
2 − 26906244x4

1x3
3 + 30171008x3

1x4
2 − 25238190x2

1x5
2 + 9961900x1x6

2 − 1918400x6
2x3 + 30499314x1x4

2x3 −
28601154x2

3x2
1x2

2 + 22849453x2
3x1x3

2 + 27085291x2
3x3

1x2 − 2534290x5
2x2

3 − 5374808x4
2x3

3 + 3235863x3
1x3

3 − 9477510x3
2x3

3 +
2815992x2

1x3
3 − 8545002x2

2x3
3 + 3831717x1x3

3 − 5284450x2x3
3 − 15996836x2

3x3
1 + 119044501x1x4

2 − 25566784x5
1x2 +

9070776x4
1x2

2 + 80443033x3
1x3

2 + 9622080x5
1x3 − 109224707x2

1x4
2 + 53021640x1x5

2 − 9557440x5
2x3 − 19184968x2

3x4
1 −

6794107x2
3x4

2 + 16282880x4
1x2 + 119771644x3

1x2
2 − 205506824x2

1x3
2 + 49430528x3x4

1 + 41274000x4
1x3x2 − 63080603x3

1x3x2
2 −

3378276x2
1x3x3

2− 96074840x3x3
1x2 + 9101736x3x2

1x2
2 + 53646214x3x1x3

2 + 10909032x2
3x2

1x2− 21171376x3x4
2− 10777540x2

3x3
2 +

7054782x4
3x3

1 − 6762492x2
2x4

3 + 2808045x2
1x4

3 + 16635132x2
3x1x2

2 − 1041561x1x4
3 − 2701863x2x4

3 − 5920710x4
3x3

2 −
3201822x5

3x2
2 − 367011x5

3x1 − 1776762x5
3x2 − 2007234x5

3x2
1 + 10217583x2x1x4

3 − 26748144x4
3x2x2

1 + 23463306x4
3x2

2x1 +
6779862x5

3x2x1 + 4466880x1− 3813952x2− 520768x3− 16392064x2
1− 13928144x2

2− 857264x2
3 + 23714880x3

1− 28078300x3
2−

573568x4
1 − 33492106x4

2 − 24141568x5
1 − 23550085x5

2 − 196096x6
1 − 9046200x6

2 + 39690x5
3 − 638436x4

3 − 1440780x3
3 +

3591536x3x1 − 2849856x3x2
1 + 4138196x2

3x1 + 31582352x1x2 − 4613120x3x2 − 90566848x2
1x2 + 92152884x1x2

2 −
15211892x3x2

2 + 88688752x3
1x2 − 195019560x2

1x2
2 + 140970299x1x3

2 − 25290352x3x3
1 − 24626550x3x3

2 − 5042468x2
3x2 +

1087832x2
3x2

1 − 10534970x2
3x2

2 + 18348032x7
1 − 1475500x7

2 − 119313x6
3 − 96066x7

3,

and deg(φP ) = 1. That is, P( t ) is a proper rational parametrization.
The time, in CPU seconds, for this example is 71.703, and using Gröbner basis, we get a time

that is > 5000.

Remark 4. In order to improve the time of computations, one may compute the polynomial

h( x ) = Cont{Z,W}(Rest2(T
P
12(t2, x ), K(t2, Z, W, x )))

as gcd(R1, R2), where

Ri = Rest2(T
P
12(t2, x ), K(t2, ai, bi, x )), i = 1, 2

and ai, bi ∈ K are random constants. The answer is correct with a probability of almost one, since,
taking into account the behavior of the gcd under specializations, this property holds in an open
Zariski subset (see e.g., Lemmas 7 and 8 in [45]).

6. Conclusions

The µ-basis has shown as a bridge tool between the parametric form and the implicit
form of curves and surfaces. Moreover, the µ-basis has also been introduced into appli-
cations in singularities analysis and collision detections. The µ-basis theory of curves are
more complete than that of surfaces, but surfaces would certainly attract more attention,
although the discussion is more difficult. We study the µ-basis further for improper rational
surfaces. The results are essential to the theoretical completeness of the µ-basis of surface.

We show how the µ-basis allows for computing the inversion of a given proper
parametrization P( t ) of an algebraic surface. If P( t ) is not proper, we show how the
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degree of the rational map that is induced by P( t ) can be computed as well as the elements
of the fiber. Furthermore and directly from P( t ), we propose a method to find a µ-basis for
a proper reparametrization Q( t ) with some assumptions. If P( t ) is improper, we give
some partial results in finding a proper reparametrization of V . Finally, we show how the
µ-basis of a given not being necessarily proper parametrization also allows for computing
the implicit equation of a given surface bysubsequence univariate resultants.

As the further work, the numerical consideration could be an interesting extension
of the µ-basis theory. One possible way would consist in generalizing the symbolic com-
putation to numerical situation using the ideas and techniques that have already been
implemented in some other problems, such as the numerical proper reparametrization of
surfaces [46].
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