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Abstract: This study aims to analyze and explore criminal recidivism with different modeling
strategies: one based on an explanation of the phenomenon and another based on a prediction task.
We compared three common statistical approaches for modeling recidivism: the logistic regression
model, the Cox regression model, and the cure rate model. The parameters of these models were
estimated from a Bayesian point of view. Additionally, for prediction purposes, we compared the
Cox proportional model, a random survival forest, and a deep neural network. To conduct this
study, we used a real dataset that corresponds to a cohort of individuals which consisted of men
convicted of sexual crimes against women in 1973 in England and Wales. The results show that the
logistic regression model tends to give more precise estimations of the probabilities of recidivism
both globally and with the subgroups considered, but at the expense of running a model for each
moment of the time that is of interest. The cure rate model with a relatively simple distribution,
such as Weibull, provides acceptable estimations, and these tend to be better with longer follow-up
periods. The Cox regression model can provide the most biased estimations with certain subgroups.
The prediction results show the deep neural network’s superiority compared to the Cox proportional
model and the random survival forest.

Keywords: Cox proportional hazard deep neural network; Cox regression model; cure rate model;
logistic regression model; random survival forest; recidivism

1. Introduction

Recidivism is a relapse into committing a crime or a return to criminal activity.
The most common form of expressing recidivism is through the percentage of individuals
that relapse. Ref. [1] discuss three definitions of recidivism. In particular, they discuss the
implications of considering that recidivism occurs with a new arrest, a new conviction, or
new imprisonment. The estimations are the highest in the first case and the lowest in the
last. These authors argue that the measurement of recidivism time until a new arrest is
more precise than until a new conviction, trial, or imprisonment because of delays in the
judicial system.

The reasons for modeling recidivism can be understood at two levels. At the level of
the global penal population, it is important to estimate the proportion that will recidivate
and their complement, the proportion that is rehabilitated, as well as the distribution of time
until ex-convicts return to the penal system. Both components of recidivism, the proportion
and the time, are necessary when deciding about the construction of new prisons, their
capacity, the type of convicts they will house, and in designing more effective rehabilitation
programs and evaluating these programs. For example, evaluations of rehabilitation pro-
grams tend to assess impact in terms of whether the convict returns to crime. Consequently,
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success is considered solely as reducing the proportion of recidivists. However, from the
social cost perspective, a program can be very effective if it results in the recidivism of an
individual every three years instead of annually. The costs associated with processing and
imprisonment would decrease by approximately a third (obviously under the supposition
that he/she commit similar crimes and not crimes related to longer sentences).

At the individual level, based on individual characteristics, it is desirable to estimate
the probability of recidivism or rehabilitation and the distribution of the time it takes
recidivists to return to the penal system. This will allow for the more effective use of
rehabilitation resources by selecting prisoners based on objective criteria that will receive
access to rehabilitation programs. Although not without ethical implications, the inclusion
of ex-convicts with high probabilities of recidivating in a determined period among the
suspects of a new crime is possible.

In this paper, we study the use of three of the most common models to approach
modeling recidivism: the logistic binary regression model, the Cox regression model, and
the standard cure rate model. We adopt a Bayesian point of view for the estimation of
the parameters of the three models. We discuss the advantages and disadvantages of
each model and the availability of different statistical software to make these analyses. To
our knowledge, this is the first study comparing the three statistical models to analyze
recidivism data from a Bayesian approach.

For prediction tasks, we use a risk neural network which can learn non-linear rela-
tionships between a set of attributes that characterize a subject and the individual’s risk of
recidivism. This type of non-linear model can deal with non-proportional hazards [2], which
is an advantage over the other models that assume that the effect of predictors on hazard
function is the same over time [3]. Specifically, we use the Cox proportional hazard deep
neural network or DeepSurv [4]. The Cox proportional hazard model (CPH) and random
survival forest (RSF) were used to compare the results with the DeepSurv predictions.

The rest of the article is organized as follows: Section 2 presents the background
and previous works on recidivism. Section 3 gives a description of the dataset used in
the experiments, the Bayesian statistical models, and the deep neural network approach
for studying recidivism. The results and discussion from the simulations when trying
to explain recidivism and when trying to predict recidivism appear in Section 4. Finally,
Section 5 presents the main conclusions regarding both approaches.

2. Background

Ref. [5] worked with a sample of 1806 prisoners released during the first quarter
of 1970, representing 50% of the prisoners released in this period. The information was
provided by the FBI and included six years of follow-up. The authors discussed the
effect of the definition of recidivism adopted and the length of the follow-up period. They
found that recidivism increases considerably with the length of the follow-up period and
the recidivism criteria adopted (re-arrest, a new conviction, or new imprisonment). If
recidivism is considered a new arrest, the recidivism rate increases from 29% during
the first year to 60.4% in 6 years. If the criteria used for recidivism is a new conviction,
the recidivism rate increases from 15.4% during the first year to 41.7% in 6 years. If the
criterion used is new imprisonment, the rate increases from 8.7% during the first year
to approximately 27.5% in 6 years. The estimation with a new conviction criterion is a
little more than half that with the re-arrest criterion. The estimation with the criterion of
imprisonment is approximately 40%.

Ref. [6] made a detailed description of a cohort of subjects liberated in 11 states in the
United States in 1983 based on a representative sample of more than 1600 individuals. They
estimated that 62.5% were re-arrested during the first three years, 46.8% were convicted,
and 41.4% returned to prison. Ref. [7] conducted a meta-analysis to determine the best
predictors of recidivism in adults. They found that the best predictors were criminogenic
needs; criminal history and/or history of antisocial behavior; and age, gender, race, and
family factors. Less robust predictors were intellectual functioning, factors of personal
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distress, the socioeconomic level of the family of origin, and some dynamic predictors.
Ref. [8] found that 2.5% of chronically criminal males in Philadelphia (with five or more
crimes) were responsible for 51% of the crimes committed. He referred to several investi-
gations that reported similar findings. Several studies have shown that more than 40% of
individuals recidivate in the first two years and over 60% in the first three years [5,6].

Ref. [9] reviewed the variables that have consistently been appreciated in the literature
as predictors of criminal behavior and addressed the usefulness of routinely employing
dynamic risk scales. Ref. [10] made a meta-analysis to identify the factors that best predict
recidivism among sexual criminals. They found a relatively low recidivism rate of 13.4%
but also identified subgroups with a higher probability of recidivating, such as those who
do not complete treatment. The indicators of sexual deviation, such as deviant sexual
preference or previous sexual offences, are the best predictors of recidivism for sexual
crimes. Finally, recidivism predictors for non-sexual crimes are the same as those found
among non-sexual criminals, such as previous violent crimes and age.

Ref. [11] used standard cure rate models with a cohort of 9457 prisoners from North
Carolina released between 1977 and 1978 with a follow-up of between 6 and 7 years. They
found the duration of the prison sentence, age at the time of release, the number of prior
imprisonments, and alcohol abuse influence both the probability of recidivism and the
time when an individual recidivates. Race, sex, and drug abuse influence the probability of
recidivating, but not the time until it occurs. On the other hand, having committed a felony
or a crime against property influences the time until recidivating, but not the probability.
In terms of the evaluation of rehabilitation program, ref. [12] argue that the success of
programs can vary significantly by controlling for the personal variables of the individuals
in these programs.

The study of recidivism has been approached more deeply with different statistical
techniques, notably logistic regression models, survival models, cure rate models, and
competitive risk models. Covariance structure modeling [13] is used to model driving
under the influence of alcohol. Ref. [14] used semi-parametric competing risk models to
study recidivism in 11 states in the USA. They concluded that it is necessary to model
each state separately. They pointed out that standard cure rate models’ success depends
substantially on having long-term follow-ups, given that medium-term follow-ups in the
order of six to seven years present difficulties for estimations. However, ref. [11] could
fit such models without problems. Ref. [15] proposed a Bayesian approach to estimate
parametric cure rate models with covariates.

3. Materials and Methods
3.1. Data Source

The dataset corresponds to a cohort of individuals used by [15,16], which consisted
of men convicted of sexual crimes against women in 1973 in England and Wales. The
sample consisted of 3068 individuals for whom there were records for the previous ten years
(since 1963) and were subject to follow-up until 1994. The data analyzed in this article were
originally presented in the article of [16]. The follow-up in this work is among the longest
found in the literature and offers the possibility of studying how the three models behave in
the long term (21 years), medium term (10 years), and short term (3 years). Recidivism was
considered if a new conviction occurred. Two variables were considered that summarized
the criminal history of the subject: the number of prior convictions for non-sexual crimes
in the previous ten years (NP) and the number of prior convictions for sexual crimes in
the same period (NPS). A dichotomic variable (Av_u16) related to the 1973 conviction is
whether the crime was committed against a victim 16 and over (coded 0) years of age or
under 16 (coded 1). Finally, there is a fourth variable concerning the individual, such as age.

In practice, as is the case in the present study, there is follow-up of the individuals
for a period of time. It is not knowable with any certainty if the individuals that do not
recidivate up to the time when the follow-up ends do so afterwards or if they definitively
do not recidivate. Consequently, the dependent variable Y of the logistic regression models
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is 1 or 0 if the individual recidivates or not, respectively, in a period shorter than or equal
to the length of the study and not simply whether the individual recidivates or not, as is
proposed in the corresponding section. This means that both the logistic regressions and
the periods of time should be fitted.

The present study considers three times for analyzing recidivism and that gives rise
to three logistic regression models: at the end of the study (corresponding to 21 years of
follow-up), at 10 years, and at 3 years.

3.2. Statistical Models

This subsection formally presents the Bayesian statistical models and the deep neural
network predictive model considered in this article.

3.2.1. Logistic Regression Model

The logistic binary regression model [17] is used to model the probability that an
individual i, i = 1, . . . , n, with the characteristics Xi = (Xi1, Xi2, . . . , Xip) recidivates (for
which we use the dichotomous variable Yi = 1 if the individual i recidivates and Yi = 0 if
he/she does not). Logistic regression models are habitually expressed in the form:

pi = P(Yi = 1|Xi) =
exp(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip)

1 + exp(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip)
.

Logistic regression models are popular because they are present in almost all sta-
tistical software. In logistic regression models, we can use different types of predictor
variables Xi—i.e., a mix of continuous and categorical variables. The usual procedure
in statistical software to estimate the parameters is to implement maximum likelihood
through iteration. Finally, there are statistical software that employ estimation methods
with a Bayesian approach [18,19]. As well as the estimated parameters, some software can
provide univariate tests of the significance of coefficients, confidence intervals, and odds
ratios (OR). However, it is essential to note that these models do not incorporate the time
of recidivism and consequently cannot predict this component. At least hypothetically, it is
plausible that individuals who have a greater probability of recidivating take more time
to do so. For example, they are more experienced and, consequently, are more difficult
to catch than individuals with a considerably lower probability of recidivating. If it is
desirable to estimate recidivating probabilities at different time points, it is necessary to
make logistic regressions for each of these periods [20].

Habitually, one predicts that individuals with probabilities of recidivating above 0.5
will recidivate and those with probabilities of less than 0.5 will not. This offers a means to
evaluate the predictive capacity of the model. The research can change the cutoff point of
0.5 and evaluate the models’ predictive capacity for other cutoff values.

3.2.2. Cox Regression Model

Cox regression models are set in the framework of survival models (see [21]). Tra-
ditionally, they have been used in demography and in modeling survival from diseases.
Unlike logistic regression models that only consider modeling the probability of recidivism,
Cox regression models incorporate both the probability of recidivism and the time until
individuals recidivate. More specifically, these models provide that an individual i with
certain characteristics Xi = (Xi1, Xi2, . . . , Xip) will recidivate in time Ti. We treat Ti as a
random variable, taking non-negative values with probability density function f (ti) and
cumulative distribution function F(ti) = P(Ti ≤ ti).

The formulation of the Cox regression model rests upon two fundamental concepts:
the hazard rate function (or risk function), which in the case of recidivism could be termed
the force of recidivism, and the hypothesis of proportional risks. The hazard rate function
is defined as the limit of the probability that an individual i recidivates in an infinitesimal
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time interval immediately at time ti given that the individual has not recidivated until this
time. This is expressed mathematically as:

λ(ti) = lim
∆ti→0

P(ti ≤ Ti < ti + ∆ti|Ti > ti).

The hazard rate function is related to the density f (ti) of the recidivism time Ti and to
the survival function S(ti) = P(Ti > ti) through the expression:

λ(ti) =
f (ti)

S(ti)
.

Thus, the Cox regression model is written for the hazard rate as:

λ(ti) = λ0(ti) exp(β1Xi1 + β2Xi2 + · · ·+ βpXip),

where the function λ0(ti) is known as the base risk and is identical for all individuals.
The second key concept in the Cox regression is the proportional risk hypothesis,

which means that the hazard ratio between any two individuals is constant over time
because upon taking the quotient of the previous expression for two individuals, the term
λ0(ti) is canceled.

3.2.3. Cure Rate Model

A theoretical difficulty with Cox regression models is that if the follow-up is suffi-
ciently long, all the individuals eventually recidivate—i.e., S(∞) = 0—which does not
occur in practice. Cure rate models were introduced to incorporate the fact that an impor-
tant percentage of individuals do not return to crime, i.e., S(∞) 6= 0. They are termed cure
rate models because they began considering that for certain illnesses, there is a part of the
population that is cured, which in the context of recidivism is equivalent to a percentage of
the persons who have committed a crime not recidivating. Let T be the time to recidivism,
then the survival function of the cure rate models can be written as:

S(t) = SR(t)p + (1− p), (1)

where SR(t) is the survival function among those that recidivate (SR(∞) = 0) and 1− p is
the probability of not recidivating. The functions S(t) and SR(t) are improper and proper
cumulative survival functions of T. Observe that if t → ∞, then S(t) → p, that is, the
survival function has an asymptote at the cure rate 1− p. If we consider that there is a set of
variables Xi = (Xi1, Xi2, . . . , Xip) for individual i that explain the time until recidivism and
a set of variables Zi = (Zi1, Zi2, . . . , Ziq) that explain the probability of recidivism, where
the two sets can have variables in common, the survival function (1) can be written as:

S(ti|Xi, Zi) = SR(ti|Xi)p(Zi) + 1− p(Zi). (2)

Habitually, the probability pi = p(Zi) that the individual i recidivates is modelled
using the function logit as a linear combination of predictor variables of recidivism
Zi1, Zi2, . . . , Ziq

logit(pi) = log
(

pi
1− pi

)
= α0 + α1Zi1 + α2Zi2 + · · ·+ αqZiq.

Parametric cure rate models are obtained by simply considering a parametric model
for SR(ti|Xi) in Equation (2) which depends on Xi and associated parameters vector
β = (β0, β1, . . . , βp). The most frequently used parametric models for SR(ti|Xi) are Weibull,
gamma, logistic, lognormal and exponential. Unlike the Cox regression models, in the cure
rate models the hazards are not proportional.
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3.2.4. Assumtions

Following [15], we assume a Weibull distribution for time to recidivism, the cumulative
distribution function of which was parameterized as:

F(ti) = 1− exp(−µitr
i ),

where log(µi)/ log(1.1) was modelled as the linear combination of the predictor variables.
This transformation of µi and indirectly of µi was modeled for two reasons. Firstly, this
transformation ensures that µi is positive, and secondly it avoids numerical problems.
Under this distribution, the survival function of the cure rate model is expressed as:

S(ti|Xi, Zi) = 1− p(z′iα) + p(z′iα) exp(1.1x′i βtr
i ),

where β and α are the vectors of parameters to estimate, which are the coefficients of
the aforementioned predictor variables in the data. These variables are considered in the
probability and temporal components, respectively. r is a scalar to estimate the form of
distribution of the recidivism times. If r is equal to 1, the Weibull distribution reduces to an
exponential distribution.

3.3. Bayesian Analysis

In general, statistical inference is the process of data analysis to deduce properties
of a population from a sampled data of that population. According to [22], the Bayesian
paradigm is based on specifying a probability model for the observed data D, given a vector
of unknown parameters θ and provides a rational method for updating the new information
using the Bayes’ rule and prior distributions for the uncertainty about θ. The Bayesian
paradigm is the process of fitting a probability model to a set of data and summarizing
the result by a probability distribution, called posterior distribution, on the parameters
of the model and unobserved quantities such as predictions for new observations. In R
the Bayesian logistic regression models can be fitted using the MCMCpack package [23]. The
Bayesian Cox regression models can be fitted using the BMA (Bayesian Model Averaging)
package [24]. The cure rate model was fitted using the rjags package [25] (This work
does not seek to promote any software program at the cost of others. Each program has
been designed to meet user needs, and the choice depends on the user’s level (basic,
intermediate, or advanced) in statistics and the application).

3.4. Predictive Models: Deep Neural Networks and Random Survival Forest

Unlike a parsimonious explanatory model, supported by theoretical arguments, pre-
dictive models have as their ultimate goal the correct prediction of (in our case) the risk of
unseen instances. Flexible models, such as neural networks, have the potential to discover
unanticipated features that are missed by conventional statistical models. New methods
for time-to-event prediction are proposed by extending the Cox proportional hazards
model with neural networks. The extension of Cox regression with neural networks was
first proposed by [26], who replaced the linear predictor of the Cox regression model
g(xi) = x′i β = β1Xi1 + β2Xi2 + · · ·+ βpXip by a one hidden layer multilayer perceptron
(MLP). It was, however, found that the model generally failed to outperform regular Cox
models [27,28]. Ref. [4] revisited these models in the framework of deep learning and
showed that novel networks were able to outperform classical Cox regression models in
terms of the C-index (also known as the concordance index) [29] . DeepSurv [4] is a deep
feed-forward neural network in which the objective function is the average negative of
the log Cox partial likelihood with a regularization parameter that prevents overfitting.
In this way, the neural network is trained considering the time-to-event data and not as
a binary prediction. The input layer to the network corresponds to the data attributes
of the subject. The output layer corresponds to a simple node that carries out the linear
combination of features from the hidden layers. The output corresponds to a prediction of
the log-risk function. On the other hand, ref. [30] computes a random forest [31] using the
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log-rank test as the splitting criterion. It computes the cumulative hazards of the leaf nodes
and averages them over the ensemble. Hence, random survival forest is a very flexible
continuous-time method that is not constrained by the proportionality assumption.

4. Results and Discussion
4.1. Statistical Models

The average age of the individuals in 1973 was 29.5 years. A total of 14.6% were under
the age of 16 in 1973, 35.4% were between 16 and 25 years of age, and 28.2% were over 35.
A total of 59.1% of the individuals had no prior convictions, while 5% had more than five
prior convictions. Some 29.7% had committed a sexual crime against a minor. 51.9% were
subsequently repeated offenders. Of these, 27.2% committed the same type of offense of a
sexual nature.

The logistic regression model for final recidivism (at 21 years) leads to the conclusion
that the number of prior sexual crimes is not related to long-term recidivism (βNPS = 0.14,
the credibility interval at 95% contains zero). In contrast, the other three variables are
related to recidivism (the credibility interval at 95% for none of the variables contains zero).
The greater the number of prior non-sexual criminal convictions, the higher the probability
that the individual recidivates (βNP = 0.53). If the crime in 1973 was against a person
under 16 years of age, the probability of recidivating was higher (βAv_uv16 = 0.31), and the
probability of recidivating tends to decrease with age (βage = −0.04). Recidivism at 10 and
3 years has the same pattern.

Four variables were significant with the Cox regression model: if the crimes committed
by the individuals in 1973 were against persons under 16 years of age, the individuals
tend to recidivate more rapidly. Higher rates of recidivism are observed among those that
committed crimes against persons under the age of 16, as can be seen in Figure 1, in which
the time axis is divided into four-year periods.
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The results of the cure rate model give an estimated value of the parameter r of the
Weibull distribution of 0.87, with a credibility interval at 95% of (0.83; 0.9), indicating
that the time distribution is not exponential. This translates into decreasing rather than
constant risks. The estimations of the probability and temporal components of the cure
rate model can be found in Table 1. It can be noted that the coefficient for the variable
number of prior sexual crimes (NPS) has a credibility interval that contains zero, because
of which we conclude that it does not contribute to explaining the probability of recidivism.
The other variables show the same relationship as in the logistic regression: the number
of prior non-sexual crimes increases the probability of recidivism, having committed the
crime against a person under the age of 16 increases the probability of recidivism while
being older decreases the probability of recidivism. The temporal component of the cure
rate model only applies to those who repeat offences, because of which neither the number
of prior sexual offences nor whether the victim was 16 and over or under 16 years of age in
1973 influences the risk of recidivism, given that both credibility intervals contain zero. In
contrast, the risk of recidivism increases with the number of prior non-sexual crimes and
decreases as age increases.

Table 1. Estimation of the probability and temporal components of recidivism in the cure rate model.

Variable Parameter 95% Credible Interval

Probability of Recidivism

Intercept 0.573 0.357 0.794
NP 0.532 0.459 0.611
NPS 0.167 −0.064 0.416
AGE −0.405 −0.466 −0.344
Av_u16 0.314 0.135 0.493

Temporal

Intercept 0.665 −1.079 2.434
NP 1.097 0.867 1.318
NPS −0.786 −1.842 0.147
AGE −1.614 −2.251 −1.015
Av_u16 0.061 −1.189 1.345

We present the global and by-group probabilities of recidivism in Table 2 at the end
of the study and at three and ten years for the three models discussed in this article. The
results are very similar.

It can be appreciated that 51.9% of the subjects had recidivated by the end of the
follow-up. The logistic regression model gives the most approximate value of 52%, while
the Cox regression model underestimated the rate by four percentage points and the cure
rate model overestimated it by 0.7%. For the estimations of recidivism at ten years, which
was 47.5%, the logistic and Cox regression models gave the best estimations, while the cure
rate model overestimated the rate by 0.6%. At three years, the logistic and Cox regression
models’ estimations were identical, but the cure rate model overestimated recidivism
by 1.7%.

The real prevalence of recidivism at ten years was 33.1% among those who did not
have prior convictions for sexual crimes. The three models over-estimated this value. The
logistic regression is the closest with 2.8% of difference, followed by the cure rate model
with 3.7% of difference and the Cox regression model with the largest difference with 6.9%.
The recidivism rate for the group with five prior convictions for non-sexual crimes was
much higher, at 89.9%, which was under-estimated by the three models. The cure rate
model was the closest with 3.7% of difference, followed closely by the logistic regression
model with 3.9% of difference, and finally, the Cox regression model over-estimated by
15.5%. The recidivism rate for the group of subjects without prior sexual crimes was 45.4%.
The three models over-estimated by almost the same degree, the Cox regression model by
1.9%, the logistic regression model by 2%, and the cure rate model by 2.5%. The group’s
recidivism rate with a prior conviction for a sexual crime was 66% at ten years. The cure



Mathematics 2021, 9, 639 9 of 14

rate model gave the best estimation with 0.5% over-estimation, while the logistic regression
model over-estimated by 2.6% the Cox regression model over-estimated by double that at
5.3% of difference. For individuals under 25 years of age, the recidivism rate at ten years
of follow-up was 59.1%. The closest value was that of the Cox regression model, which
underestimated by 0.2%, followed the cure rate model closely with an underestimation of
0.4%, while the logistic regression model overestimated by 1.8%. The recidivism rate of
individuals over 35 years of age was almost half that of individuals under 25, the youngest
group. The three models underestimated the real value of 29.5% to similar degrees, 1.6%,
1.9%, and 2.3% by the logistic regression, cure rate, and Cox regression models. The
recidivism rate at three years of the group without prior convictions for sexual crimes was
21.4%, which was overestimated by the three models. The closest was the cure rate model,
with a difference of 1.1%, followed by the logistic regression model with 3.4% and the Cox
regression model with 5%. Among subjects with prior convictions for non-sexual offences,
the recidivism rate was 59.4% at three years. The Cox regression model underestimated this
rate by 2.1% and the logistic regression and cure rate models by 3.8% and 4.2%, respectively.
Among those who did not have prior non-sexual offences, 31.9% had recidivated at three
years. The estimation of the cure rate model was 31.8%, while the Cox regression model
overestimated by 1% and the logistic regression model by 1.4%. Some 46.7% of individuals
with prior convictions for a sexual crime recidivated at three years. The three models
underestimated the rate, the Cox regression model by 1.2%, the logistic regression model
by 1.3%, and the cure rate model by 2.1%. Finally, the recidivism rate at three years among
the youngest group, those under 25 years of age, was 44.1%, which was under-estimated
by the three models. The closest is the logistic regression model with a difference of 2%,
followed by the Cox regression model with a difference of 2.3%, while the cure rate model
underestimated it by 4.3%. Recidivism at three years among those over 35 years of age was
17.8%. The Cox regression model gave an estimate of 17.7%, the logistic regression model
with 1.9% less than the cure rate model underestimated it by 1.6%.

Table 2. Percentages of global and by-group recidivism for the logistic regression, Cox, and Cure rate
models at 3 and 10 years.

Real Logistic Cox Regression Cure Rate
Regression Model Model (Weibull)

Recidivism general 51.9 52 47.8 52.6
Recidivism at 10 years 47.5 47.3 47.7 48.1
Recidivism at 3 years 33.4 33.3 33.3 31.7

Recidivism by groups
at 10 years

NP = 0 33.1 35.9 40 36.8
NP = 5 89.9 86 74.4 86.2
NPS = 0 45.4 47.4 47.3 47.9
NPS > 0 66 63.4 60.7 66.5
AGE < 25 59.1 57.3 58.9 58.7
AGE > 35 29.5 27.9 27.2 27.6

Recidivism by groups
at 3 years

NP = 0 21.4 24.8 26.4 22.5
NP = 5 59.4 63.2 57.3 63.6
NPS = 0 31.9 33.3 32.9 31.8
NPS > 0 46.7 45.4 45.5 44.6
AGE < 25 44.1 42.1 41.8 39.8
AGE > 35 17.8 16.9 17.7 16.2



Mathematics 2021, 9, 639 10 of 14

4.2. Prediction Models

In this section, we show non-linear survival methods’ ability to carry out recidivism
predictions given the set of attributes of an individual. Unlike traditional methods like the
linear Cox proportional hazards model, non-linear models can deal with high interaction
terms. Therefore, they can offer interesting performances for prediction activities.

For DeepSurv training and predictions, the Python (version 3.7, Python Software
Foundation, https://www.python.org/ accessed on 23 January 2021) module of the same
name was used. CPH and RSF training and predictions were carried out with the modules
in Python lifelines and RandomForestClassifier, respectively.

The variables NP (number of previous nonsexual convictions in the past ten years),
NPS (number of previous sexual convictions in the past ten years), AGE (age of offender)
the and Av_u16 (if the aged victim was under 16 years old) were used as predictors. The
dataset with 3068 instances was divided into a disjointed set of training (80%) and testing
(20%), the latter to estimate the models’ performance. The process of dividing the sample
in this way was carried out 100 different times so that 100 different models were estimated
for DeepSurv, CPH, and RSF.

The continuous input variables to the neural network were previously standardized
(NP, NPS, and AGE). As an optimal activation layer, the ReLU was chosen (Nair and Hinton,
2010). The hyper-parameters of the network—number of hidden layers, number of nodes
on each layer, batch size, drop-rate, and learning rate—were determined on a grid search
for different values of each parameter and choosing the one that grants the maximum
performance measured in the concordance index. Adding more than four hidden layers to
the neural network did not show improvements in predictive performance, so it was left in
4 layers with 256 nodes in each. To prevent overfitting, the dropout probability between
hidden layers was 10% [32], with a learning rate of 0.004, batch size of 256, and an Adam
optimizer used for model training.

The performance measure used to evaluate and compare the three models was the
concordance index, which measures the agreement between the predicted risks and actual
survival [29]. This measure is calculated for the training and testing datasets, both of
which are mutually exclusive in each of the simulations. The concordance index is used
as a performance measure for the prediction of survivorship. It has the advantage of not
depending on a simple fixed time measure for evaluation and also considers the censoring
nature of the dataset [3].

Table 3 shows the concordance index results over the 100 simulations in each of the
three models. The results show that DeepSurv is superior to CPH and RSF in both the
training and test sets. This result can be considered as a sign that DeepSurv correctly learns
the non-linear relationships between the covariates of repeaters and their log-risk [4]. The
performance between CPH and RSF performance is very similar, at least in the test set.
Even these results are consistent with different simulations of 100 runs.

Table 3. Results of the concordance index (95% confidence interval) for all experiments.

Model Train Set Test Set

CPH 0.696 (0.690, 0.701) 0.693 (0.669, 0.716)
RSF 0.749 (0.745, 0.754) 0.687 (0.665, 0.708)
DeepSurv 0.800 (0.793, 0.806) 0.789 (0.774, 0.800)

To complement the result of the predictions with the neural network, Figure 2 shows
the offenders’ recidivism probabilities at certain moments. As indicated before, for a given
set of attributes, DeepSurv delivers a predicted log-risk score, which is used to lead to
an estimate of the survival function S(t|X). Thus, the offender recidivism probability will
be 1− S(t|X). After neural network training, we select four-time instants (T = 100 days,
T = 2.7, T = 11, and T = 19 years) and a particular value of attributes. For example, we
see that recidivism probabilities have very different behavior, depending on whether the

https://www.python.org/
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victims of the offences are older than 16 years old versus when they are younger or equal
to that age. It is clear that these probabilities are very low when the victim was over 16, but
with younger victims, the probability is higher than 0.5 after 2.7 years. Different behavior
is also observed according to the number of previous convictions. For example, in extreme
cases when the number of previous convictions was one for each type of conviction (one
nonsexual and one sexual conviction in the past ten years), we see that as the age of the
offender increases, the probability of recidivism decreases slightly when the victim was
under or equal to 16 years of age, but not when she is over 16 years of age. These examples
show the usefulness of this type of model from which it is possible to answer questions in
the style of what if and eventually take preventive measures.

Figure 2. DeepSurv predictions of recidivism probability in different periods, for different ages and
previous convictions.
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5. Conclusions

Among the statistical explaining models, we can conclude that there is no predom-
inance of one model as better than the others in any of these situations. In the original
work [16], a more complex group of models is fitted, which we referred to above as com-
petitive risk models, which are an extension of the cure rate models presented in this
workwhen it is of interest to model specific recidivism rates—that is, the recidivism rate for
a type of crime.

We have applied the Weibull distribution, the distribution function of which has an
explicit form. This is not always the case. When the distribution function of the time until
recidivating is not closed, there is difficulty in fitting these models from the Bayesian point
of view. This is the case if the distribution is gamma or lognormal. We also implemented
some of these models using JAGS, which will be the focus of future works.

In previous studies with a completely different data domain (e.g., cancer preven-
tion [33] and biomedical applications [2,34]), it has been found that neural networks, and,
in particular, the multilayer perceptron, have been superior in performing predictive ac-
tivities in survival analysis. In this work, the results did not differ much. Our results
are in the same line as those of [35], in which they showed the predictive superiority of
neuronal networks over logistic regression models in the problem of prediction of crim-
inal recidivism. Deep learning applied to recidivism data proves to be superior to the
linear Cox proportional hazards model and even better than random survival forests. This
highlights the versatility of deep neural networks to deal with different data domains in
survival analysis.

We believe that there is potential for this type of tool to be a valid option for crime and
recidivism prevention. The development of risk assessment scales to determine risk groups
can help us make decisions regarding the prevention of criminal behavior recidivism [36].
In this case, the neural network can continuously assess risk in the light of new information
for a given instance. In this sense, a new and updated database of recidivism activities
could regularly feed these models, which could benefit not only society but also those at
high risk of committing a crime.

While the learning machines such as DeepSurv used in this study perform acceptably
in prediction activities, it is also true that these types of models become more opaque or
less transparent compared to statistical models where there is greater clarity in how the
predictors relate to the output. As seen in this work, the evaluation of recidivism analysis
is more transparent in classical models for censored data.

In line with the above, it would now be advisable for interpretability purposes, [37] to
perform the constant revision and estimation of statistical models that allow the analyst,
together with well-performing predictive models, to have the cross-validation of models,
especially for applications in which it is necessary to carry out diagnostics and evaluate
risk scales.

Author Contributions: Conceptualization, R.d.l.C., O.P., M.A.V. and G.A.R.; methodology, R.d.l.C.,
O.P., M.A.V. and G.A.R.; software, R.d.l.C., O.P. and M.A.V.; validation, R.d.l.C. and M.A.V.; formal
analysis, R.d.l.C., O.P., M.A.V. and G.A.R.; investigation, R.d.l.C., O.P., M.A.V. and G.A.R.; resources,
R.d.l.C. and G.A.R.; data curation, R.d.l.C.; writing—original draft preparation, R.d.l.C., O.P. and
M.A.V.; writing—review and editing, R.d.l.C., M.A.V. and G.A.R.; visualization, R.d.l.C. and M.A.V.;
supervision, R.d.l.C. and G.A.R.; project administration, R.d.l.C.; funding acquisition, R.d.l.C. and
G.A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by ANID FONDECYT grant number 1181662, and ANID
FONDECYT grant number 1180706.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



Mathematics 2021, 9, 639 13 of 14

Acknowledgments: The authors are grateful to Gabriel Escarela for providing the dataset used in
the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ross, S.; Guarnieri, T. Recidivism Rates in a Custodial Population: The Influence of Criminal History, Offence & Gender Factors.

Available online: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.421.3985&rank=1 (accessed on 11 November 2020).
2. Gensheimer, M.F.; Narasimhan, B. A scalable discrete-time survival model for neural networks. PeerJ 2019, 7, e6257. [CrossRef]

[PubMed]
3. Kim, D.W.; Lee, S.; Kwon, S.; Nam, W.; Cha, I.H.; Kim, H.J. Deep learning-based survival prediction of oral cancer patients.

Sci. Rep. 2019, 9, 1–10. [CrossRef]
4. Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system

using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2008, 18, 24. [CrossRef] [PubMed]
5. Hoffman, P.B.; Stone-Meierhoefer, B. Reporting recidivism rates: The criterion and follow-up issues. J. Crim. Justice 1980, 8, 53–60.

[CrossRef]
6. Beck, A.J.; Shipley, B.E. Recidivism of Prisoners Released in 1983. Available online: https://www.bjs.gov/content/pub/pdf/rpr8

3.pdf (accessed on 17 June 2020).
7. Gendreau, P.; Little, T.; Goggin, C. A Meta-analysis of the predictors of adult offender recidivism: What works! Criminology 1996,

34, 575–608. [CrossRef]
8. Piquero, A.R. Assessing the relationships between gender, chronicity, seriousness, and offense skewness in criminal offending.

J. Crim. Justice 2000, 28, 103–115. [CrossRef]
9. Andrews, D.A. Recidivism is predictable and can be influenced: Using risk assessment to reduce recidivism. IARCA 1989, 1,

11–17.
10. Hanson, R.K.; Bussiere, M.T. Predicting relapse: A meta-analysis of sexual offender recidivism studies. J. Consult. Clin. Psychol.

1998, 66, 348–362. [CrossRef]
11. Schmidt, P.; Dryden, W.A. Predicting Criminal Recidivism using ‘Split Population’ Survival Time Models. J. Econom. 1989, 40,

141–159. [CrossRef]
12. Barton, R.R.; Turnbull, B.W. A failure rate regression model for the study of recidivism. In Models in Quantitative Criminology;

Fox, J.A., Ed.; Academic Press: New York, NY, USA, 1981.
13. Schell, T.L.; Chan, K.S.; Morral, A.R. Predicting DUI recidivism: Personality, attitudinal, and behavioral risk factors. Drug Alcohol

Depend. 2006, 82, 33–40. [CrossRef]
14. Bierens, H.J.; Carvalho, J.R. Semi-Nonparametric Competing Risks Analysis of Recidivism. J. Appl. Econ. 2007, 22, 971–993.

[CrossRef]
15. Padilla, O.; De la Cruz, R. Bayesian split-population models for estimating recidivism. Chil. J. Stat. 2021, in press.
16. Escarela, G.; Francis, B.; Soothill, K. Competing Risks, Persistence, and Desistance in Analyzing Recidivism. J. Quant. Criminol.

2000, 16, 385–414. [CrossRef]
17. Hosmer, D.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000.
18. Marshall, G.; Shroyer, A.L.W.; Grover, F.L.; Hammermeister, K.E. Bayesian-logit model for risk assessment in coronary artery

bypass grafting. Ann. Thorac. Surg. 1994, 57, 1492–1500. [CrossRef]
19. Ntzoufras, I. Bayesian Modeling Using Winbugs, 1st ed.; John Wiley & Sons: New York, NY, USA, 2011.
20. Congdon, P. Applied Bayesian Modelling, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2014.
21. Maller, R.; Zhou, X.S. Survival Analysis with Long—Term Survivors; John Wiley & Sons: New York, NY, USA, 1996.
22. Ibrahim, J.G.; Chen, M.H.; Sinha, D. Bayesian Survival Analysis; Springer: New York, NY, USA, 2005.
23. Martin, A.; Kevin, M.; Quinn, K.; Hee-Park, J. Markov Chain Monte Carlo in R. J. Stat. Softw. 2011, 42, 1–22. [CrossRef]
24. Raftery, A.; Hoeting, J.; Volinsky, C.; Painter, I.; Yee Yeung, K. BMA: Package for Bayesian Model Averaging and Variable

Selection for Linear Models, Generalized Linear Models and Survival Models. R Package Version 3.18.14. Available online:
https://cran.r-project.org/web/packages/BMA/BMA.pdf (accessed on 23 January 2021).

25. Plummer, M. rjags: Bayesian Graphical Models Using MCMC. R Package Version 3-10. Available online: https://cran.r-project.
org/web/packages/rjags/rjags.pdf (accessed on 23 January 2021).

26. Faraggi, D.; Simon, R. A neural network model for survival data. Stat. Med. 1995, 14, 73–82. [CrossRef]
27. Xiang, A.; Lapuerta, P.; Ryutov, A.; Buckley, J.; Azen, S. Comparison of the performance of neural network methods and Cox

regression for censored survival data. Comput. Stat. Data Anal. 2001, 34, 243–257. [CrossRef]
28. Sargent, D.J. Comparison of artificial neural networks with other statistical approaches. Cancer 2001, 91, 1636–1642. [CrossRef]
29. Harrell, F.E.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546.

[CrossRef]
30. Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [CrossRef]
31. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
32. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2018, 15, 1929–1958.

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.421.3985&rank=1
http://doi.org/10.7717/peerj.6257
http://www.ncbi.nlm.nih.gov/pubmed/30701130
http://doi.org/10.1038/s41598-019-43372-7
http://doi.org/10.1186/s12874-018-0482-1
http://www.ncbi.nlm.nih.gov/pubmed/29482517
http://doi.org/10.1016/0047-2352(80)90059-8
https://www.bjs.gov/content/pub/pdf/rpr83.pdf
https://www.bjs.gov/content/pub/pdf/rpr83.pdf
http://doi.org/10.1111/j.1745-9125.1996.tb01220.x
http://doi.org/10.1016/S0047-2352(99)00040-9
http://doi.org/10.1037/0022-006X.66.2.348
http://doi.org/10.1016/0304-4076(89)90034-1
http://doi.org/10.1016/j.drugalcdep.2005.08.006
http://doi.org/10.1002/jae.960
http://doi.org/10.1023/A:1007586031274
http://doi.org/10.1016/0003-4975(94)90107-4
http://doi.org/10.18637/jss.v042.i09
https://cran.r-project.org/web/packages/BMA/BMA.pdf
https://cran.r-project.org/web/packages/rjags/rjags.pdf
https://cran.r-project.org/web/packages/rjags/rjags.pdf
http://doi.org/10.1002/sim.4780140108
http://doi.org/10.1016/S0167-9473(99)00098-5
http://doi.org/10.1002/1097-0142(20010415)91:8+&lt;1636::AID-CNCR1176&gt;3.0.CO;2-D
http://doi.org/10.1001/jama.1982.03320430047030
http://doi.org/10.1214/08-AOAS169
http://doi.org/10.1023/A:1010933404324


Mathematics 2021, 9, 639 14 of 14

33. Huang, Z.; Johnson, T.S.; Han, Z.; Helm, B.; Cao, S.; Zhang, C.; Salama, P.; Rizkalla, M.; Yu, C.Y.; Cheng, J.; et al. Deep
learning-based cancer survival prognosis from RNA-seq data: Approaches and evaluations. BMC Med. Genom. 2020, 13, 41.
[CrossRef] [PubMed]

34. Street, W.N. A Neural Network Model for Prognostic Prediction. In Proceedings of the International Conference on Machine
Learning (ICML), Madison, WI, USA, 24–27 July 1998; pp. 540–546.

35. Palocsay, S.W.; Wang, P.; Brookshire, R.G. Predicting criminal recidivism using neural networks. Socio-Econ. Plan. Sci. 2000, 34,
271–284. [CrossRef]

36. Tollenaar, N.; Van Der Heijden, P.G. Optimizing predictive performance of criminal recidivism models using registration data
with binary and survival outcome. PLoS ONE 2019, 14, e0213245. [CrossRef] [PubMed]

37. Freitas, A.A. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newsl. 2014, 15, 1–10. [CrossRef]

http://doi.org/10.1186/s12920-020-0686-1
http://www.ncbi.nlm.nih.gov/pubmed/32241264
http://doi.org/10.1016/S0038-0121(00)00003-3
http://doi.org/10.1371/journal.pone.0213245
http://www.ncbi.nlm.nih.gov/pubmed/30849094
http://doi.org/10.1145/2594473.2594475

	Introduction
	Background
	Materials and Methods
	Data Source
	Statistical Models
	Logistic Regression Model
	Cox Regression Model
	Cure Rate Model
	Assumtions

	Bayesian Analysis
	Predictive Models: Deep Neural Networks and Random Survival Forest

	Results and Discussion
	Statistical Models
	Prediction Models

	Conclusions
	References

