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Abstract: This study is the first to consider a distribution-free approach in a newsvendor model
with a transfer of risk and back-ordering. Previously, in many articles, discrete demand is consid-
ered. In this model, we consider a newsvendor selling a single seasonal item with price-dependent
stochastic demand. Competition in markets has forced the retailer and manufacturer to coordinate
in decentralized supply chain management. A coordination contract is made between a retailer and
manufacturer to overcome the randomness of demand for a short-life-cycle product. The retailer pays
an additional amount per product to transfer the risk of unsold items. The manufacturer bears the cost
of unsold products from the retailer. Shortages are allowed with back-ordering costs during the season.
The distribution-free model is developed and solved with only available demand data of mean and
standard deviation. Stackelberg’s game approach is used to calculate the optimal ordering quality
and price. This model aims to maximize expected profit by optimizing unit selling price and ordered
quantity through coordination. To illustrate that the model is robust, numerical experiment and
sensitivity analyses are conducted for both decentralized and centralized supply chain management.
For applicability of the model in the real-world business scenario, managerial insights are provided
with sensitivity analysis.

Keywords: newsvendor; shortages; transfer of risk; distribution-free approach; Stackelberg game
approach; stochastic-price-dependent demand

1. Introduction

Recent advances in technology have accelerated product development. As soon as
a new product comes to the market, the old product becomes obsolete. The newsvendor
model is most suitable to deal with such short-life products. The newsvendor model has
various applications in the volatile product market (Khouja [1]; Dai and Meng [2]). These
applications include, but are not limited to, mobile phones, personal computers, toys,
books, electronic items, fashion apparel, fast-moving consumer goods, and other perishable
products. Application of the newsvendor model also lies in healthcare financing schemes
and insurance policies (Rosenfield [3]; Eeckhoudt et al. [4]). In most newsvendor models,
price is assumed as constant. However, in reality, the price fluctuates with the demand.

In the present business scenario, the firms are facing volatile demand. The demand
uncertainty sometimes causes loss in sales or extra quantity has to be salvaged. The inventory
manager has to place the order before the selling season starts with a single opportunity and
no additional replenishment opportunity in the season. The product he is dealing with is of
a nature that becomes obsolete rapidly. The situation may become difficult for the retailer
in the case of a special promotion. He faces the problem of overstocking or understocking.
In the first scenario, he has to salvage the remaining stock or pay the holding cost. In the
second scenario, he may lose potential profit by not satisfying customer demand.
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In this paper, a real option contract is introduced to the newsvendor model for supply
chain expected profit maximization. We have developed a coordination policy to enhance
the performance of the decentralized supply chain. The retailer pays the contract fee per
product to reduce the risk associated with the product being salvaged. The risk of product
obsoleteness is transferred to the manufacturer in the form of salvage value. If excess de-
mand occurs, the product can be back-ordered with a back-ordering price. The manufacturer
earns more profit from the contract price; however, he may lose profit as salvage value.
The newsvendor places the order based on historical data that possesses a high variance in
demand. By introducing the real option contract, variance in the order could be reduced for
the retailer, whereas in the traditional newsvendor model, all the risk is borne by the retailer.

Initially, quantity is purchased at a regular wholesale price in the newsvendor model.
If the ordered quantity is less than the realized demand, then the remaining items are
purchased with the emergency back-ordering price. The emergency back-ordering price is
usually high, depending on the different plans offered in this model. If observed demand
during the season is lower than the ordered quantity, then remaining items are salvaged
at a lower price compared with the regular price. For essential commodities, shortages
may have a severe impact on supply chain management. The reasons behind shortages
may be the unavailability of raw material or other issues that interrupt the production
process. Due to shortages, the company may face a loss of demand that will reduce the
market share. After demand realization, newsvendor faces penalties in case of shortages.

This paper fulfills the research gap within the transfer of risk model in a supply chain
where in almost all existing literature, the transfer of risk model is studied with specific
demand distribution. Estimating the probability distribution of demand is difficult and
costly because it requires all the actual demand data within a specific time frame with
exact means and standard deviations. In order to overcome the difficulty in collecting
data and saving funds, this study does not consider any specific probability distribution of
demand. The distribution-free (DF) approach is utilized to solve the model with only the
mean and variance of demand. Price-dependent stochastic demand is considered, where
the objective is to maximize the profit, which has to be achieved by optimizing price and
ordered quantity. The supply chain model is analyzed as a centralized and a decentralized
entity. Furthermore, we apply the Stackelberg game approach in the decentralized supply
chain, where the manufacturer and the retailer are considered two players. Two cases
are assumed for the Stackelberg game. In the first case, the manufacturer is a Stackelberg
leader and the retailer is a follower. In the second case, the retailer acts as a leader and the
manufacturer as a follower.

2. Literature Review

The newsboy problem started by the economist Edgeworth [5], he applied the model
to the variant bank cash-flow problem. However, there was slow progress before the article
of Arrow et al. [6]. The newsvendor model gained much attention after the two best review
papers in the field were presented by Petruzzi and Dada [7] and Khouja [1]. Khouja’s [1]
paper classifies the Newsvendor problem and outlined the contribution of the previous
papers. Sarkar et al. [8] applied the DF approach for developing the consignment policy
in a newsvendor model. He also suggested future extensions of the problem in various
directions. He and Wang [9] studied vendor/buyer decision making in the newsvendor
model within an uncertain unit profit environment and found that the consumer inventory
decisions are enhanced by demand uncertainty. Sana [10] dealt with green and nongreen
products in the newsvendor scenario where demand was subjected to selling price, amount
of carbon emissions, and corporate social responsibility.

Demand distribution pattern estimation is a challenging and time-consuming job for
manufacturers under uncertain environments before the selling season starts. Demand un-
certainty is the toughest thing to deal with in the newsvendor model. Specific probability
distributions are considered (e.g., uniform or normal) in many models. Huge funds are
invested into demand probability distribution calculation. To save time and money, the DF
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approach is a suitable method. Scarf [11] first introduced the DF approach. To solve the
newsboy model with Scarf’s procedure, only the mean and variance of the demand are re-
quired. Furthermore, he showed that the worst demand distribution is positive in two points.
However, the Scarf model was hard to understand for managers. Gallego and Moon [12]
came up with a simplified approach to solve the model compared to Scarf’s [11] compact
rule. The DF approach is used when the demand pattern does not follow any particular
demand distribution. Sarkar et al. [8] utilized a DF approach in a newsvendor model by
using the consignment contract for the retailer cost reduction. The multilocation newsvendor
network was studied by Govindarajan et al. [13] utilizing the DF approach. This is the first
paper to study the transfer of risk by applying the DF approach with back-orders.

In many cases, demand data is not available to the manager and is gained through
a sequence of operations. There is immense literature for such instances with partial in-
formation where operational efficiency, market parameters, or demand are considered as
exogenous while minimizing the expected cost. Moon and Choi [14] applied the DF ap-
proach to the continuous inventory problem with a service level constraint. Liao et al. [15]
developed a newsvendor model with a lost sales penalty and balking with the DF procedure.
Raza [16] studied the newsvendor model from a pricing perspective with a DF approach.
Furthermore, he extends the model to holding and shortage cases. Sarkar et al. [17] further
extend Moon and Choi’s [14] model with quality improvement and setup cost reduction.
Moon et al. [18] compared the normal distribution and DF approach within four scenarios
with only available mean and variance of demand data. These scenarios were multiple
discounts, multiple upgrades, multiple discounts and upgrades, and the final extension is
capacity and budget constraint. Castellano et al. [19] applied the DF approach to the single-
vendor multibuyer integrated inventory model lead time is considered controllable in their
model with a back-order lost sales mixture. They adopted a periodic review policy and de-
rived the long-run expected cost per unit time with stock-out costs. Govindarajan et al. [13]
studied a multilocation networking newsvendor problem with a DF approach.

It is assumed in the traditional newsboy model that the entire unsatisfied customer
demand is lost during the selling season. However, some unsatisfied customers wait for
the replenishments, while other customers are lost. In this model, the customers willing to
wait are satisfied with back-orders. An additional profit is gained by the newsvendor while
satisfying the excess demand of the customer otherwise lost. Therefore, the newsvendor in
inventory stock-out situations always encourage the customer to accept the back-orders.
Guchhait et al. [20] investigated optimum distance between two radio frequency identifi-
cation readers in a vendor-managed inventory to optimize the profit of unreliable supply
chain management. The Loss-averse newsvendor model was developed by Xu et al. [21]
with back-ordering. Expected utility was maximized with the optimal ordering quantity
calculation to overcome the risk occurring from fluctuations in the market; demand condi-
tional value at risk was also introduced in their model. Khan et al. [22] implied a service
level constraint to meet the shortages. The impact of random defective rate is studied by
Sarkar et al. [23] in an imperfect production system with multiple products. They consider
a planned back-order for a single-stage production system. Taleizadeh et al. [24] developed
the vendor-managed inventory system and discussed the replenishment policies and lost
sales with back-ordering.

Kouvelis and Zhao [25] analyzed a newsvendor problem with the price-only contract,
where bankruptcy cost exists under the Stackelberg approach. Ghosh and Shah [26] devel-
oped a model considering product greening in an apparel supply chain with Stackelberg
and Nash game-theoretic approaches. They show the impact of greening level, price, and
profit influenced by the supply chain structure. A DF procedure is implied in a newsven-
dor model by Sarkar et al. [8] with consignment policy and retailer’s royalty reduction,
under the Stackelberg gaming approach. Khan et al. [22] constructed a supply chain model
where they used the Stackelberg approach in a decentralized supply chain. They com-
pared the centralized and decentralized supply chain policy effect on the expected total
cost. Guchhait et al. [27] used the DF approach in a dual-channel supply chain model to



Mathematics 2021, 9, 638 4 of 20

control product quality, and a buyback contract is used to reduce lost sales. The model is
analyzed in a centralized way, and the Stackelberg approach is utilized in a decentralized
supply chain. Hovelaque et al. [28] used the Stackelberg game-theoretic approach to study
the working capital impact on retailer borrowing decision in a noncooperative game with
price-sensitive demand. Their analysis was dependent on a model with a retailer, a supplier,
and a bank. They calculated the ordered quantity, the wholesale price, and the interest
rate. Wu et al. [29] presents a model with a risk-averse retailer and a supplier who offers a
loss-sharing and trade credit under the supplier Stackelberg game. The decision variables in
their model are the order quantity and loss sharing. Furthermore, a comparison is performed
without loss sharing and trade credit. Stackelberg’s game-theoretic approach is implied
in Yadav et al. [30], considering a two-level supply chain with imperfect quality items and
shortages. Fan et al. [31] studied the application of an option contract with the Stackelberg
approach in the risk-averse model. Furthermore, they investigated the effect of option price
and option exercise price via conditional value-at-risk minimization.

Impact of sales on perishable products was analyzed by Afshar-Nadjafi [32] in the
newsvendor model, he considered deterministic expiry dates with probabilistic demand
in the selling period. The effects of product quality, pricing, and promotional efforts
was studied by Olbrich et al. [33] on national brand performance and private labels.
He and Lu [34] investigated the price-setting problem, considering both multiplicative and
additive demand patterns. The performances of three discount contracts (Push, Pull, and
advance purchasing) were analyzed by He and Khouja [35] in a manufacturer retailer model.
A logistic system was analyzed with a buyer and supplier by Kim and Jeong [36] to calculate
the order up to the level at the beginning of the selling season. Furthermore, both parties
received the benefits of coordination and cost minimization policy. Sarkar et al. [37] studied
replenishment rate of a retailer with demand dependent on selling price and trade credit
for deteriorating products. The discrete demand in the newsvendor model was considered
by Jörnsten et al. [38] with a real option contract and a mixed contract. Park et al. [39]
considered the replenishment problem with minimum order size requirements having
multiple items for single buyers and many heterogeneous suppliers. Sarkar et al. [40]
proposed an online-to-offline retailing strategy with selling-price-dependent demand and
utilized the DF approach. Noh et al. [41] formed a contract for the supplier to offer the
quantity discount to the buyer on a certain amount of quantity at the beginning of the
season. Maihami et al. [42] studied the pricing and inventory control problem, where the
demand is price and greening-level-dependent with noninstantaneous deteriorating items.
Moreover, they considered backlogged shortages with greening programs.

In the literature, the option contract is considered with the discrete demand or contin-
uous demand. This paper is the first to study the option contract with a DF approach in the
newsvendor model. The Stackelberg gaming approach is used, and we have considered
the shortages in the model with the price-dependent stochastic demand. In this model,
various emergency replenishment problems are designed to back-order the inventory. To
show the literature related to this work, Table 1 is presented with relevant keywords.

Table 1. Literature related to this study.

Author(s) Newsvendor Back-Order Transfer of Risk Distribution-Free Approach Stackelberg Game

Lodree, Jr. et al. [43] X X
Lee and Lodree, Jr. [44] X X

Lee and Hsu [45] X X
Jörnsten et al. [46] X X X

Brito and de Almeida [47] X X
Andersson et al. [48] X X

Jörnsten et al. [38] X X X
Pando et al. [49] X X

Kwon and Cheong [50] X X
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Table 1. Cont.

Author(s) Newsvendor Back-Order Transfer of Risk Distribution-Free Approach Stackelberg Game

Ahmed and Kwon [51] X X
Pando et al. [52] X X

Pal et al. [53] X X X
Ma et al. [54] X
Xu et al. [21] X X

Sarkar et al. [8] X X
Castellano et al. [19] X X

Shi et al. [55] X X X
Govindarajan et al. [13] X X

Fan et al. [31] X X X
Wu et al. [29] X X
Bi et al. [56] X X
This paper X X X X X

3. Model Description and Preliminaries
3.1. Problem Definition

In the newsvendor-type model, the retailer has limited resources and cannot bear the
loss of those products leftover after the selling season. The manufacturer is resourceful in
most cases. Therefore, sometimes leftover stocks from one retailer could further be passed
to another retailer with some demand. In this model, a contract is offered to the retailer for
those items that remain after the selling season; the manufacturer will bear the loss as a
salvage value. The retailer has to pay a certain amount per product to the manufacturer
to reduce the risk associated with leftover items. The agreement is made with mutual
understanding before the selling season starts. Shortages are allowed in this model and
can be fulfilled with a back-ordering price, which is higher than the original price because
of the extra efforts made in order fulfillment. The DF approach is used in this model. The
price-dependent stochastic demand is considered with joint pricing and stocking decision.

3.2. Assumptions

To understand the model deeply and to address the limitation of the study, the
following assumptions are made:

1. A single-period newsvendor model is considered with a single product. The product
is assumed to be a seasonal or fashionable product.

2. A newsvendor model is considered. The fixed manufacturing cost M is incurred by
the manufacturer and they decide the wholesale price W. The exogenous price R is
faced by the retailer, who determines the ordered quantity Q. The remaining items
during the season are salvaged at a constant vale S.

3. In the traditional newsboy model, random demand D is faced by the retailer, who
orders a specific quantity from the manufacturer. To earn a profit, they expect to sell
all products.

4. In the transfer of risk model, the retailer can select a contract that permits them to
buy a product at a certain time in the future. Each contract price for the retailer is c.
The retailer has the right to purchase a single item at a fixed price of t, which is not
essential. A contract is selected before the selling season starts.

5. Stochastic demand is considered without any specific probability distribution. De-
mand distribution underlies a class of probability distributions function. The only
available data is the mean and variance of demand.

6. Shortages are allowed in this model and can be fulfilled with a back-ordering price
that is high compare to the wholesale price.

4. Mathematical Model

This classical newsvendor model and the newsvendor with transfer of risk models are
expressed in this section.
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4.1. The Emergency Back-Ordering Options

To meet excess demand, an emergency replenishment policy is employed. All or partial
excess demand is satisfied by different emergency schemes to overcome the stock-out
situation, which could affect the market share or profit and customer goodwill. Before the
selling season starts, the newsvendor should make a contract of Q items and an emergency
replenishment plan S = {s1, s2, ... , sn} from the set of n available contingency schemes.

Every scheme consists of the time coefficient kiεK = {k1, k2, ... , kn} that has a back-
ordering cost per unit biεb = {b1, b2, ... , bn}. That cost is the per-unit price the customer
agrees to pay as a contingency plan si, which reduces the emergency supply by the time
coefficient ki, where the value of ki lies in the range of 0 < ki < 1. From that relation, it is
clear that the back-ordering cost per unit will increase if the lead time is reduced, which
the newsvendor has to pay for an emergency replenishment scheme.

In this model, b is the decreasing function of τ. The following exponential form equation
from Lee and Lodree, Jr. [44] shows the back-ordering function of demand in Equation (1).

β(τ) = e−ατ . (1)

The parameter α can be obtained statistically from the historical correlated data
by newsvendor. To obtain the generalized understanding of b as a function of shortage size,
the lead time during backlogging for emergency replenishment is considered proportional
to (D−Q)+ for the shortage amount Lodree, Jr. [57]. Therefore, the replenishment waiting
time is presented as in Equation (2):

τi = ki(D−Q)+, (2)

where ki is constant and is linked to emergency replenishment option si.
From Equations (1) and (2), the unsatisfied demand during backlogging is described

as the function of shortage quantity, as presented in Equation (3).

β(D−Q)+ = e−αki(D−Q)+ . (3)

4.2. Traditional Newsvendor Model

The retailer orders a lot of products, and he expects to sell enough of them to get a
profit. Demand is uncertain. The assumption is made that the manufacturing cost M borne
by the manufacturer is fixed, and that they determine the wholesale price W. The retailer
has to decide the decision on ordered quantity Q, while selling the products on exogenously
given price R. Those items remaining after the season are salvaged at a fixed salvage value
h; the demand distribution is unknown. The concept of the traditional newsvendor model
is shown in Figure 1.

Figure 1. Traditional newsvendor model.
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The retailer profit is denoted by Πr(Q) and is shown in Equation (4):

Πr(Q) = R min(D, Q) + β(D−Q)+(R− bi)− l(1− β)(D−Q)+ + h(Q− D)+ −WQ. (4)

The manufacturer’s profit is represented as Πm(Q), which does not depend on the
price in the classical newsvendor model, as expressed in Equation (5).

Πm(Q) = (W −M)Q. (5)

4.3. Transfer of Risk

The transfer of risk model is developed in a decentralized supply chain environment
where the Stackelberg gaming approach is utilized. In the transfer of risk model, the retailer
and manufacturer are considered to be two different entities. The model is depicted in
Figure 2.

Figure 2. Transfer of risk in the supply chain. (Some parts of the image are taken from Khan et al. [22]
Figure 1).

4.3.1. Retailers Model

In the transfer of risk model, the retailer has the option to choose a contract that allows
him to buy the product in the future date. He pays the price r for selecting one contract.
The retailer has the right in this contract to purchase a single product at a certain fixed
price, thought it is not obligatory. The contract is decided before the selling season starts. In
the case when retailer choose Q contracts, then profit of the retailer is shown as “Πr(Q, r, t)”
in Equation (6):

Πr(Q, r, t) = (R− t)min[D, Q]− rQ + β(D−Q)+(R− bi)− l(1− β)(D−Q)+, (6)

and the expected value of the retailers profit is shown in Equation (7),

E[Π̂r(Q, r, t)] = (R− t)E[min[D, Q]]− rQ + βE(D−Q)+(R− bi) (7)

−l(1− β)E(D−Q)+,

using the relation (Gallego and Moon [12])

“ min(D, Q) = D− (D−Q)+”.

The retailer’s expected profit becomes, by Equation (8),

E[Π̂r(Q, r, t)] = (R− t)(E(D)− E(D−Q)+)− rQ− lE(1− β)E(D−Q)+

+βE(D−Q)+(R− bi). (8)
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By utilizing Equation (3) and inserting the value of β in Equation (8), we get the
expected profit for the retailer in Equation (9):

E[Π̂r(Q, r, t)] = (R− t)(µ− a)− (R− t)
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
+e−

αki
2

(√
σ2+(Q−µ−a)2−(Q−µ−a)

)
(R− bi)

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
−rQ− l

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(1− e−

αki
2

(√
σ2+(Q−µ−a)2−(Q−µ−a)

)
). (9)

The retailer transfers his risk to the manufacturer as a contract where the manufacturer
pays salvage value. However, the optimization problem for the manufacturer becomes
complex with this function Q̂ = Q̂(r, t). The manufacturer selects r, t to optimize the
expected profit.

4.3.2. Manufacturer Model

The manufacturer’s profit (Π̂m(Q, r, t)) is shown in Equation (10):

Π̂m(Q, r, t) = tmin[D, Q] + h(Q− D)+ + (r−M)Q, (10)

using the relation (Gallego and Moon [12])

“(Q− D)+ = (Q− D) + (D−Q)+”.

After inserting the Gallego and Moon [12] relation, the manufacturer’s profit can be
written as shown in Equation (11):

Π̂m(Q, r, t) = Q(r−M) + h((Q− D) + (D−Q)+) + t(D− (D−Q)+). (11)

The manufacturer’s expected profit is given in Equation (12):

E(Π̂m(Q, r, t)) = Q(r−M) + hE((Q− D) + (D−Q)+) + t E(D− (D−Q)+). (12)

The price-dependent stochastic demand is shown below as

D = D(P, X).

Further demand consists of two parts as

D = a(P) + X.

The expected value of stochastic demand is equal to the price-dependent deter-
ministic demand and the expected value of random error, which is greater than zero
(Ullah et al. [58]).

E(D) = a(P) + µ.

Riskless demand in season is the highest accumulated demand, that is, the product of
market share and price sensitivity concerning cumulative deterministic demand, shown as

a(P) = y− z ∗ P.

By using the inequality from Ullah et al. [58],

“E(D−Q)+ ≤ 1
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
”.
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The manufacturer’s expected profit is shown in Equation (13):

E(Π̂m(Q, r, t)) = Q(r−M)− hE(D−Q)+ − tE(D−Q)+ − hE(D) + tE(D) + hQ. (13)

Utilizing the above inequalities, the manufacturer’s profit becomes as in Equation (14):

E(Π̂m(Q, r, t)) = hQ + t(µ + a)− t
2
(
√

σ2 + (Q− µ− a)2 − (Q− µ− a))

−h(µ + a)− h
2
(
√

σ2 + (Q− µ− a)2 − (Q− µ− a)) + (r−M)Q. (14)

4.3.3. Centralized Supply Chain Model

Centralized supply chain profit (Π̂chain(Q, r, t)) relies solely on the (r, t) pair via Q
as shown below in Equation (15). In the centralized supply chain, the manufacturer and
retailer work as a single entity, therefore, the pair (r, t) is not used.

Π̂chain(Q, r, t) = (t− h)min[D, Q]− (M− h− r)Q + (P− t)min[D, Q]

−rQ + β(D−Q)+(P− bi)− l(1− β)(D−Q)+ . (15)

Equation (15) is further simplified as Equation (16):

Π̂chain(Q, P) = (P− h)min[D, Q]− (M− h)Q + β(D−Q)+(P− bi)

−l(1− β)(D−Q)+. (16)

The (r, t) choice leads the retailer in selecting the ordered quantity Q among several
contracts. In a centralized supply chain, there is mutual coordination between all players.
The contract is not required for optimizing profit in that case, as the wholesale price is
equal to the manufacturing cost W = M. In this model, the manufacturer and retailer are
considered independent entities for maximizing profit. For R, h, W, and M, the assumption
is made so that R > W > M > h. In this model, the manufacturer proposes a contract for
(r, t) price, and to maximize the expected profit, the retailer places an order of Q items.

For the retailer’s objective function optimization, the manufacturer selects (r, t), and
the job of the retailer is to calculate Q = Q̂ with price p so that expected profit is maximized.
Expected value of supply chain profit with back-ordering is presented in Equation (17):

E(Π̂chain(Q, P)) = E(D− (D−Q)+)(P− h)−Q(M− h)− l(1− β)(D−Q)+)

+E(β(D−Q)+(P− bi). (17)

By inserting the values as shown above in Equation (17), the expected value of supply
chain profit will become as in Equation (18):

E(Π̂chain(Q, P)) = (P− h)((µ + a)− 1
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(18)

−Q(M− h)− l(1− e
αki

√
σ2+(Q−µ−a)2−(Q−µ−a)

2 )
1
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(P− bi)

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
e

αki(
√

σ2+(Q−µ−a)2−(Q−µ−a))
2 .

4.4. Supply Chain Analysis

The supply chain model is analyzed as a centralized and decentralized entity. Further-
more, we apply the Stackelberg game approach in the decentralized supply chain, where
the manufacturer and retailer are considered two different players. We have the supply
chain total expected profit as Equation (19):
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E(Π̂chain(Q, P)) = (P− h)((µ + a)− 1
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(19)

−Q(M− h)− l(1− e
αki

√
σ2+(Q−µ−a)2−(Q−µ−a)

2 )
1
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(P− bi)

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
e

αki(
√

σ2+(Q−µ−a)2−(Q−µ−a))
2 .

4.5. Optimal Policies

To find the necessary condition partial differentiation of total supply chain profit for
Q and P, calculations are performed as presented in Equations (20) and (21).

∂E(Π̂chain(Q, P))
∂Q

=
1
2
(P− h)

(
1− −a− µ + Q

j

)
(20)

+
1
2
(P− bi)

(
−a− µ + Q

j
− 1
)

e−
1
2 αki(g+µ−Q)

−1
4

αki(P− bi)

(
Q− µ

g
− 1
)
(a + j + µ−Q)e−

1
2 αki(g+µ−Q)

−1
2

l
(
−a− µ + Q

j
− 1
)(

1− e−
1
2 αki(g+µ−Q)

)
−1

4
αkil

(
Q− µ

g
− 1
)
(a + j + µ−Q)e−

1
2 αki(g+µ−Q) −M + h

∂E(Π̂chain(Q, P))
∂P

=
1
2
(a + j + µ−Q)e−

1
2 αki(g+µ−Q) +

1
2
(−a− j− µ + Q) + a + µ, (21)

where the following notation is used to show the long equation in the simplified form:

j =
√
(−a− µ + Q)2 + σ2,

g =
√
(Q− µ)2 + σ2.

4.5.1. Decentralized Supply Chain (Stackelberg Approach)

Two cases are assumed for the Stackelberg game. In the first case, the manufacturer is
a Stackelberg leader and the retailer is a follower. In the second case, the retailer acts as a
leader and the manufacturer as a follower.

Case 1

In the first case, the manufacturer is a leader and the retailer is a follower. Accordingly,
the retailer optimizes its decision variables first. The retailer calculates the ordered quantity
and retail price. Subsequently, the manufacturer determines the wholesale price based on
the retailer’s decision.

The retailer’s expected total cost is shown in Equation (22):

E[Π̂r(Q, r, t)] = (R− t)(µ− a)− (R− t)
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
+e−

αki
2

(√
σ2+(Q−µ−a)2−(Q−µ−a)

)
(R− bi)

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
−rQ− l

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(1− e−

αki
2

(√
σ2+(Q−µ−a)2−(Q−µ−a)

)
). (22)
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The manufacturer’s expected cost is shown in Equation (23):

E(Π̂m(t)) = hQ + t(µ + a)− t
2
(
√

σ2 + (Q− µ− a)2 − (Q− µ− a))

−h(µ + a)− h
2
(
√

σ2 + (Q− µ− a)2 − (Q− µ− a)) + (r−M)Q. (23)

Case 2

In the second case, the retailer is the leader and the manufacturer is the follower. There-
fore, the manufacturer optimizes his ordered quantity and wholesale price. The retailer
determines the retail price. The manufacturer’s expected cost is shown in Equation (24):

E(Π̂m(Q, r, t)) = hQ + t(µ + a)− t
2
(
√

σ2 + (Q− µ− a)2 − (Q− µ− a))

−h(µ + a)− h
2
(
√

σ2 + (Q− µ− a)2 − (Q− µ− a)) + (r−M)Q. (24)

The retailer’s expected profit function is shown in Equation (25):

E[Π̂r(R)] = (R− t)(µ− a)− (R− t)
2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
+e−

αki
2

(√
σ2+(Q−µ−a)2−(Q−µ−a)

)
(R− bi)

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
−rQ− l

2

(√
σ2 + (Q− µ− a)2 − (Q− µ− a)

)
(1− e−

αki
2

(√
σ2+(Q−µ−a)2−(Q−µ−a)

)
). (25)

5. Numerical Experiment

The numerical example is presented in this section. Data for the given example
are taken from (Brito and de Almeida [47], and Ullah et al. [58]). Here, M = 30 $/unit,
s = 10 $/unit, µ = 11, σ = 7, y = 42 units/period, z = 0.8, r = 0.5 $/unit, l = 15 $/unit,
α = 0.05, v = 50. The following values for ki and bi are used under the set of si emergency
replenishment schemes, as shown in Table 2.

Table 2. Available emergency replenishment schemes.

Option ki bi

s1 0.95 40
s2 0.70 43
s3 0.60 47
s4 0.50 51
s5 0.40 55
s4 0.30 60
s5 0.25 65

The optimum values for the decision variables are presented in Table 3 for the central-
ized supply chain for the seven replenishment schemes. For the decentralized supply chain,
two cases are considered and the numerical study results are depicted in Table 4. Further-
more, 2D and 3D plots are developed. In Figure 3, 3D plots are presented for manufacturer,
retailer, and centralized supply chain. Three parameters for the 3D plots are profit, price,
and ordered quantity. Figure 4 shows the 2D plot of centralized and decentralized supply
chain. Six cases in total are shown for profit versus ordered quantity and profit versus price.
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(a) Manufacturer

(b) Retailer

(c) Centralized supply chain

Figure 3. 3D figures showing the comparison of profit with ordered quantity and wholesale price.
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(a) Profit versus ordered quantity (b) Profit versus wholesale price

(c) Profit versus ordered quantity (d) Profit versus retail price

(e) Profit versus ordered quantity
(f) Profit versus wholesale price

Figure 4. Centralized (a,b), Retailer (c,d), and Manufacturer (e,f).

Table 3. Centralized supply chain optimum values for replenishment schemes.

Options Q P Πchain

s1, Q∗, P∗ 14 47.73 145.95

s2, Q∗, P∗ 14 47.85 139.51

s3, Q∗, P∗ 15 47.90 127.72

s4, Q∗, P∗ 15 47.97 116.12

s5, Q∗, P∗ 16 48.01 104.78

s6, Q∗, P∗ 16 48.05 90.97

s7, Q∗, P∗ 17 48.07 77.77

Table 4. Decentralized (Stackelberg) supply chain numerical result.

Stackelberg Leader Follower Price Quantity Πm Πr Total Profit
$/Units Units $ $ $

Case I Manufacturer Retailer 42.97 34 24.66 33.89 58.55
Case II Retailer Manufacturer 58 18 80.61 25.6 106.21

Sensitivity Analysis

The model is validated by performing sensitivity analysis. The results are presented
in Tables 5–7 and Figures 5 and 6.
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Table 5. Demand parameter sensitivity analysis.

Parameter Percent Change
Centralized Manufacturer Retailer

Percent Change in Profit Percent Variation in Profit Percent Variation in Profit

µ

−50 −64.09 −102.50 −114.68

−25 −33.70 −54.25 −64.26

+25 +36.98 +60.25 +78.51

+50 +77.23 +126.48 +170.86

σ

−50 +44.74 +116.92 +41.35

−25 +22.51 +58.30 +20.62

+25 −22.77 −57.98 −20.66

+50 −45.80 −115.63 −41.35

y

−50 −174.09 −261.51 −137.59

−25 −93.74 −174.81 −170.69

+25 +161.54 +262.20 +374.50

+50 +372.32 +611.36 +952.82

z

−50 +564.25 +894.45 +1894.94

−25 +177.37 +277.07 +514.75

+25 −93.55 −142.41 −168.59

+50 −145.09 −218.11 −164.13

Table 6. Centralized key parameter analysis.

Centralized

Percent Change in Value Parameter Percent Change in Profit

−50

M

+215.14

−25 +89.93

+25 −59.97

+50 −89.21

−50

b

+107.50

−25 +37.59

+25 −26.90

+50 −48.84
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Table 7. Key parameter sensitivity analysis for manufacturer and retailer.

Manufacturer Retailer

Percent Change in Value Parameter Percent Change in Profit Parameter Percent Change in Profit

−50

M

+440.14

W

+817.63

−25 +191.94 +322.01

+25 −149.43 −147.13

+50 −260.52 −118.67

−50

S

+10.38

b

+140.15

−25 +3.00 +32.24

+25 +1.17 −22.56

+50 +6.54 −41.27

−50

c

−5.63

c

+29.18

−25 −2.82 +13.53

+25 +2.83 −12.17

+50 +5.68 −23.37

(a) Price sensitivity for deterministic demand (b) Deterministic demand

(c) Standard deviation of demand (d) The expected value of random error

Figure 5. Graphical representation of sensitivity of demand parameters.
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(a) Back-ordering cost (b) Manufacturing cost

(c) Contract price (d) Salvage value of manufacturer

Figure 6. Graphical representation of sensitivity of key parameters.

i Among all key parameters, manufacturing cost possesses a significant influence over
the manufacturer and the centralized supply chain profitability. If the manufacturing
cost is reduced by 50%, the increase in profit is 440%; respectively, if manufacturing
cost is increased by 50%, profit is reduced by up to 260% for the manufacturer. In a
centralized supply chain, the 50% cost reduction increases profit by 215%. If the same
amount is increased, profit is reduced by up to 90%. Thus, a negligible reduction in
the manufacturing cost has more impact over an increase. Therefore, a manager must
concentrate on manufacturing cost reduction by all means to maximize system profit.

ii For a retailer, the most sensitive parameter is wholesale price. If the wholesale price is
reduced by 50%, profit is increased by up to 820%. If the wholesale price is increased
by 50%, profit is reduced up to 118%.

iii The unit contract price possesses a symmetrical effect over the profit of the manufac-
turer. There is almost a symmetrical effect for retailer profit when the contract price is
varied in the range of 50%.

iv A 50% decrease in back-ordering cost for a centralized system increases profit by up
to 107%. A 50% increase counts for a 49% reduction in the overall profit of the system.
The results are alike for the decentralized system, if the retailer back-ordering cost is
reduced by 50%, profit increases by 140%. If cost is increased by the same amount, the
profit shrinks by 41%.

v The salvage value is the least effective parameter among all other parameters for the
manufacturer, a 50% cost reduction increases profit by 10%. A 50% increase counts for
a 6% increase in profit.

The four demand parameters are as follows:

i The expected value of random error for demand possesses a symmetrical impact on
the centralized, manufacturer, and retailer profit percentages.

ii The retailer is the most sensitive among all, a 50% decrease accounts for 114% reduc-
tion, and a 50% increase accounts for a 170% rise in profit. For the manufacturer, a
50% decrease leads to a 102% reduction in the profit. A 50% increase raises profit by
126%. In the centralized case, profit is reduced by 64% with a reduction in the random
error of demand and increases by 77% with the rise of random error in demand.

iii The standard deviation of demand has a perfectly symmetrical effect in all the cases
when the variation is made between positive 50% and negative 50% on the profit of
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the centralized and decentralized system.
The variation in market share is a very sensitive parameter. It is highly sensitive
in the manufacturer case, where a 50% reduction accounts for a 261% reduction in
the total profit, and a 50% increase enhances profit by 611%. For the retailer, a 50%
decrease results in a 137% reduction in profit, and a 50% increase raises profit by 952%.
Similarly, for the centralized system, a 50% decrease accumulates a 174% reduction in
profit, and a 50% increase shows a 362% rise in profit.

iv The price sensitivity for cumulative deterministic demand is the most sensitive de-
mand parameter. Retailer profit is greatly affected by this parameter a 50% reduction
counts for an 1895% increase in profit. A 50% increase decreases profit by 165%, which
means the reduction is highly sensitive to the negligible change. For a manufacturer,
a 50% rise accumulates for an 895% increase in profit, and a 50% increase reduces
profit by 218%. For the centralized system, a 50% decrease generates 565% more profit
compared to a 50% increase, which reduces profit by 145%.

6. Managerial Insights

This paper studied the centralized and decentralized newsvendor model with transfer
of risk and back-ordering. The following are managerial insights from the newsvendor
model. The retailer can save an enormous amount of money otherwise wasted as salvaged
by paying contract fees. The quantity can be back-ordered by the retailer, with a back-
order price during the season, which reduces lost sales and keeps some customers. The
manufacturer gets an additional amount as a contract fee by which he can bear the loss
of salvaged products. By this policy, mutual trust is increased between both parties. The
manufacturer can sell these products further in other markets as well or salvage these items.
No specific demand distribution is considered in this model that saves funds otherwise
used on demand data collection from the market. Demand depends on selling price, hikes
in price will reduce the demand, ultimately resulting in profit reduction.

7. Conclusions

This paper studied the transfer of risk in a decentralized supply chain model. For
the retailer and manufacturer, joint pricing and inventory decisions are made. A price-
dependent stochastic demand is considered. The main objective of this model was profit
maximization by calculating optimal price and ordered quantity. Demand does not fol-
low any specific probability distribution, and no specific assumption was made for the
distribution of random error in demand. Only mean and variance are available to solve the
model. A numerical experiment was performed and results are shown for the centralized
and decentralized cases. For the decentralized supply chain, there are two cases. In the
first case, the manufacturer is considered the leader. In the second case, the retailer is
considered the leader. Results of this model show that newsvendor profit is increased with
the transfer-of-risk policy. The back-order satisfies additional customers and offers more
flexibility to the retailer in selecting the ordered quantity. As a result of this policy, the
retailer is more flexible in deciding the ordered quantity. If products remain, he can transfer
them back to the manufacturer, and if shortages occur in the season, more products could
be ordered with a back-ordered price. This model can be applied in many fields, especially
for products like masks, sanitizers, mobile phones, etc. The manufacturer is powerful in
many cases, as they can sell those remaining products after season in secondary markets
with high demand. We considered a single retailer and a single product, which is not
the case for most real-world models. The model is limited to only a single period which
covers seasonal items. Leftover items from the retailers are salvaged at a constant value
by the manufacturer. These items can be resold through a manufacturer’s discount policy.
This paper has numerous research directions to explore. First, there are many types of
uncertain demands that could be examined, such as the environmental-effort-dependent
and inventory-stock-dependent demand. Second, this model could be extended to include
multiple retailers, manufacturers, and products. Third, constraints could be added to this
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model, such as budget and storage space. Fourth, a possible extension is a multiperiod
newsvendor model with a discounted policy for remaining products on the manufacturer’s
side. The fifth promising extension could be a multiobjective optimization model, including
fields such as environmental, social, and financial studies.
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Notation

W Wholesale price ($/unit)
D Price dependent stochastic demand (units)
M Fixed manufacturing cost ($/unit)
R Retail price ($/unit)
Q Order quantity (units)
P Centralized supply chain price ($/units)
h Salvage value ($/unit)
r Price of one contract
t Unit price in transfer of risk model ($/unit)
β Back-order rate
y Maximum perceived cumulative deterministic demand or riskless demand—i.e.,

market share (units/unit time)
X Random error in demand
bi Back-order cost associated with the emergency replenishment option si ($/unit)
a(t) Price-dependent deterministic demand during the season for decentralized supply

chain (units)
a(P) Price-dependent deterministic demand during the season for centralized supply

chain (units)
l A lost sale cost that can be estimated financially ($/unit)
Πr Expected profit of retailer ($)
Πm Expected profit of manufacturer ($)
Πchain Expected profit of supply chain ($)
z Cumulative deterministic demand price sensitivity
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