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Abstract: In this article, a new numerical scheme for the solution of the multidimensional fragmen-
tation problem is presented. It is the first that uses the conservative form of the multidimensional
problem. The idea to apply the finite volume scheme for solving one-dimensional linear fragmen-
tation problems is extended over a generalized multidimensional setup. The derivation is given in
detail for two-dimensional and three-dimensional problems; an outline for the extension to higher
dimensions is also presented. Additionally, the existing one-dimensional finite volume scheme for
solving conservative one-dimensional multi-fragmentation equation is extended to solve multidi-
mensional problems. The accuracy and efficiency of both proposed schemes is analyzed for several
test problems.

Keywords: conservative formulation; multidimensional fragmentation equation; weight functions;
finite volume scheme

1. Introduction

Fragmentation, breakage or attrition, describe processes in which a single object
is separated into at least two new objects. The reasons for breakage can be manifold
but are often linked to some kind of stress exerted on the object, for instance thermal
stress from heating and rapid cooling (or vice versa and cyclically)—a natural process
specifically observed in deserts, leading to disintegration of rocks; or mechanical stress,
applied for millenia in the process of grain milling. Nowadays, fragmentation plays a key
role in several industrial sectors like mineral processing (e.g., comminution of ores [1–4]),
reaction engineering (e.g., break-up of bubbles in reacting bubble columns for separation
processes [5–8] or steel-casting [9]) or pharmaceutical industries (e.g., milling of active
pharmaceutical ingredients to increase their solubility and uptake capacity in the human
or animal body [10–12]).

Many objects, e.g., particles, bubbles or even rain drops, consist of different com-
ponents resulting in their anisotropic structure. The probability of fragmentation upon
stress therefore depends on the distribution of the components within the objects, i.e.,
each component adds an independent dimension to the fragmentation problem. In an
attempt to describe these complex processes and make them accessible for model- and
knowledge-based process design, optimization and control, multidimensional fragmen-
tation equations have been proposed and used in different fields of application, see, for
instance, the works [13–17].

Theoretical aspects on the existence of scaling solutions and their behavior at the onset
of “shattering” transition have been discussed for instance in the works of [18–21]. Fragmen-
tation models are particularly challenging as they consist of partial-integro differential
equations as will be shown in the following. Analytical results are scarce and often of very
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limited practical relevance, strongly motivating the development of numerical methods for
approximation of the solution to (multidimensional) fragmentation problems.

As a prototype, consider the conservative formulation of the multiple fragmentation
equation given by [22,23]: The initial value problem for t ≥ 0 is formulated as

∂g(t, x)
∂t

=
∂H(t, x)

∂x
, where x ∈ R+ := (0, ∞), (1)

with the initial condition

g(x, 0) = g0(x) (≥ 0), for x ∈ R+. (2)

The flux functionH(t, x) is defined by

H(t, x) :=
∫ ∞

x

∫ x

0

u
v

b(u, v)S(v)g(t, v)dudv, x ∈ R+. (3)

In Equation (1), the internal variables x and t denote the particle property and the
time component, respectively. On the left hand side, the function g(t, x) is defined by
g(t, x) := x f (t, x), where f (t, x) denotes the distribution of particle volume x in a system
at time t. The rate of selection of an x-volume cluster to undergo breakage is denoted by
S(x), and the distribution of daughter particles y due to the breakage of large particle x is
denoted by b(y, x). The breakage function b(y, x) satisfies the following relations:∫ ∞

0
b(y, x)dy = ν(x), and

∫ x

0
yb(y, x)dy = x. (4)

The first relation defines that ν(x) number of fragments are produced during the
breakup of a large x-cluster, and the second relation defines that the total volume of the
daughter y-clusters is exactly the same as the volume of the mother x-cluster. Note that the
formulation (1) is well-known in the literature as the volume conservative form. Integration
of Equation (1) over the volume variable x from 0 to ∞, with the help of relation (4), yields

d
dt

∫ ∞

0
g(t, x)dx = 0. (5)

It should be noted that Equation (1) is a first-order hyperbolic, initial value partial
differential equation. In this regard, the representation (1) gathered importance because the
divergent nature allows the model to obey the volume conservation laws. The coefficient
S belongs to L∞

loc([0, ∞)) and g0, b ∈ L1((0, ∞)) ∩ L1((0, ∞), xdx). Here and below, the
notation L1(R+, xdx) stands for the space of the Lebesgue measurable real-valued functions
on R+ which are integrable with respect to the measure xdx.

In most of the previous studies it is assumed that a single parameter, which is usually
volume, mass or size of the particle, is sufficient to describe the particle property (readers
can refer to [24] for further details). However, a single parameter is not always sufficient to
describe various physical systems. For example, fragment mass distribution obtained by
crushing gypsum or glass depends on the initial geometry of the particles. On the other
hand, the degradation of polyelectrolyte may depend upon both their mass and excitation
(or kinetic) energy. Therefore, the fragmentation dynamics need to be represented by
including additional variables to the mathematical model. These variables are equivalently
classified as the degrees of freedom of the dynamical system and hence, the multidimen-
sional formulation of the fragmentation equations becomes necessary to represent such
cases. The purpose of this article is to take in account more than one particle property
and present an efficient numerical model which estimates them with high accuracy. In
particular, we present the mathematical representations of two-dimensional and three-
dimensional volume conservative linear fragmentation equations. Further extension of the
mathematical formulation can be done in a similar manner.
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For the population balance models, the moment functions of the particle property
distribution play a major role as some of them describe a significant physical property
of the system. Therefore, before we proceed further, let us first gather some important
information about the moment functions in a generalized multidimensional setup.

1.1. Moment Functions

Let x := {x1, x2, . . . , xn}, with xi−s representing different particle properties like,
mass, entropy, moisture content, shape factor, etc. and thus the function f (t, x) denotes the
distribution of particle property x at some instance t. The formal definition of the moment
functions for a general n-dimensional population balance problem is written as follows:

Mp1,p2,...,pn(t) :=
∫ ∞

0

(
n

∏
r=1

xpr
r

)
f (t, x)dx, (6)

where the integrations are defined as∫ ∞

0
(·)dx :=

∫ ∞

0
dx1 · · ·

∫ ∞

0︸ ︷︷ ︸
n−times

(·)dxn.

In Equation (6), p1, p2, . . . , pn are nonnegative integers. As mentioned earlier, the
moment functions play an important role to define various physical properties of the
system. Like the zeroth moment,M0,0,...,0(t) defines the total number of particles present
in the system. The first-order moment M0,...,1,...,0(t) (1 is the rth position) denotes the
total content of the xrth component in the system, which can be equivalently represented
as the total volume of xrth property. Hence, for a multidimensional system, the volume
conservation of the system can be defined as the total conservation of all the first-order

moments taken together. Thus, defining φ(x) :=
n

∑
r=1

xr, the volume conservation law for

the n-dimensional system is expressed as

d
dt

∫ ∞

0
φ(x) f (t, x)dx = 0. (7)

Furthermore, the n-th order cross moment is defined byM1,...,1,...,1(t) and it represents
the particle geometry or hypervolume. Therefore, to preserve the initial geometry of the
particles, we need to preserve the cross moments; hence, the hypervolume preservation
law is written as

d
dt

∫ ∞

0
ψ(x) f (t, x)dx = 0, (8)

where ψ(x) :=
n

∏
r=1

xr.

Similarly, other higher order moments can be defined using the formulation (6),
and depending upon the problem they may correlate to some physical properties of the
system. For example, in a pipeline flow for the transport of natural gas from seabed, the
breakage of hydrate particles often takes place. In this event, if the first momentM1,...,0(t)
is proportional to the mean radius of the hydrate particle, then the corresponding second
order momentM2,...,0(t) and third order momentM3,...,0(t) are proportional to the total
area and the volume concentration of the hydrate particles, respectively. In general, only
the zeroth, first-order and the cross-moments bear the same meaning for any population
balance models.However, it should not be misunderstood that higher order moments
should always correspond to certain physical characteristics.
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In the literature, a limited number of articles are dedicated to the numerical study
of multidimensional fragmentation events, and therefore several aspects of study still
remain unexplored. The articles of [25–29] discuss the development of different numerical
schemes to approximate the fragmentation problems. To note that, unlike the methods,
e.g., cell average technique, fixed pivot techniques, method of moments, etc., the finite
volume methods have gained popularity because the latter are robust to be applied on
a multidimensional setup. Moreover, the underlying stencil of the finite volume scheme
is simpler, and easy to compute (the readers can refer to the articles of [23,29] for further
details on the computational advantage of finite volume schemes).

The article is organized in the following manner. In the next section, we present the
mathematical representations of the continuous two- and three-dimensional equations. In
this regard, the three-dimensional model is represented using vector notation, which will
also provide an outline to extend the equations into further higher dimensions. In Section 3,
step-by-step derivation of the numerical schemes are presented. An interesting outcome
of this presentation includes the multidimensional extension of the finite volume scheme
presented in [23]. Section 4 contains the numerical validation of the proposed models over
some standard empirical test problems. Finally some conclusions and a summary of the
work are presented.

2. Continuous Equations in Two- and Three-Dimensions
2.1. Conservative Formulations in Two-Dimensions

In Equation (1), the variable x represents a single particle property which can be
considered as the particle volume. Therefore, the first moment always corresponds to the
total volume of the particle in the system, and hence Equation (1) is simply coined as the
volume-conservative model. However, the representation is not that simple in the case of a
multidimensional fragmentation event. Depending on the definition of volume and hy-
pervolume, the mathematical model changes, and thus we get two different mathematical
equations representing the two conservative formulations in the multidimensional setup.
For example, consider two independent particle properties kinetic energy and moisture
content that are defined by the variables x and y, respectively and we set x := (x, y). Then
f (t, x) is the two-dimensional particle properties distribution function at time t. Now refer-
ring to the Equations (7) and (8), the solutions corresponding to the volume-conservative
and hypervolume conservative formulations are defined as n(t, x) := φ(x) f (t, x) and
m(t, x) := ψ(x) f (t, x), respectively.

In accordance with the above definition, the two-dimensional or bivariate volume-
conservative fragmentation equation is written as,

∂n(t, x)
∂t

=
∂F (t, x)

∂x
+

∂G(t, x)
∂y

− ∂2H(t, x)
∂x∂y

, (9)

with the initial data

n(0, x) = n0(x) ≥ 0, for all x > 0. (10)

Here, the functions F , G and H denote the flux flow at the cell boundaries. In this
regard, we first define the following notations to be used for defining the fluxes. Let
u := (u, v), ε := (ε, ξ), then∫ ∞

x
(·)du :=

∫ ∞

x

∫ ∞

y
(·)dvdu, and

∫ x

0
(·)du :=

∫ x

0

∫ y

0
(·)dvdu.

With the help of the above notations, the flux functions are defined as follows:

F (t, x) :=
∫ ∞

x

∫ x

0

φ(ε, y)
φ(u)

b(ε, y|u)S(u)n(t, u)dεdu, (11)
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G(t, x) :=
∫ ∞

x

∫ y

0

φ(x, ξ)

φ(u)
b(x, ξ|u)S(u)n(t, u)dξdu, (12)

and

H(t, x) :=
∫ ∞

x

∫ x

0

φ(ε)

φ(u)
b(ε|u)S(u)n(t, u)dεdu. (13)

In the above expressions, S(x) is the selection function which defines the rate at which
particles of properties x to undergo further fragmentation, and the breakage function b(ε|u)
corresponds to the distribution of daughter fragments ε formed due to the fragmentation
of u-cluster. In the multidimensional fragmentation setup, the breakage function b plays
a key role to govern the system to obey either volume-conservation (7) or hypervolume
conservation (8) laws. For the volume conservative formulation, it is assumed that the
breakage function b(ε|u) should satisfy∫ u

0
φ(ε)b(ε|u)dε = φ(u). (14)

The relation (14) is significant as it controls the system to follow volume conservation
property (7). Therefore, with the above assumption it can easily be calculated that

d
dt

∫ ∞

0
n(t, x)dx =

d
dt

[M1,0(t) +M0,1(t)] = 0, (15)

that is, the volume conservation laws are perfectly obeyed.
Note that the flux functionH (13) in the bivariate Equation (9) is the straightforward

extension of the flux in univariate model (1). Additionally, the bivariate model (9) contains
two flux functions F (11) and G (12) as compared to its one-dimensional counterpart
Equation (1). Here, F defines the distribution of the daughter particles along the x-
component, while keeping the y-component fixed. Similarly, the flux G is defined along
y-component.

We now present the continuous hypervolume conservative formulation of the pure bi-
variate fragmentation model. It is expressed in a manner similar to the volume conservative
model (9), and reads as

∂m(t, x)
∂t

=
∂F̄ (t, x)

∂x
+

∂Ḡ(t, x)
∂y

− ∂2H̄(t, x)
∂x∂y

, (16)

with the flux functions F̄ , Ḡ and H̄ redefined as follows

F̄ (t, x) :=
∫ ∞

x

∫ x

0

ψ(ε, y)
ψ(u)

b(ε, y|u)S(u)m(t, u)dεdu, (17)

Ḡ(t, x) :=
∫ ∞

x

∫ y

0

ψ(x, ξ)

ψ(u)
b(x, ξ|u)S(u)m(t, u)dξdu, (18)

and

H̄(t, x) :=
∫ ∞

x

∫ x

0

ψ(ε)

ψ(u)
b(ε|u)S(u)m(t, u)dεdu. (19)

In this case, the breakage function satisfies condition∫ u

0
ψ(ε)b(ε|u)dε = ψ(u), (20)
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and hence, integrating Equation (16), one can easily obtain that the hypervolume conserva-
tion law is properly obeyed, that is

d
dt

∫ ∞

0
m(t, x)dx =

dM1,1(t)
dt

= 0. (21)

2.2. Conservative Formulations in Three-Dimensions

In a similar manner as discussed above, we now present the three-dimensional repre-
sentations of the fragmentation equations which obey the (i) volume conservation laws,
and (ii) hypervolume conservation laws. In this part, we present the mathematical model
using vector notation to pave the way for higher dimensional extension.

Let the particle property distribution be written as f (t, x) where the vector x :=
{x1, x2, x3} represents different particle properties, and n(t, x) := φ(x) f (t, x). Using the
extended form of all the above-mentioned notations, the three-dimensional volume conser-
vative formulation is written as follows

∂n(t, x)
∂t

=
∂F (1)(t, x)

∂x1
+

∂F (2)(t, x)
∂x2

+
∂F (3)(t, x)

∂x3

− ∂2G(1)(t, x)
∂x2∂x3

− ∂2G(2)(t, x)
∂x1∂x3

− ∂2G(3)(t, x)
∂x1∂x2

+
∂3H(t, x)
∂x1∂x2∂x3

,

(22)

with the flux flows being functions of both t, x and are defined as

F (1)(t, x) =
∫ ∞

x

∫ x1

0

(u1 + x2 + x3)

φ(y)
b(u1, x2, x3|y)S(y)n(t, y)du1dy, (23)

F (2)(t, x) =
∫ ∞

x

∫ x2

0

(x1 + u2 + x3)

φ(y)
b(x1, u2, x3|y)S(y)n(t, y)du2dy, (24)

F (3)(t, x) =
∫ ∞

x

∫ x3

0

(x1 + x2 + u3)

φ(y)
b(x1, x2,3 |y)S(y)n(t, y)du3dy, (25)

G(1)(t, x) =
∫ ∞

x

∫ x2

0

∫ x3

0

(x1 + u2 + u3)

φ(y)
b(x1, u2, u3|y)S(y)n(t, y)du2du3dy, (26)

G(2)(t, x) =
∫ ∞

x

∫ x1

0

∫ x3

0

(u1 + x2 + u3)

φ(y)
b(u1, x2, u3|y)S(y)n(t, y)du3du1dy, (27)

G(3)(t, x) =
∫ ∞

x

∫ x1

0

∫ x2

0

(u1 + u2 + x3)

φ(y)
b(u1, u2, x3|y)S(y)n(t, y)du2du1dy, (28)

H(t, x) =
∫ ∞

x

∫ x

0

φ(u)
φ(y)

b(u|y)S(y)n(t, y)dudy. (29)

In a similar manner, we can represent the three-dimensional hypervolume conser-
vation equations. Consider that m(t, x) := ψ(x) f (t, x) is the solution function, and the
breakage function follows the relation (20). Then simply by replacing the function φ by ψ
and simultaneously taking care of all the corresponding changes in the Equation (22), one
can easily represent the three-dimensional hypervolume conservative model. Furthermore,
one can extend the conservative formulations for problems with n-number of particle
property components.
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3. Numerical Formulations
3.1. Two-Dimensional Model

In this section, we present the discretized form of Equation (9). For this purpose,
the truncated rectangular domain considered is V :=]0, X1]×]0, X2]. Let I1 and I2 be
two positive integers, and V is further discretized in (I1 × I2) number of rectangular
subcells Vi :=

]
xi1−1/2, xi1+1/2

]
×
]
xi2−1/2, xi2+1/2

]
, where i := (i1, i2), I := (I1, I2) such

that 1 ≤ i ≤ I along with x1/2 = y1/2 = 0, and xI1+1/2 = X1, xI2+1/2 = X2. Let ∆i1 :=
xi1+1/2 − xi1−1/2, ∆i2 := xi2+1/2 − xi2−1/2 and ∆i := ∆i1 ∆i2 . Further, let xi :=

(
xi1 , xi2

)
be

the pivot or representative of the cell Vi, and the components of xi are defined by

xi1 :=
xi1+1/2 − xi1−1/2

2
, xi2 :=

xi2+1/2 − xi2−1/2

2
.

Under the above considerations, the flux flow at the right boundaries of the cell are
given by F

(
xi1+1/2, xi2 , t

)
, G
(
xi1 , xi2+1/2, t

)
and H

(
xi1+1/2, xi2+1/2, t

)
, and similarly the

flux flow at the other boundaries are defined.
Let ni be the average value of the solution n(t, x) over the cell Vi, and is defined by

ni =
1
∆i

∫
Vi

n(t, x)dx. (30)

Consider that n̂i(t) denotes the numerical approximation of ni. For notational conve-
nience, we drop the argument of the t from n̂i(t) in further discussions and simply denote
it as n̂i.

Let us now evaluate the numerical approximation of the flux F
(
xi1+1/2, xi2 , t

)
.

F
(

xi1+1/2, xi2 , t
)
=
∫ X1

xi1+1/2

∫ X2

xi2

[∫ xi1+1/2

0

(
ε + xi2

)
b
(
ε, xi2 |u

)
dε

]
S(u)
φ(u)

n(t, u)du

=
I1

∑
k1=i1+1

∫ xk1+1/2

xk1−1/2

I2

∑
k2=i2

∫ xk2+1/2

β(i2,k2)

[
i1

∑
l1=1

∫ xl1+1/2

xl1−1/2

(
ε + xi2

)
b
(
ε, xi2 |u

)
dε

]

× S(u)
φ(u)

n(t, u)du,

Here,

β(i2, k2) :=
{

xk2 , when i2 = k2,
xk2−1/2, otherwise.

Applying quadrature formulae to the integrals, the numerical flux is given by

Fi1+1/2,i2 :=
I1

∑
k1=i1+1

I2

∑
k2=i2

n̂kA
β
k

i1

∑
l1=1
Bl1,i2|k∆l1 ∆k, (31)

where k := (k1, k2), l := (l1, l2),

Bl1,i2|k :=
(

xl1 + yi2
)
b
(
xl1 , yi2 |xk

)
, and Aβ

k :=
∫ xk1+1/2

xk1−1/2

∫ yk2+1/2

β(i2,k2)

S(u)
φ(u)

du.

In a similar manner, under the following notations

Bi1,l2|k :=
(

xi1 + xl2
)
b
(

xi1 , xl2 |xk
)
, Bl|k :=

(
xl1 + xl2

)
b
(
xl1 , yl2 |xk

)
,

Aα
k :=

∫ xk1+1/2

α(i1,k1)

∫ xk2+1/2

xk2−1/2

S(u)
φ(u)

du, and Ak :=
∫ xk1+1/2

xk1−1/2

∫ yk2+1/2

yk2−1/2

S(u)
φ(u)

du,
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with

α(i1, k1) :=
{

xk1 , when i1 = k1,
xk1−1/2, otherwise.

the other numerical fluxes at the cell interfaces are written as

Gi1,i2+1/2 :=
I1

∑
k1=i1

I2

∑
k2=i2+1

n̂kAα
k

i2

∑
l2=1
Bi1,l2|k∆l2 ∆k, (32)

and

Hi+1/2 :=
I

∑
k=i+1

n̂kAk

i

∑
l=1
Bl|k∆l∆k. (33)

Therefore, the semi-discrete finite volume representation of Equation (9) is written as

dn̂i

dt
∆i =

[
Fi1+1/2,i2 −Fi1−1/2,i2

]
∆i2 +

[
Gi1,i2+1/2 − Gi1,i2−1/2

]
∆i1

−
[
Hi1+1/2,i2+1/2 −Hi1+1/2,i2−1/2 −Hi1−1/2,i2+1/2 +Hi1−1/2,i2−1/2

]
.

(34)

The above scheme (34) obeys the discrete volume conservation law (the detailed calcu-
lations are given in Appendix A). However, in the subsequent section, we shall numerically
validate that scheme (34) fails to predict the evolution of total number of fragments with
good accuracy. In this context, the flux functions are redefined by introducing a weight
function which enables the model to obey volume conservation laws, as well as predict
the zeroth moment with high accuracy. The newly proposed semi-discrete formulation is
written as follows:

dn̂i

dt
∆i =

[
F̂i1+1/2,i2 − F̂i1−1/2,i2

]
∆i2 +

[
Ĝi1,i2+1/2 − Ĝi1,i2−1/2

]
∆i1

−
[
Ĥi1+1/2,i2+1/2 − Ĥi1+1/2,i2−1/2 − Ĥi1−1/2,i2+1/2 + Ĥi1−1/2,i2−1/2

]
,

(35)

where the modified fluxes at the cell boundaries are defined as follows:

F̂i1+1/2,i2 :=
I1

∑
k1=i1+1

I2

∑
k2=i2

n̂kδkA
β
k

i1

∑
l1=1
Bl1,i2|k∆l1 ∆k, (36)

Ĝi1,i2+1/2 :=
I1

∑
k1=i1

I2

∑
k2=i2+1

n̂kδkAα
k

i2

∑
l2=1
Bi1,l2|k∆l2 ∆k, (37)

Ĥi+1/2 :=
I

∑
k=i+1

n̂kδkAk

i

∑
l=1
Bl|k∆l∆k, (38)

and δ is the weight factor, defined by

δk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1(φ(xk)− φ(xi))Bi|k

, (39)

along with δ1,1 = 1. In the above definition of the weight, the terms Sk and ν(xk) denote
the discrete selection function and the number of fragments, respectively.

In the following section, we will numerically validate that the two-dimensional
scheme (35) is consistent with the zeroth moment and it also obeys the volume conservation
law. The proof of this claim follows similar to that of the model (34) and can easily be
followed from the outline given in Appendix A.
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In a similar manner, a new scheme preserving the cluster hypervolume and estimating
the continuous model (16) along with the zeroth moment can be defined as follows:

dm̂i

dt
∆i =

[
ˆ̄Fi1+1/2,i2 −

ˆ̄Fi1−1/2,i2

]
∆i2 +

[
ˆ̄Gi1,i2+1/2 − ˆ̄Gi1,i2−1/2

]
∆i1

−
[

ˆ̄Hi1+1/2,i2+1/2 − ˆ̄Hi1+1/2,i2−1/2 − ˆ̄Hi1−1/2,i2+1/2 +
ˆ̄Hi1−1/2,i2−1/2

]
,

(40)

where the discrete flux functions at the cell boundaries are defined by

ˆ̄Fi1+1/2,i2 :=
I1

∑
k1=i1+1

I2

∑
k2=i2

m̂kωkA
β
k

i1

∑
l1=1
B̄l1,i2|k∆l1 ∆k, (41)

ˆ̄Gi1,i2+1/2 :=
I1

∑
k1=i1

I2

∑
k2=i2+1

m̂kωkAα
k

i2

∑
l2=1
B̄i1,l2|k∆l2 ∆k, (42)

ˆ̄Hi+1/2 :=
I

∑
k=i+1

m̂kωkAk

i

∑
l=1
B̄l|k∆l∆k, (43)

with the discrete breakage function as

B̄i|k := ψ(xi)b(xi|xk),

and ω is the weight factor, defined by

ωk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1(ψ(xk)− ψ(xi))B̄i|k

, (44)

Remark 1. In the proposed two-dimensional model (10), there are three numerical fluxes operating
at the cell boundaries. An interesting feature of the new two-dimensional model is that a single
weight function is sufficient for redefining the modified scheme to become consistent with the zeroth-
and the first-order moments.

Remark 2. It is to be noted that the finite volume scheme (34) is obtained by direct application of
the midpoint quadrature rules to the continuous Equation (9). Thus, it represents the numerical
model of [23] with two degrees of freedom.

3.2. Three-Dimensional Model

In this part, we present the three-dimensional finite volume scheme approximating
the multi-fragmentation model. Here, the scheme is expressed using vector notation, which
will give an outline for further extension of the proposed scheme in higher dimensions.

Similar to the two-dimensional model, the computational domain considered is

V :=
3

∏
r=1

]0, Xr] which is further divided into a finite number of sub-cells

Vi :=
3

∏
r=1

[xir−1/2, xir+1/2]

with ir = 1, 2, . . . , Ir. Let n̂i be the numerical approximation of n(t, x) over the cell Vi.
Further, let ∆i denote the volume of the cell Vi, and the the cell representative is de-
fined by xi :=

{
xi1 , xi2 , xi3

}
. Consider that the breakage function obeys the conserva-

tive Formula (14), then the three-dimensional extension of the newly proposed volume-
conservative formulation (33) is written as
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dn̂i

dt
∆i =

[
F̂ (1)

i1+1/2,i2,i3
− F̂ (1)

i1−1/2,i2,i3

]
∆i2,i3 +

[
F̂ (2)

i1,i2+1/2,i3
− F̂ (2)

i1,i2−1/2,i3

]
∆i1,i3

+
[
F̂ (3)

i1,i2,i3+1/2 − F̂
3
i1,i2,i3−1/2

]
∆i1,i2

−
[
Ĝ(1)i1,i2+1/2,i3+1/2 − Ĝ

(1)
i1,i2−1/2,i3+1/2 − Ĝ

(1)
i1,i2+1/2,i3−1/2 + Ĝ

(1)
i1,i2−1/2,i3−1/2

]
∆i1

−
[
Ĝ(2)i1+1/2,i2,i3+1/2 − Ĝ

(2)
i1−1/2,i2,i3+1/2 − Ĝ

(2)
i1+1/2,i2,i3−1/2 + Ĝ

(2)
i1−1/2,i2,i3−1/2

]
∆i2

−
[
Ĝ(3)i1+1/2,i2+1/2,i3

− Ĝ(3)i1−1/2,i2+1/2,i3
− Ĝ(3)i1+1/2,i2−1/2,i3

+ Ĝ(3)i1−1/2,i2−1/2,i3

]
∆i3

+
[
Ĥi1+1/2,i2+1/2,i3+1/2 − Ĥi1+1/2,i2+1/2,i3−1/2 − Ĥi1+1/2,i2−1/2,i3+1/2

+ Ĥi1+1/2,i2−1/2,i3−1/2 − Ĥi1−1/2,i2+1/2,i3+1/2 + Ĥi1−1/2,i2−1/2,i3+1/2

+Ĥi1−1/2,i2+1/2,i3−1/2 − Ĥi1−1/2,i2−1/2,i3−1/2
]
. (45)

Considering k := (k1, k2, k3) and l := (l1, l2, l3), the redefined flux functions are
written as follows:

F̂ (1)
i1+1/2,i2,i3

:=
I1

∑
k1=i1+1

(I2,I3)

∑
(k2,k3)=(i2,i3)

n̂kωkA
β,γ
k ∆k

i1

∑
l1=1
Bl1,i2,i3|k∆l1 , (46)

F̂ (2)
i1,i2+1/2,i3

:=
I2

∑
k2=i2+1

I1,I3

∑
(k1,k3)=(i1,i3)

n̂kωkA
α,γ
k ∆k

i2

∑
l2=1
Bi1,l2,i3|k∆l2 , (47)

F̂ (3)
i1,i2,i3+1/2 :=

(I1,I2)

∑
(k1,k2)=(i1,i2)

I3

∑
k3=i3+1

n̂kωkA
α,β
k ∆k

i3

∑
l3=1
Bi1,i2,l3|k∆l3 , (48)

Ĝ(1)i1,i2+1/2,i3+1/2 :=
I1

∑
k1=i1

(I2,I3)

∑
(k2,k3)=(i2+1,i3+1)

n̂kωkAα
k∆k

i2,i3

∑
(l2,l3)=1

Bi1,l2,l3|k∆l2,l3 , (49)

Ĝ(2)i1+1/2,i2,i3+1/2 :=
(I1,I3)

∑
(k1,k3=(i1+1,i3+1)

I2

∑
k2=i2

n̂kωkA
β
k∆k

i1,i3

∑
(l1,l2)=1

Bl1,l2,i3|k∆l1,l2 , (50)

Ĝ(3)i1+1/2,i2+1/2,i3
:=

I1

∑
k1=i1+1

(I2,I3)

∑
(k2,k3)=(i2+1,i3+1)

n̂kωkA
γ
k∆k

i1,i2

∑
(l1,l2)=1

Bl1,l2,i3|k∆l2,l3 , (51)

Ĥi+1/2 :=
I

∑
k=i

n̂kωkAk∆k

i

∑
l=1
Bl|k∆l. (52)

Here, δk is the weight factor, defined by

δk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1[φ(xk)− φ(xi)]Bi|k

, (53)

and the factors Aα,β
k ,Aβ,γ

k and Aα,γ
k are defined as follows:

Aα,β
k :=

∫ xl1+1/2

α(i1,l1)

∫ xl2+1/2

β(i2,l2)

∫ xl3+1/2

xl3−1/2

S(u)
φ(u)

du,
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Aβ,γ
k :=

∫ xl1+1/2

xl1−1/2

∫ xl2+1/2

β(i2,l2)

∫ xl3+1/2

γ(i3,l3)

S(u)
φ(u)

du,

Aα,γ
k :=

∫ xl1+1/2

α(i1,l1)

∫ xl2+1/2

xl2−1/2

∫ xl3+1/2

γ(i3,l3)

S(u)
φ(u)

du,

along withAα
k,Aβ

k,Aγ
k,Ak and α(i1, l1), β(i2, l2), γ(i3, l3) being defined in a similar manner

as done before.
Following the same trail, one can easily define the three-dimensional hypervolume

preserving numerical model. In this case, the numerical solution will be given by m̂i, which
is the approximation of m(t, x) over the cell Vi and the breakage function will obey the
hypervolume conservation law (20). Thus, the weight function will be defined as

ωk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1[ψ(xk)− ψ(xi)]B̄i|k

. (54)

4. Results

In this section, we validate the efficiency of the newly proposed finite volume models
with the standard finite volume scheme over several test problems. Since the new models
are defined with the help of a weight factor, we call it weighted finite volume scheme
(WFVS). On the other hand, Remark 2 indicates that the standard forms of the schemes
which are directly derived from the continuous equations were initially proposed by [23]
for fragmentation models with one degree of freedom. Therefore, for future reference, we
call the standard models the existing finite volume schemes (EFVS). However, we need to
mention that the two-dimensional extension of EFVS is not available in the literature to
date, and this article not only proposes an improved model, but also extends the existing
finite volume schemes for multidimensional fragmentation events.

For one-dimensional fragmentation problems, Ref. [30,31] has obtained the exact
solutions for a certain class of fragmentation kinetics. However, exact solutions in closed
forms are very rare in the multidimensional setup. In order to validate the accuracy of
the proposed schemes, we choose four test problems with two degrees of freedom, and
two test problems with three degrees of freedom. For all the test problems, exact solutions
in closed form are not always available in the literature. However, the zeroth and the
first-order moments can be computed exactly, which is sufficient to validate the accuracy
of the new schemes. Therefore, in the following section we discuss the efficiency of the
WFV scheme to predict the different physically important moment functions over the
EFV scheme. Our study builds up on both qualitative and quantitative assessments. The
qualitative accuracy is represented through graphical representation of the different entities
whereas, the qualitative analysis is performed by computing relative errors of the moment
functions over different grid points.

The computational domain V = [0, 1]× [0, 1] is considered for all the two-dimensional
test problems. The domain V is discretized into 15× 15 nonuniform subintervals bearing
the geometric relation xi+1/2 = rxi−1/2 where r := 3.9811 is the geometric ratio. Addition-
ally, all the test problems are supported by a mono-dispersed initial condition

f (x1, x2, 0) = δ(x1 − 1)δ(x2 − 1).

Similar extensions of the above data are considered for the three dimensional models. The
semi-discrete schemes (7) and (8) are solved using MATLAB-2019B software in a standard
PC with i5-7500 CPU processor @ 3.41 GHz and 8 GB RAM.
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4.1. Examples in Two-Dimensions
4.1.1. Volume Conservation Problems

In the first instance, we consider test problems with constant particle selection rate,
that is S(x, y) = 1 and two different daughter distribution functions

b1(x, y|x′, y′) =
2

x′y′
and b2

(
x, y|x′, y′

)
= 2δ

(
x− x′

2

)
δ

(
y− y′

2

)
.

The first breakage function b1 is a size-independent function of its arguments and
physically represents random scission of particles. On the other hand, the second breakage
function b2 represents size-dependent distribution of daughter fragments, choosing the
daughter-particles exactly half the size of the parent particle. The exact solution in closed
form for the above set of fragmentation kernels are not available in the literature. However,
we can calculate the zerothM0,0(t), firstM1,0(t)+M0,1(t) and the cross momentsM1,1(t)
exactly for both the problems (calculations of the exact moments are given in Appendix B).
In this regard, the exact moments are given in the Table 1.

Table 1. Exact moment functions for S = 1 and breakage functions b1, b2.

Selection Function Breakage Function Exact Moments

S(x, y) = 1 b1(x, y|x′, y′) =
2

x′y′
Mk,l(t) =Mk,l(0) exp

[(
2

(k+1)(l+1) − 1
)

t
]

S(x, y) = 1 b2(x, y|x′, y′) = 2δ
(

x− x′
2

)
δ
(

y− y′
2

)
Mk,l(t) =Mk,l(0) exp

[(
21−k−l − 1

)
t
]

Figures 1 and 2 represent the numerical moments obtained from EFVS and WFVS
against their exact values with breakage functions b1 and b2, respectively. More precisely,
Figures 1a and 2a present the comparison of zeroth and first-order moment functions, and
Figures 1b and 2b presents the first-order cross moment function M1,1(t). In order to
obtain a clear visibility of different markers, we plot Figures 1a and 2a on a semilogarithmic
scale with respect to the y-axis. In both the cases, it is observed that WFVS estimates the
zeroth-order, first-order and the cross moments with high accuracy, whereas the EFVS
conserves the total volume but fails to produce a good estimate of the other moments.
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(a) Zeroth- and first-order moments.
Figure 1. Cont.
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(b) First-order cross moments.

Figure 1. Comparison of different moments with selection function S = 1, and breakage function b1.
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(a) Zeroth- and first-order moments.
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(b) First-order cross moments

Figure 2. Comparison of different moments with selection function S = 1, and breakage function b2.
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In the Table 2, the relative error of the moment functions for S = 1 and b1 are calculated
at t = 10 over three different grid sizes. The geometric ratios to generate 10× 10, 15× 15
and 20× 20 grids are 7.9433, 3.9811 and 2.8184, respectively. The discrete L1-error norm

error :=
I

∑
i=1

∣∣∣∣Mexact −Mnum

Mexact

∣∣∣∣
is used to calculate the errors. Similarly, the relative error acquired while computing the
moments for S = 1 and b2 over different grid points are represented in Table 3.

Table 2. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b1 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time

10 × 10 2.2714 × 10−9 1.2589 × 10−1 6.6331 × 10−3 3 s 9.9946 × 10−1 1.2589 × 10−1 3.6744 × 10−2 2 s
15 × 15 1.3878 × 10−9 2.5123 × 10−1 6.2981 × 10−3 11 s 9.9492 × 10−1 2.5119 × 10−1 9.0704 × 10−3 7 s
20 × 20 1.1027 × 10−9 3.5483 × 10−1 5.7431 × 10−3 22 s 9.7599 × 10−1 3.5481 × 10−1 2.8711 × 10−3 11 s

Table 3. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b2 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time

10 × 10 4.8517 × 10−8 3.5481 × 10−1 6.7058 × 10−3 41 s 2.5560 × 10−1 3.5481 × 10−1 6.0140 × 10−3 2 s
15 × 15 4.8517 × 10−8 3.8986 × 10−1 6.7163 × 10−3 60 s 2.1835 × 10−1 3.8986 × 10−1 5.6563 × 10−3 31 s
20 × 20 4.8517 × 10−8 4.3652 × 10−1 6.7229 × 10−3 82 s 1.2736 × 10−1 4.3652 × 10−1 4.8956 × 10−3 40 s

In the second instance, we choose two problems by setting the size-dependent selection
function S(x, y) = x + y, along with the previously chosen particle daughter distribution
functions b1 and b2. In this case, also the exact solutions are not available in the literature,
however only the zeroth- and first-order moment functions can be calculated exactly. In
both the cases, the moment functions are given as

M1,0(t) +M0,1(t) = 1, and M0,0(t) = 1 + 2t.

The following Figure 3a,b represent the efficiency of the WFV scheme over the EFV
scheme to estimate the zeroth- and the first-order moments. It is observed that both the
schemes obey the volume conservation laws with high accuracy, but the WFV scheme
is highly accurate to predict the evolution of total number of particles. Tables 4 and 5
represent the relative errors over different grid points at time t = 10.
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(a) breakage function b1
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(b) breakage function b2

Figure 3. Comparison of zeroth- and first-order moments with selection function S = x + y, and
breakage functions b1, b2.

Table 4. Relative error for the weighted moments at different grid points for the test case with S = x + y and breakage
function b1 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +M0,1(t) CPU Time M0,0(t) M1,0(t) +M0,1(t) CPU Time

10 × 10 9.9944 × 10−1 1.2589 × 10−1 2 s 9.9983 × 10−1 1.2589 × 10−1 1 s
15 × 15 9.9939 × 10−1 2.5119 × 10−1 5 s 9.9969 × 10−1 2.5119 × 10−1 2 s
20 × 20 9.9934 × 10−1 3.5481 × 10−1 11 s 9.9957 × 10−1 3.5481 × 10−1 5 s

Table 5. Relative error for the weighted moments at different grid points for the test case with S = x + y and breakage
function b2 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +M0,1(t) CPU Time M0,0(t) M1,0(t) +M0,1(t) CPU Time

10 × 10 1.8625 × 10−1 3.5481 × 10−1 21 s 7.6213 × 10−1 3.5481 × 10−1 10 s
15 ×15 1.8658 × 10−1 3.8986 × 10−1 28 s 5.2710 × 10−1 3.8986 × 10−1 17 s
20 × 20 1.8698 × 10−1 4.3652 × 10−1 41 s 2.7194 × 10−1 4.3652 × 10−1 21 s
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4.1.2. Hypervolume Conservation Problems

In this part, the considered breakage functions b should satisfy the hypervolume
conservation rule (8). In this regard, we choose the following breakage functions

b3(x, y|x′, y′) =
4

x′y′
, and b4(x, y|x′, y′) =

x′δ(x− x′) + y′δ(y− y′)
x′y′

. (55)

The breakage function b3 is independent of the daughter-particle size, whereas b4
represents the particle breakage along the longer side of the rectangular structure. Similar
to the examples of volume conservation models, we choose two types of selection functions:
(i) size-independent kernels S(x, y) = 1, and (ii) size-dependent kernels S(x, y) = xy.

Like before, the exact solutions are not available in the literature, however we can
calculate three moment functions exactly, and they are given in Table 6.

Table 6. Exact moment functions for S = 1 and breakage functions b3, b4.

Selection Function Breakage Function Exact Moments

S(x, y) = 1 b3(x, y|x′, y′) =
4

x′y′
Mk,l(t) =Mk,l(0) exp

[(
4

(k+1)(l+1) − 1
)

t
]

S(x, y) = 1 b4
(

x, y|x′, y′
)
=

x′δ(x− x′) + y′δ(y− y′)
x′y′

M1,1(t) = 1,M0,0(t) = exp(t),
M1,0(t) +M0,1(t) = exp(t/2)

In Figure 4a, we plot the zeroth- and the cross-moment functions and observe that
the new WFV scheme predicts the corresponding moments with high accuracy. On the
other hand, we plot the first-order moment in Figure 4b. In this case also, the weighted
scheme exhibits high accuracy to estimate the moment compared to the standard model.
In Figure 4b, we take the the axes in loglog scale for a distinct visibility of the plots. In
this problem, Figure 4c represents the comparison of hypervolume distribution functions
with the numerical values obtained from the two schemes. We follow the flat pictorial
representation to plot the hypervolume distribution as presented in [32]. For the other
problems, only the exact moment functions can be calculated for comparison with the
numerical models.

The relative errors over different grid points are presented at Table 7.
In the second instance, we consider the size-dependent selection function S(x, y) = 1

and b4 as the daughter distribution function. The exact solution is not available for this
problem, but we can evaluate the zeroth and cross moments exactly. From the Figure 5
and Table 8, we can see that the newly proposed WFV scheme predicts the moments with
high accuracy.

Table 7. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b3 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time

10 × 10 1.9052 × 10−8 9.5538 6.8292 × 10−1 6 s 1.0000 2.2013 × 101 6.8309 × 10−1 2 s
15 × 15 1.7344 × 10−8 6.5432 6.0859 × 10−1 19 s 1.0000 2.1890 × 101 6.0863 × 10−1 8 s
20 × 20 1.6682 × 10−8 4.9080 5.4110 × 10−1 32 s 1.0000 2.1353 × 101 5.4112 × 10−1 14 s
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(a) Zeroth- and first-order cross moment.

10
0

10
1

dimensionless time

10
0

10
1

10
2

10
3

10
4

10
5

n
o
rm

a
li
z
e
d
 f
ir
s
t-

o
rd

e
r 

m
o
m

e
n
t

(b) First-order moments
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Figure 4. Comparison of different moments with selection function S = 1, and breakage function b3.
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(a) Zeroth- and first-order cross moment
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Figure 5. Comparison of different moments with selection function S = 1, and breakage function b4.

Table 8. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b4 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time

10 × 10 4.5211 × 10−10 2.2694 6.8309 × 10−1 4 s 9.9946 × 10−1 1.4453 × 102 6.8309 × 10−1 2 s
15 × 15 2.2036 × 10−10 2.8531 × 10−1 6.0863 × 10−1 10 s 9.9489 × 10−1 1.3513 × 102 6.0863 × 10−1 5 s
20 × 20 1.6944 × 10−10 4.7015 × 10−2 5.4112 × 10−1 22 s 9.7532 × 10−1 1.1682 × 102 5.4112 × 10−1 10 s

Next, we consider two problems with size-dependent selection function S(x, y) = xy
and the breakage functions b3 and b4. Only the zeroth- and first-order moment functions
can be calculated in closed form, and are given in the Table 9.

Table 9. Exact moment functions for S = xy and breakage functions b3, b4.

Selection Function Breakage Function Exact Moments

S(x, y) = xy b3(x, y|x′, y′) =
4

x′y′
M1,1(t) = 1,M0,0(t) = 1 + 3t

S(x, y) = xy b4
(

x, y|x′, y′
)
=

x′δ(x− x′) + y′δ(y− y′)
x′y′

M1,1(t) = 1,M0,0(t) = 1 + t
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Numerical evaluation of the moments using the WFV and EFV schemes are presented
in Figure 6 and Tables 10 and 11. The improved accuracy of the new scheme is observed.
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(a) Breakage function b3.
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Figure 6. Comparison of different moments with selection function S = xy, and breakage functions
b3, b4.

Table 10. Relative error for the weighted moments at different grid points for the test case with S = xy and breakage
function b3 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,1(t) CPU Time M0,0(t) M1,1(t) CPU Time

10 × 10 5.4678 × 10−1 6.8309 × 10−1 1 s 8.8071 × 10−1 6.8309 × 10−1 1 s
15 × 15 5.5130 × 10−1 6.0863 × 10−1 1 s 8.0374 × 10−1 6.0863 × 10−1 1 s
20 × 20 5.5418 × 10−1 5.4112 × 10−1 3 s 7.4013 × 10−1 5.4112 × 10−1 2 s
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Table 11. Relative error for the weighted moments at different grid points for the test case with S = xy and breakage
function b4 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,1(t) CPU Time M0,0(t) M1,1(t) CPU Time

10 × 10 3.3663 × 10−1 6.8309 × 10−1 1 s 7.6014 × 10−1 6.8309 × 10−1 1 s
15 × 15 1.3416 × 10−1 6.0863 × 10−1 1 s 7.9649 × 10−1 6.0863 × 10−1 1 s
20 × 20 5.4011 × 10−1 5.4112 × 10−1 2 s 7.4013 × 10−1 5.4112 × 10−1 2 s

4.2. Three-Dimensional Examples

Volume conservative problems: In this section, we consider two test problems with
size-dependent selection function S(y) = φ(y). The three-dimensional extension of the
above-mentioned breakage functions b1 and b2, that is,

b5(x|y) =
2

ψ(y)
, and b6(x|y) = 2δ

(
x1 −

y1

2

)
δ
(

x2 −
y2

2

)
δ
(

x3 −
y3

2

)
are considered here. Like before, we can only calculate the zeroth and first moments exactly
and they are given in the following Table 12.

Table 12. Exact moment functions for S = φ(y) and breakage functions b5, b6.

Selection Function Breakage Function Exact Moments

S(y) = φ(y) b5(x|y) =
2

ψ(y)
Mk1 ,k2 ,k3 (t) =Mk1 ,k2 ,k3 (0) exp

[(
8

k1k2k3
− 1
)

t
]

S(y) = φ(y) b6(x|y) = 2δ
(

x1 − y1
2

)
δ
(
x2 − y2

2

)
δ
(
x3 − y3

2

) M1,0,0(t) +M1,0,0(t) +M1,0,0(t) = 1,
M0,0(t) = 1 + 3t

From Figure 7 and Tables 13 and 14, we can observe that the WFV scheme estimates
the moment functions more accurately as compared to the EFV scheme.
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(a) Breakage function b5

Figure 7. Cont.
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(b) Breakage function b6

Figure 7. Comparison of zeroth- and first-order moments with selection function S = φ(x), and
different breakage functions b5, b6.

Table 13. Relative error for the weighted moments at different grid points for the test case with S = φ(x) and breakage
function b5 at t = 10.

Grids
WFVS EFVS

M0,0,0(t) M1,0,0(t) +
M0,1,0(t)+M0,0,1(t)

CPU
Time M0,0,0(t) M1,0,0(t) +

M0,1,0(t)+M0,0,1(t)
CPU
Time

10 × 10 × 10 9.9302 × 10−15 6.8884 × 10−1 52 s 7.1010 × 10−1 6.8884 × 10−1 34 s
15 × 15 × 15 1.1192 × 10−15 8.0464 × 10−1 198 s 5.7788 × 10−1 8.0464 × 10−1 78 s
20 × 20 × 20 2.8756 × 10−16 8.7678 × 10−1 505 s 5.0076 × 10−1 8.7678 × 10−1 292 s

Table 14. Relative error for the weighted moments at different grid points for the test case with S = φ(x) and breakage
function b6 at t = 10.

Grids
WFVS EFVS

M0,0,0(t) M1,0,0(t) +
M0,1,0(t)+M0,0,1(t)

CPU
Time M0,0,0(t) M1,0,0(t) +

M0,1,0(t)+M0,0,1(t)
CPU
Time

10 × 10 × 10 3.7623 × 10−1 1.8500 × 10−1 73 s 2.9725 × 10−1 5.0569 × 10−1 36 s
15 × 15 × 15 1.4588 × 10−1 3.5055 × 10−2 294 s 2.0743 × 10−1 3.8846 × 10−1 139 s
20 × 20 × 20 9.6814 × 10−2 3.0046 × 10−2 660 s 1.1094 × 10−1 1.9000 × 10−1 335 s

Hypervolume conservation: In this instance, we consider the size-independent daugh-

ter distribution function b7(x|y) =
8

ψ(y)
along with the constant selection S = 1 and

size-dependent selection S(y) = ψ(y). The exact moments are calculated in the Table 15.

Table 15. Exact moment functions for S(y) = 1, S = ψ(y) and breakage function b7.

Selection Function Breakage Function Exact Moments

S(y) = 1 b7(x|y) =
8

ψ(y)

M0,0,0(t) = exp(7t),M1,1,1(t) = 1,
M1,0,0(t) +M0,1,0(t) +M0,0,1(t) = exp(3t)

S(y) = ψ(y) b7(x|y) =
8

ψ(y)
M0,0,0(t) = 1 + 7t,M1,1,1(t) = 1
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Figure 8 and Table 16 exhibit the improved accuracy obtained from the WFV scheme
over the standard scheme to predict the above mentioned three moments.
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(a) Zeroth and cross moments.
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(b) First-order moments.

Figure 8. Comparison of zeroth- and first-order moments with selection function S = 1, and breakage
functions b7.

Table 16. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b7 at t = 10.

Grids

WFVS EFVS

M0,0,0(t)
M1,0,0(t) +
M0,1,0(t) +
M0,0,1(t)

M1,1,1(t) CPU
Time M0,0,0(t)

M1,0,0(t) +
M0,1,0(t) +
M0,0,1(t)

M1,1,1(t) CPU
Time

10 × 10 × 10 5.8045 × 10−8 2.8046 1.5759 × 10−1 164 s 1.0000 1.0013 × 101 8.2160 × 10−1 44 s
15 × 15 × 15 5.7040 × 10−8 1.7385 × 10−1 3.7535 × 10−2 605 s 1.0000 1.0000 7.8233 × 10−1 272 s
20 × 20 × 20 5.6751 × 10−8 1.4056 × 10−1 1.9838 × 10−2 1500 s 1.0000 9.9999 × 10−1 7.5516 × 10−1 650 s

On the other hand, Figure 9 and Table 17 represent the comparison of the above
moments as predicted by the WFV and EFV schemes.
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Figure 9. Comparison of zeroth and cross moments with selection function S = ψ(x), and breakage
function b7.

Table 17. Relative error for the weighted moments at different grid points for the test case with S = ψ(x) and breakage
function b7 at t = 10.

Grids
WFVS EFVS

M0,0,0(t) M1,1,1(t) CPU Time M0,0,0(t) M1,1,1(t) CPU Time

10 × 10 × 10 3.9509 × 10−16 8.2160 × 10−1 5 s 8.0112 × 10−1 8.2160 × 10−1 3 s
15 × 15 × 15 6.5640 × 10−16 7.8233 × 10−1 24 s 7.1237 × 10−1 7.8233 × 10−1 11 s
20 × 20 × 20 9.7932 × 10−16 7.5516 × 10−1 70 s 6.4883 × 10−1 7.5516 × 10−1 30 s

5. Conclusions

In this article, we have proposed finite volume schemes for solving multidimensional
fragmentation problems. In addition to the one-dimensional scheme of [23], it is also
extended in the multidimensional setup. It is observed that a careful reconstruction of the
standard multidimensional scheme leads to the development of very accurate schemes.
The newly proposed schemes obey the conservation laws and also predict several physical
moment functions with high accuracy. Several empirical test problems in two- and three-
dimensions are collected from the literature to validate the efficiency of the new schemes.
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Appendix A. Proof of Conservation Laws in Two-Dimensions

We first calculate the difference Fi+1/2 −Fi−1/2.

Fi+1/2,j −Fi−1/2,j =
I

∑
l1=i+1

J

∑
m1=j

nl1,m1A
β
l1,m1

i

∑
l2=1
Bl2,j|l1,m1

∆l2 ∆l1,m1

−
I

∑
l1=i

J

∑
m1=j

nl1,m1A
β
l1,m1

i−1

∑
l2=1
Bl2,j|l1,m1

∆l2 ∆l1,m1

=
I

∑
l1=i

J

∑
m1=j

nl1,m1A
β
l1,m1
Bi,j|l1,m1

∆i∆l1,m1

−
J

∑
m1=j

ni,m1A
β
i,m1

i

∑
l2=1
Bl2,j|i,m1

∆l2 ∆i,m1 . (A1)

In a similar manner, calculating and simplifying the difference Gi+1/2 − Gi−1/2.

Gi,j+1/2 − Gi,j−1/2 =
I

∑
l1=i

J

∑
m1=j+1

nl1,m1A
α
l1,m1

j

∑
m2=1

Bi,m2|l1,m1
∆m2 ∆l1,m1

−
I

∑
l1=i

J

∑
m1=j

nl1,m1A
α
l1,m1

j−1

∑
m2=1

Bi,m2|l1,m1
∆m2 ∆l1,m1

=
I

∑
l1=i

J

∑
m1=j

nl1,m1A
α
l1,m1
Bi,j|l1,m1

∆j∆l1,m1

−
I

∑
l1=i

nl1,jAα
l1,j

j

∑
m2=1

Bi,m2|l1,j∆m2 ∆l1,j. (A2)

Next, we calculate the following flux,

Hi+1/2,j+1/2 −Hi+1/2,j−1/2 − Hi−1/2,j+1/2 −Hi−1/2,j−1/2

=
I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1

i

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,m1
∆l2,m2 ∆l1,m1

−
I

∑
l1=i+1

J

∑
m1=j

nl1,m1Al1,m1

i

∑
l2=1

j−1

∑
m2=1

Bl2,m2|l1,m1
∆l2,m2 ∆l1,m1

−
I

∑
l1=i

J

∑
m1=j+1

nl1,m1Al1,m1

i−1

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,m1
∆l2,m2 ∆l1,m1

+
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|l1,m1
∆l2,m2 ∆l1,m1 .

=−
I

∑
l1=i+1

nl1,jAl1,j

i

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,j∆l2,m2 ∆l1,j

+
I

∑
l1=i+1

J

∑
m1=j

nl1,m1Al1,m1

i

∑
l2=1
Bl2,j|l1,m1

∆l2,j∆l1,m1

+
I

∑
l1=i

nl1,jAl1,j

i−1

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,j∆l2,m2 ∆l1,j

−
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1

i−1

∑
l2=1
Bl2,j|l1,m1

∆l2,j∆l1,m1 . (A3)
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Further rearrangement and simplification of the terms gives

Hi+1/2,j+1/2 − Hi+1/2,j−1/2 −Hi−1/2,j+1/2 −Hi−1/2,j−1/2

=
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1Bi,j|l1,m1
∆i,j∆l1,m1 −

I

∑
l1=i

nl1,jAl1,j

j

∑
m2=1

Bi,m2|l1,j∆i,m2 ∆l1,j

−
J

∑
m1=j

ni,m1Ai,m1

i

∑
l2=1
Bl2,j|i,m1

∆l2,j∆i,m1 + ni,jAi,j

i

∑
l2=1

j

∑
m2=1

Bl2,m2|i,j∆l2,m2 ∆i,j. (A4)

Therefore, substituting relations (A1), (A2) and (A4) in the discrete formulation (34)
and simplifying, we get

dni,j∆i,j

dt
=

I

∑
l1=i

J

∑
m1=j

nl1,m1A
β
l1,m1
Bi,j|l1,m1

∆i,j∆l1,m1 −
J

∑
m1=j

ni,m1A
β
i,m1

i

∑
l2=1
Bl2,j|l1,m1

∆l2,j∆l1,m1

+
I

∑
l1=i

J

∑
m1=j

nl1,m1A
α
l1,m1
Bi,j|l1,m1

∆i,j∆l1,m1 −
I

∑
l1=i

nl1,jAα
l1,j

j

∑
m2=1

Bi,m2|l1,m1
∆i,m2 ∆l1,m1

−
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1Bi,j|l1,m1
∆i,j∆l1,m1 +

I

∑
l1=i

nl1,jAl1,j

j

∑
m2=1

Bi,m2|l1,j∆i,m2 ∆l1,j

+
J

∑
m1=j

ni,m1Ai,m1

i

∑
l2=1
Bl2,j|i,m1

∆l2,j∆i,m1 − ni,jAi,j

i

∑
l2=1

j

∑
m2=1

Bl2,m2|i,j∆l2,m2 ∆i,j

=
I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1Bi,j|l1,m1
∆i,j∆l1,m1 − ni,jAi,j

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,j∆l2,m2 ∆i,j. (A5)

Temporal evolution of total volume: Taking sum over i and j of Equation (A5), we get

d
dt

[M1,0 +M0,1] =
I

∑
i=1

J

∑
j=1

I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1Bi,j|l1,m1
∆i,j∆l1,m1

−
I

∑
i=1

J

∑
j=1

ni,jAi,j

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,j∆l2,m2 ∆i,j.

Changing the order of summation in the first term, we get

d
dt

[M1,0 +M0,1] =
I

∑
i=1

I

∑
l1=i+1

J

∑
m1=1

l1−1

∑
i=1

m1−1

∑
j=1

nl1,m1Al1,m1Bi,j|l1,m1
∆i,j∆l1,m1

−
I

∑
i=1

J

∑
j=1

ni,jAi,j

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,j∆l2,m2 ∆i,j

=0.

Hence, the volume conservation law is obeyed.
Temporal evolution of zeroth moment: Dividing both sides of Equation (A5) by(

xi + yj
)
, and taking sum over i, j, we get

dM0,0

dt
=

I

∑
i=1

J

∑
j=1

1(
xi + yj

) I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1Bi,j|l1,m1
∆i,j∆l1,m1

−
I

∑
i=1

J

∑
j=1

ni,jAi,j(
xi + yj

) i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,j∆l2,m2 ∆i,j.
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Changing order of summation in the first term, we get

dM0,0

dt
=

I

∑
l1=1

J

∑
m1=1

nl1,m1Al1,m1 ∆l1,m1

l1−1

∑
i=1

m1−1

∑
j=1

[
1

xi + yj
− 1

xl1 + ym1

]
Bi,j|l1,m1

∆i,j

=
I

∑
l1=1

J

∑
m1=1

nl1,m1Al1,m1

φ
(
xl1 , ym1

) ∆l1,m1

l1−1

∑
i=1

m1−1

∑
j=1

[
φ
(
xl1 , ym1

)
φ
(

xi, yj
) − 1

]
Bi,j|l1,m1

∆i,j.

Appendix B. Exact Moments

The temporal evolution of zeroth momentM0,0(t) is given by

dM0,0(t)
dt

=
∫ ∞

0

∫ ∞

0

1
x + y

[
∂F (t, x, y)

∂x
+

∂G(t, x, y)
∂y

− ∂2H(t, x, y)
∂x∂y

]
dydx. (A6)

For S(x, y) = 1 and b
(
x, y|x′, y′

)
=

2
x′y′

, we have

∂F (t, x, y)
∂x

= −
∫ x

0

∫ ∞

y

ε + y
x + v

2
xv

n(t, x, v)dvdε +
∫ ∞

x

∫ ∞

y

x + y
u + v

2
uv

n(t, u, v)dvdu,

∂G(t, x, y)
∂y

= −
∫ ∞

x

∫ y

0

x + ξ

u + y
2

uy
n(t, u, y)dξdu +

∫ ∞

x

∫ ∞

y

x + y
u + v

2
uv

n(t, u, v)dvdu,

and

∂2H(t, x, y)
∂x∂y

=
∫ x

0

∫ y

0

ε + ξ

x + y
2

xy
n(t, x, y)dxidε−

∫ ∞

x

∫ y

0

x + ξ

u + y
2

uy
n(t, u, y)dξdu

−
∫ x

0

∫ ∞

y

ε + y
x + v

2
xv

n(t, x, v)dvdε +
∫ ∞

x

∫ ∞

y

x + y
u + v

2
uv

n(t, u, v)dvdu.

Now substituting in Equation (A6) and simplifying, we get

dM0,0(t)
dt

=
∫ ∞

0

∫ ∞

0

1
x + y

[∫ ∞

x

∫ ∞

y

2(x + y)
uv(u + v)

n(t, u, v)dvdu

−
∫ x

0

∫ y

0

2(ε + ξ)

xy(x + y)
n(t, x, y)dξdε

]
dydx

=
∫ ∞

0

∫ ∞

0

∫ u

0

∫ v

0

2
uv

dxdy f (t, u, v)dvdu−
∫ ∞

0

∫ ∞

0
f (t, x, y)dydx

=M0,0(t).

Solving these equations, we get

M0,0(t) =M0,0(0) exp(t). (A7)

Similarly, one can calculate the exact moment functions corresponding to the different
selection and breakage functions.
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