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Abstract: George Klir and Bo Yuan named after Lotfi Zadeh the implication p → q = max(1−
p, min(p, q)) (also Early Zadeh implication). In a series of papers, the author introduced two intuition-
istic fuzzy forms of Zadeh’s implication and studied their basic properties. In the present paper, a
new (third) intuitionistic fuzzy form of Zadeh’s implication is proposed and some of its properties
are studied.
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1. Introduction

In the present article, a new operation “implication” over intuitionistic fuzzy sets is
introduced. It is based on the definition of the fuzzy implication, proposed by George
Klir and Bo Yuan [1] and named after Lotfi Zadeh (also Early Zadeh implication), which has
the form

p→ q = max(1− p, min(p, q))

see also [2], as well as on the two previous intuitionistic fuzzy implications introduced by
the author [3,4] also inspired by the Zadeh implication.

In the beginning, the necessary concepts from intuitionistic fuzzy set theory will
be given.

Let a set E be fixed. The intuitionistic fuzzy set (IFS; see [5,6]) A in E is defined by:

A = {〈x, µA(x), νA(x)〉|x ∈ E},

where functions µA : E→ [0, 1] and νA : E→ [0, 1] define the degree of membership and
the degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.

The two Zadeh’s intuitionistic fuzzy implications have the forms:

A→Z,1 B ={〈x, max(νA(x), min(µA(x), µB(x))),

min(µA(x), νB(x))〉|x ∈ E}.

see [3] and

A→Z,2 B ={〈x, max(νA(x), min(µA(x), µB(x))),

min(µA(x), max(νA(x), νB(x)))〉|x ∈ E}

see [4,7]. In [6–8] the first Zadeh’s intuitionistic fuzzy implication is assigned with number
1 and in [7,8] the second Zadeh’s intuitionistic fuzzy implication is labelled with number
166. As of 2012 [6], there are definitions of 138 intuitionistic fuzzy implications, in 2017 [7],
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they already amount to 185, and in 2019 [8], the list is further extended to 190. Among the
new 52 implications, published after 2012, 22 of them were introduced by L. Atanassova
in [9–14] and 3 were proposed by P. Dworniczak in [15–17]. All other intuitionistic fuzzy
implications are introduced by the author, in some cases in collaboration with B. Riečan,
E. Szmidt, J. Kacprzyk, N. Angelova and V. Atanassova. The 190 intuitionistic fuzzy
implications from [8] generate 55 different intuitionistic fuzzy negations. An up-to-date list
of the existing intuitionistic fuzzy implications is available online at [18].

Below we will call them, respectively, “First” and “Second Zadeh’s intuitionistic fuzzy im-
plication".

Let for every x ∈ E:
πA(x) = 1− µA(x)− νA(x).

Therefore, function π determines the degree of uncertainty.
Let us define the empty IFS, the totally uncertain IFS, and the unit IFS (see [5,6]),

respectively, by:

O∗ = {〈x, 0, 1〉|x ∈ E},
U∗ = {〈x, 0, 0〉|x ∈ E},
E∗ = {〈x, 1, 0〉|x ∈ E}.

The geometrical interpretation of an element x ∈ E with degrees µA(x) and νA(x) is
shown in Figure 1 (see [5,6]).
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Fig. 1: The geometrical interpretation of an element x ∈ E28

An IFS A is called intuitionistic fuzzy tautological set (IFTS) if and only if (iff) for every x ∈ E

µA(x) ≥ νA(x)

and it is called tautological set iff for every x ∈ E: µA(X) = 1, νA(x) = 0.29

For two IFSs A and B:

A ⊆ B iff (∀x ∈ E)(µA(x) ≤ µB(x) & νA(x) ≥ νB(x)).

Therefore, for every two IFSs A and B:

A→Z,2 B ⊆ A→Z,1 B.

Figure 1. The geometrical interpretation of an element x ∈ E.

An IFS A is called intuitionistic fuzzy tautological set (IFTS) if and only if (iff) for every
x ∈ E

µA(x) ≥ νA(x)

and it is called tautological set iff for every x ∈ E: µA(X) = 1, νA(x) = 0.
For two IFSs A and B:

A ⊆ B iff (∀x ∈ E)(µA(x) ≤ µB(x) & νA(x) ≥ νB(x)).

Therefore, for every two IFSs A and B:

A→Z,2 B ⊆ A→Z,1 B.

2. Main Results

Let us have two IFSs

A = {〈x, µA(x), νA(x)〉|x ∈ E},
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and
B = {〈x, µB(x), νB(x)〉|x ∈ E}.

Now, we introduce the new (third) Zadeh’s intuitionistic fuzzy implication with
the form:

A→Z,3 B ={〈x, max(µB(x), min(νA(x), νB(x))),

min(νB(x), max(µA(x), µB(x)))〉|x ∈ E}.

First, we check that the definition is correct.
Obviously, the membership part

0 ≤ max(µB(x), min(νA(x), νB(x))) ≤ 1

and the non-membership part

0 ≤ min(νB(x), max(µA(x), µB(x))) ≤ 1.

Let

X ≡ max(µB(x), min(νA(x), νB(x))) + min(νB(x), max(µA(x), µB(x))).

We must check the following cases.

Case 1.
Let µA(x) ≤ µB(x). Then

X = max(µB(x), min(νA(x), νB(x))) + min(νB(x), µB(x)).

1.1. If νA(x) ≤ νB(x), then

X = max(µB(x), νA(x)) + min(νB(x), µB(x)).

1.1.1. If νA(x) ≤ µB(x), then

X = µB(x) + min(νB(x), µB(x))

≤ µB(x) + νB(x) ≤ 1.

1.1.2. If νA(x) > µB(x), then

X = νA(x) + min(νB(x), µB(x)) ≤ νA(x) + µB(x)

≤ νB(x) + µB(x) ≤ 1

(by the assumption in 1.1).

1.2. If νA(x) > νB(x), then

X = max(µB(x), νB(x)) + min(νB(x), µB(x))

= µB(x) + νB(x) ≤ 1.

Case 2.
Let µA(x) > µB(x). Then

X = max(µB(x), min(νA(x), νB(x))) + min(νB(x), µA(x)).

2.1. If νA(x) ≤ νB(x), then

X = max(µB(x), νA(x)) + min(νB(x), µA(x)).
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2.1.1. If νA(x) ≤ µB(x), then

X = µB(x) + min(νB(x), µA(x))

≤ µB(x) + νB(x) ≤ 1.

2.1.2. If νA(x) > µB(x), then

X = νA(x) + min(νB(x), µA(x))

≤ νA(x) + µA(x) ≤ 1.

2.2. If νA(x) > νB(x), then

X = max(µB(x), νB(x)) + min(νB(x), µA(x)).

2.2.1. If µB(x) ≤ νB(x), then

X = νB(x) + min(νB(x), µA(x))

< νA(x) + µA(x) ≤ 1

(by the assumption in 2.2).

2.2.2. If µB(x) > νB(x), then

X = µB(x) + min(νB(x), µA(x))

≤ µB(x) + νB(x) ≤ 1.

Therefore, the operation is defined correctly.
Now, we can see that there is not a relation between the third Zadeh’s implication

and each one of the first two Zadeh’s implications. Really, if the universe is E = {x} and
A = {〈x, 0, 1

4 〉}, B = {〈x, 1
2 , 1

2 〉}, then

A→Z,1 B = {〈x, max(
1
4

, min(0,
1
2
)), min(0,

1
2
)〉} = {〈x,

1
4

, 0〉}

while

A→Z,3 B = {〈x, max(
1
2

, min(
1
4

,
1
2
)), min(

1
2

, max(0,
1
2
))〉} = {〈x,

1
2

,
1
2
〉},

i.e., both sets are not comparable.
The new implication generates the classical negation of IFS A, because

¬A = A→Z,3 O∗ = {〈x, νA(x), µA(x)〉|x ∈ E}

(cf. [5,6]).
We can check directly that

A→Z,3 U∗ = {〈x, max(0, min(νA(x), 0)), min(0, max(µA(x), 0))〉|x ∈ E}
= {〈x, 0, 0〉|x ∈ E} = U∗,

A→Z,3 E∗ = {〈x, max(1, min(νA(x), 0)), min(0, max(µA(x), 1))〉|x ∈ E}
= {〈x, 1, 0〉|x ∈ E} = E∗,

O∗ →Z,3 B = {〈x, max(µB(x), min(1, νB(x))), min(νB(x), max(0, µB(x)))〉|x ∈ E}
= {〈x, max(µB(x), νB(x)), min(µB(x), νB(x)))〉|x ∈ E},
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E∗ →Z,3 B = {〈x, max(µB(x), min(0, νB(x))), min(νB(x), max(1, µB(x)))〉|x ∈ E}
= {〈x, µB(x), νB(x)〉|x ∈ E} = B,

U∗ →Z,3 B = {〈x, max(µB(x), min(0, νB(x))), min(νB(x), max(0, µB(x)))〉|x ∈ E}
= {〈x, µB(x), min(µB(x), νB(x))〉|x ∈ E}.

In the particular case, we have

O∗ →Z,3 O∗ = E∗,

O∗ →Z,3 U∗ = U∗,

O∗ →Z,3 E∗ = E∗,

U∗ →Z,3 O∗ = U∗,

U∗ →Z,3 U∗ = U∗,

U∗ →Z,3 E∗ = E∗,

E∗ →Z,3 O∗ = O∗,

E∗ →Z,3 U∗ = U∗,

E∗ →Z,3 E∗ = E∗.

Four different geometrical interpretations of the element x ∈ E in IFSs A and B,
i.e., with degrees µA(x) and νA(x), and µB(x) and νB(x); and the element x from IFS
A →Z,3 B, are shown in Figures 2–5. These four scenarios are related to the locations of
the element x in A and B. Let us denote the element x in A by xA, in B—by xB, and in
A→Z,3 B—by xA→Z,3B.
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Nine axioms for implications are introduced in [1]. They are the following:52

Axiom 1. (∀x, y)(x ≤ y→ (∀z)(I(x, z) ≥ I(y, z))).53

Axiom 2. (∀x, y)(x ≤ y→ (∀z)(I(z, x) ≤ I(z, y))).54

Axiom 3. (∀y)(I(0, y) = 1).55

Axiom 4. (∀y)(I(1, y) = y).56

Axiom 5. (∀x)(I(x, x) = 1).57

Axiom 6. (∀x, y, z)(I(x, I(y, z)) = I(y, I(x, z))).58

Axiom 7. (∀x, y)(I(x, y) = 1 iff x ≤ y).59

Axiom 8. (∀x, y)(I(x, y) = I(N(y), N(x))), where N is an operation for a negation.60

Axiom 9. I is a continuous function.61

Following [6], we will mention that if the axiom is valid as an intuitionistic fuzzy tautology (IFT),62

that axiom is marked with an asterisk (∗). Such are the axioms:63
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Axiom 3. (∀y)(I(0, y) = 1).
Axiom 4. (∀y)(I(1, y) = y).
Axiom 5. (∀x)(I(x, x) = 1).
Axiom 6. (∀x, y, z)(I(x, I(y, z)) = I(y, I(x, z))).
Axiom 7. (∀x, y)(I(x, y) = 1 iff x ≤ y).
Axiom 8. (∀x, y)(I(x, y) = I(N(y), N(x))), where N is an operation for a negation.
Axiom 9. I is a continuous function.

Following [6], we will mention that if the axiom is valid as an intuitionistic fuzzy
tautology (IFT), that axiom is marked with an asterisk (∗). Such are the axioms:
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Axiom 3*. (∀y)(I(0, y) is an IFT).
Axiom 5*. (∀x)(I(x, x) is an IFT).
Axiom 7*. (∀x, y)(I(x, y) is an IFT iff x ≤ y).

Theorem 1. Implication→Z,3 satisfies Axioms 1 and 4.

Proof. Let A, B and C be three IFSs. In [5,6], the relation ⊆ is defined by

A ⊆ B iff (∀x ∈ E)(µA(x) ≤ µB(x) & νA(x) ≥ νB(x)).

Let A ⊆ B. First, we determine

A→Z,3 C ={〈x, max(µC(x), min(νA(x), νC(x))),

min(νC(x), max(µA(x), µC(x)))〉|x ∈ E}

and

B→Z,3 C ={〈x, max(µC(x), min(νB(x), νC(x))),

min(νC(x), max(µB(x), µC(x)))〉|x ∈ E}.

Now, we see that for each x ∈ E:

max(µC(x), min(νA(x), νC(x)))−max(µC(x), min(νB(x), νC(x)))

≥ max(µC(x), min(νB(x), νC(x)))−max(µC(x), min(νB(x), νC(x))) = 0,

(from νA(x) ≥ νB(x))
and

min(νC(x), max(µB(x), µC(x)))−min(νC(x), max(µA(x), µC(x)))

≥ min(νC(x), max(µA(x), µC(x)))−min(νC(x), max(µA(x), µC(x))) = 0.

(from µA(x) ≤ µB(x)).
Therefore, Axiom 1 is valid.
From E∗ →Z,3 A = A that we checked above, it follows that Axiom 4 is valid, too.

Since functions max and min are continuous, Axiom 9 is valid. For the rest axioms
we can construct counterexamples. For example, for the universe E = {x} and the IFSs
A = {〈x, 0, 1〉}, B = {〈x, 0, 1

2 〉}, C = {〈x, 0, 1〉} it follows that A ⊂ B (strong inclusion), but

C →Z,3 A = {〈x, 1, 0〉|x ∈ E} 6⊆ {〈x,
1
2

, 0〉|x ∈ E} = C →Z,3 B.

Therefore, Axiom 2 is not valid. In the proofs of Theorem 2, we will construct two other
counterexamples.

Theorem 2. Implication →Z,3 satisfies Axioms 3* and 5*, but it does not satisfy Axioms 3
and 5, i.e., in the forms O∗ →Z,3 A and A →Z,3 A are IFTSs, but O∗ →Z,3 A = E∗ and
A→Z,3 A = E∗ are not tautological sets.

Proof. Let A be an IFS. Then for Axiom 3*, as we checked above,

O∗ →Z,3 A = {〈x, max(µA(x), νA(x)), min(νA(x), µA(x))〉|x ∈ E}

that is an IFTS, but, e.g., for µA(x) = νA(x) = 0.5,

A→Z,3 A = {〈x, 0.5, 0.5〉|x ∈ E}
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is not a tautological set, i.e., Axiom 3 is not valid.
Analogously, for Axiom 5* we have

A→Z,3 A = {〈x, max(µA(x), min(νA(x), νA(x))),

min(νA(x), max(µA(x), µA(x)))〉|x ∈ E}
= {〈x, max(µA(x), min(νA(x), νA(x))),

min(νA(x), max(µA(x), µA(x)))〉|x ∈ E}
= {〈x, max(µA(x), νA(x)), min(νA(x), µA(x))〉|x ∈ E},

that is an IFTS, but, e.g., for µA(x) = νA(x) = 0.5,

A→Z,3 A = {〈x, 0.5, 0.5〉|x ∈ E}

is not a tautological set, i.e., Axiom 5 is not valid.

To the proofs of both theorems, we can add also that Axiom 7* is not valid (and
hence, Axiom 7, too), because the counterexample with the universe E = {x} and the IFSs
A = {〈x, 1

2 , 1
2 〉}, B = {〈x, 0, 1〉}. In this case B ⊂ A (strong inclusion), while

A→Z,3 B = {〈x,
1
2

,
1
2
〉}

is and IFTS.
Now, we will discuss the axioms of the intuitionistic logic (see e.g., [19]).

Theorem 3. For every three IFSs A, B and C the IFSs
(a) A→ A,

(b) A→ (B→ A),

(c) A→ (B→ (A ∩ B)),
(d) (A→ (B→ C))→ (B→ (A→ C)),
(e) (A→ (B→ C))→ ((A→ B)→ (A→ C)),
(f) A→ ¬¬A,

(g) ¬(A ∩ ¬A),

(h) (¬A ∪ B)→ (A→ B),
(i) ¬(A ∪ B)→ (¬A ∩ ¬B),
(j) (¬A ∩ ¬B)→ ¬(A ∪ B),
(k) (¬A ∪ ¬B)→ ¬(A ∩ B),
(l) (A→ B)→ (¬B→ ¬A),

(m) (A→ ¬B)→ (B→ ¬A),

(n) ¬¬¬A→ ¬A,

(o) ¬A→ ¬¬¬A,

(p) ¬¬(A→ B)→ (A→ ¬¬B),
(q) (C → A)→ ((C → (A→ B))→ (C → B))
are IFTSs, but none of these is a tautological set.

The proof of this theorem is similar to the above one.

3. Conclusions

Starting with [3], in a series of papers a lot of intuitionistic fuzzy implications were
introduced and some of their basic properties were studied. All 190 implications are given
in [8]. In future, these properties will be checked for the new implication, too. In [20–22],
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for each intuitionistic fuzzy implication, one or three intuitionistic fuzzy disjunctions and
conjunctions are introduced. For example, for disjunction, the following formulas are used:

p ∨1 q = ¬p→ q,

p ∨2 q = ¬p→ ¬¬q,

where the operation intuitionistic fuzzy negation (¬) is generated by the respective intu-
itionistic fuzzy implication (→);

p ∨3 q = ¬p→ q,

where the negation ¬ is the classical one. Therefore, in the present case, the three disjunc-
tions coincide, because the negation in the three formulas is only one.

In a similar way, the three different conjunctions are defined. In further research, new
conjunctions and disjunctions will be introduced using the above formulas and based on the
third Zadeh’s intuitionistic fuzzy implication. Applications of this new implication can be
sought in various decision making procedures involving uncertainty such as intuitionistic
fuzzy based expert systems.
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