
mathematics

Article

On the Increasing Convex Order of Relative Spacings of
Order Statistics

Antonia Castaño-Martínez, Gema Pigueiras * and Miguel A. Sordo

����������
�������

Citation: Castaño-Martínez, A.;

Pigueiras, G.; Sordo, M.A. On the

Increasing Convex Order of Relative

Spacings of Order Statistics.

Mathematics 2021, 9, 618. https://

doi.org/10.3390/math9060618

Academic Editors: Antonio Di

Crescenzo and Lev Klebanov

Received: 19 February 2021

Accepted: 11 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dpto. Estadística e Investigación Operativa, Universidad de Cádiz, 11510 Puerto Real, Spain;
antonia.castano@uca.es (A.C.-M.); mangel.sordo@uca.es (M.A.S.)
* Correspondence: gema.pigueiras@uca.es

Abstract: Relative spacings are relative differences between order statistics. In this context, we extend
previous results concerning the increasing convex order of relative spacings of two distributions from
the case of consecutive spacings to general spacings. The sufficient conditions are given in terms of
the expected proportional shortfall order. As an application, we compare relative deprivation within
some parametric families of income distributions.
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1. Introduction

Let X1, X2, ..., Xn be n independent and identically distributed (i.i.d.) random variables,
and let X1:n, ..., Xn:n be the corresponding order statistics, which are the Xis arranged in a
non-decreasing order (that is, X1:n ≤ ... ≤ Xn:n). Differences between order statistics are
called spacings. The sequences of spacings, given by

SX
i,j,n = Xj:n − Xi:n, 1 ≤ i < j ≤ n, (1)

and relative spacings, given by

RX
i,j,n =

Xj:n − Xi:n

Xi:n
, 1 ≤ i < j ≤ n, (2)

have found applicability in fields such as reliability, auction theory, insurance, economics
and other areas of applied mathematics. Given two probability models, it is often of
interest to study which one has larger spacings under different probabilistic criteria (see,
e.g., Kochar [1], Kochar and Rojo [2], Hu and Wei [3], Kochar et al. [4], Kochar and
Xu [5], Genest et al. [6], Mao and Hu [7], Zhao and Zhang [8], Torrado and Lillo [9],
Belzunce et al. [10] and Ding et al. [11]). There has been less research conducted on the
comparison of relative spacings, which is the focus of this paper. As far as we know,
the earliest reference on this subject is the work of Belzunce et al. [12], who gave conditions
for the comparison of relative spacings between consecutive generalized order statistics
from two random vectors in terms of several stochastic orders. Some of these conditions
were given in terms of the expected proportional shortfall order and the increasing convex
order, which are defined below.

Definition 1. Let X and Y be two random variables with respective distribution functions F
and G and survival functions F and G, respectively. Let F−1 and G−1 be the corresponding
quantile functions given by F−1(u) = inf{x : F(x) ≥ u} and G−1(u) = inf{x : G(x) ≥ u}, for
0 ≤ u ≤ 1. Then,

(a) We say that X is less than Y in the increasing convex order (denoted by X ≤icx Y) if

E[φ(X)] ≤ E[φ(Y)],
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for all increasing convex function φ : R −→ R or, equivalently, if∫ +∞

s
F(t)dt ≤

∫ +∞

s
G(t)dt, for all s.

(b) For non-negative random variables X and Y with finite means, we say that X is less than Y
in the expected proportional shortfall order (denoted by X ≤ps Y) if∫ ∞

F−1(p) F(t)dt

F−1(p)
≤

∫ ∞
G−1(p) G(t)dt

G−1(p)
for all p ∈ (0, 1).

Many references and applications of the increasing convex order can be found in
the books by Shaked and Shanthikumar [13] and Belzunce et al. [14]. References on the
expected proportional shortfall include Belzunce et al. [12,15,16], Di Crescenzo et al. [17],
Belzunce and Martínez-Riquelme [18], Sordo et al. [19], Arnold and Sarabia [20], and
Arriaza et al. [21]. In particular, given two random variables X and Y, Belzunce et al. [12]
proved (considering spacings of generalized order statistics) that

X1:n ≤ps Y1:n =⇒ Xi+1:n − Xi:n
Xi:n

≤icx
Yi+1:n −Yi:n

Yi:n
, 1 ≤ i ≤ n− 1. (3)

However, in many applied situations, relative (i, j)-spacings of the form (2) (and not
only consecutive spacings where j = i + 1) must be compared. One such situation is in the
framework of deprivation theory. The notion of individual relative deprivation refers to the
frustration felt by an individual in society when she/he compares herself/himself to more
successful individuals (see Runciman [22]). If we consider a society with n individuals
who are identical except for their incomes, x1:n ≤ ... ≤ xn:n, the relative deprivation of an
individual with rank k when she/he compares herself/himself to a richer individual with
rank j can be quantified by the number

( xj:n−xk:n
xk:n

)
. The sum of these values across richer

individuals (normalized by the population size) given by

1
n

n

∑
j=k+1

( xj:n − xk:n

xk:n

)
, (4)

represents their total relative deprivation (see, e.g., Paul [23], Chakravarty and Moyes [24]
and Chakravarty et al. [25]). Given an income random variable X with distribution function
F, the theoretical version of (4) is given by

RDPX
k,n =

1
n

n

∑
j=k+1

(Xj:n − Xk:n

Xk:n

)
=

1
n

n

∑
j=k+1

RX
k,j,n,

where X1:n, ..., Xn:n are the corresponding order statistics. Given another income random
variable Y, a natural question is to find conditions under which

E
[

RDPX
k,n

]
≤ E

[
RDPY

k,n

]
, for all 1 ≤ k ≤ n,

a condition that means there is no more relative deprivation under X than under Y (see
Chakravarty and Moyes [24]) and that cannot be deduced from (3).

In this paper, we generalize (3) providing conditions under which

RX
i,j,n ≤icx RY

i,j,n, for 1 ≤ i < j ≤ n. (5)

Two points should be noted here. First, (5) does not follow from the results in
Belzunce et al. [12] and new research has been conducted to achieve sufficient conditions
for these orderings; second, the order ≤icx is much more informative than just a simple
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comparison of expectations, since it allows one to compare increasing convex functions of
relative spacings.

To this aim, the paper is organized as follows: In Section 2, we provide conditions
to compare order statistics arising from two random variables in terms of the expected
proportional shortfall order. The purpose is to obtain sufficient conditions to compare
relative spacings (from two random variables) that are not necessarily adjacent in terms of
the increasing convex order. We also provide a sufficient condition, in terms of spacings,
for stochastic equality (up to a scale parameter) under the expected proportional shortfall
ordering. In Section 3, we apply the results to the comparison of income distributions in
terms of relative deprivation. The income distributions under study are the generalized
gamma and generalized beta of the second kind, which include, as particular cases, some
of the most popular distributions used in the analysis of income. In this section, the re-
lationship between the expected proportional shortfall order and the star-shaped order,
which is defined as follows, is exploited.

Definition 2. Let X and Y be two random variables with respective distribution functions F and
G. We say that X is less than Y in the star-shaped order (denoted by X ≤∗ Y) if and only if

G−1(p)
F−1(p)

is increasing in p ∈ (0, 1).

Recent applications of the star-shaped order can be found in Arriaza et al. [21] and the
book by Arnold and Sarabia [20]. It is well-known (Belzunce et al. [15]) that

X ≤∗ Y =⇒ X ≤ps Y. (6)

Section 4 contains further remarks.

2. Main Results

Let X1, ..., Xn be independent and identical copies of a non-negative random variable
X with distribution function F and a finite mean µX. The distribution function of the ith
order statistic Xi:n (i = 1, ..., n) is

Fi:n(x) = βi,n−i+1(F(x)), x ≥ 0,

where

βi,j(p) =
∫ p

0

(i + j− 1)!
(i− 1)!(j− 1)!

ti−1(1− t)j−1dt, 0 ≤ p ≤ 1, (7)

is the Pearson’s incomplete beta function (see Pearson [26]) with parameters (i, j).
If F is absolutely continuous with density function f , the density function of Xi:n,

(i = 1, ..., n) is

fi:n(x) =
n!

(i− 1)!(n− i)!
[F(x)]i−1[F(x)

]n−i f (x), x ≥ 0.

We require the following result due to Barlow and Proschan [27].

Lemma 1. Let W be a measure on the interval (a, b), not necessarily non-negative. Let h be a
non-negative function defined on (a, b). If

∫ b
x dW(t) ≥ 0 for all x ∈ (a, b) and if h is increasing,

then
∫ b

a h(t)dW(t) ≥ 0.

These represent the conditions required to prove the following result.
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Theorem 1. Let X and Y be non-negative random variables with finite means and continuous
distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let Y1, . . . , Yn be
i.i.d. as Y. Given 1 ≤ k ≤ n, if Xk:n ≤ps Yk:n then

(a) Xj:n ≤ps Yj:n, for all k + 1 ≤ j ≤ n.
(b) Xk:m ≤ps Yk:m, for all k ≤ m ≤ n− 1.

Proof. We first prove (a). The condition Xk:n ≤ps Yk:n is equivalent to

∫ 1

p

F−1
k:n (t)

F−1
k:n (p)

dt ≤
∫ 1

p

G−1
k:n(t)

G−1
k:n(p)

dt, for all p ∈ (0, 1), (8)

where F−1
k:n (t) and G−1

k:n(t) are the quantile functions of Xk:n and Yk:n, respectively. Using

F−1
k:n (t) = F−1

(
β−1

k,n−k+1(t)
)

, t ∈ (0, 1), (9)

with βi,j(t), the incomplete beta function given by (7) (and similarly for G−1
k:n(t)), we see

that (8) holds if and only if

∫ 1

p

(
G−1(β−1

k,n−k+1(t))

G−1(β−1
k,n−k+1(p))

−
F−1(β−1

k,n−k+1(t))

F−1(β−1
k,n−k+1(p))

)
dt ≥ 0, for all p ∈ (0, 1).

Making the change of variable β−1
k,n−k+1(t) = u, the latter becomes

∫ 1

p

(
G−1(u)
G−1(p)

− F−1(u)
F−1(p)

)
dβk,n−k+1(u) ≥ 0, p ∈ (0, 1). (10)

Let us consider j ≥ k + 1 and the non-negative increasing function

h(u) =
(k− 1)!(n− k)!
(j− 1)!(n− j)!

(
1
u
− 1
)−(j−k)

, u ∈ [p, 1)

and h(u) = 0 for u ∈ (0, p). Since dβ j,n−j+1(u) = h(u)dβk,n−k+1(u), u ∈ [p, 1), it follows
from (10) and Lemma 1 that

∫ 1

p

(
G−1(u)
G−1(p)

− F−1(u)
F−1(p)

)
dβ j,n−j+1(u) ≥ 0, p ∈ (0, 1),

which means, using the same argument as before, that Xj:n ≤ps Yj:n for all k + 1 ≤ j ≤ n.
The proof of (b) follows the same steps as the proof of (a) using dβk,m−k+1(u) =

h∗(u)dβk,n−k+1(u), u ∈ [p, 1), where, given k ≤ m < n,

h∗(u) =
m!(n− k)!
n!(m− k)!

(1− u)−(n−m), u ∈ [p, 1)

and h∗(u) = 0 for u ∈ (0, p).

As a direct consequence of Theorem 1, we note that

X1:n ≤ps Y1:n =⇒ Xj:n ≤ps Yj:n =⇒ Xj:m ≤ps Yj:m, 1 ≤ j ≤ m ≤ n.

In particular,
X1:n ≤ps Y1:n for some n ≥ 1 =⇒ X ≤ps Y. (11)
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It is well-known (Belzunce et al. [15]) that

X ≤ps Y ⇐⇒
(

X− F−1(p)
F−1(p)

)+

≤icx

(
Y− G−1(p)

G−1(p)

)+

, p ∈ (0, 1), (12)

where x+ = max{x, 0}.
Next, we state two lemmas that will be used in the proofs of the main results. The first

one involves some kind of parallelism with (12) using order statistics. The second one is a
technical lemma.

Lemma 2. Let X and Y be non-negative random variables with finite means and continuous
distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let Y1, Y2, . . . , Yn be
i.i.d. as Y. Let 1 ≤ k ≤ n, and then Xk:n ≤ps Yk:n if and only if(

X− F−1(p)
F−1(p)

)+

k:n
≤icx

(
Y− G−1(p)

G−1(p)

)+

k:n
for all p ∈ (0, 1). (13)

Proof. It follows from (12) that Xk:n ≤ps Yk:n if and only if(
Xk:n − F−1

k:n (p)

F−1
k:n (p)

)+

≤icx

(
Yk:n − G−1

k:n(p)

G−1
k:n(p)

)+

for all p ∈ (0, 1).

Using (9), this is the same as(
Xk:n − F−1(p)

F−1(p)

)+

≤icx

(
Yk:n − G−1(p)

G−1(p)

)+

for all p ∈ (0, 1).

Since the function
( x−c

c
)+ (with c > 0 constant) is increasing, the latter is the same

as (13).

Lemma 3. Let X and Y be non-negative random variables with finite means and continuous
distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let Y1, . . . , Yn be
i.i.d. as Y. Let 1 ≤ k ≤ n, if Xk:n ≤ps Yk:n, then(

X− F−1(p)|X > F−1(p)
)

k:n
F−1(p)

≤icx

(
Y− G−1(p)|Y > G−1(p)

)
k:n

G−1(p)
,

for all p ∈ (0, 1).

Proof. From (9) and Lemma 2, it follows that Xk:n ≤ps Yk:n implies

∫ 1

q

(
G−1(β−1

k,n−k+1(u))

G−1(p)
−

F−1(β−1
k,n−k+1(u))

F−1(p)

)
du ≥ 0,

for all q ∈ (0, 1) and p ∈ (0, 1). The change of variable β−1
k,n−k+1(u) = t yields

∫ 1

q

(
G−1(t)
G−1(p)

− F−1(t)
F−1(p)

)
dβk,n−k+1(t) ≥ 0, (14)

for all q ∈ (0, 1) and p ∈ (0, 1). Now denote

X∗p =

(
X− F−1(p)|X > F−1(p)

)
F−1(p)

, p ∈ (0, 1) (15)
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and let F−1
X∗p

be its quantile function given by

F−1
X∗p

(t) =
F−1(p + (1− p)t)

F−1(p)
− 1, t ∈ (0, 1).

The condition
(X∗p)k:n ≤icx (Y∗p )k:n for all p ∈ (0, 1),

is equivalent to

∫ 1

q

(
F−1(p + (1− p)β−1

k,n−k+1(u))

F−1(p)

)
du

≤
∫ 1

q

(
G−1(p + (1− p)β−1

k,n−k+1(u))

G−1(p)

)
du,

for all q ∈ (0, 1) and p ∈ (0, 1). The change of variable u = βk,n−k+1

(
t−p
1−p

)
gives

∫ 1

qp

(
G−1(t)
G−1(p)

− F−1(t)
F−1(p)

)
dβk,n−k+1

(
t− p
1− p

)
≥ 0, (16)

for all q ∈ (0, 1) and p ∈ (0, 1), where we denoted qp = p + (1 − p)β−1
k,n−k+1(q). To

complete the proof note that for each fixed p, (16) follows from (14) via Lemma 1 using

dβk,n−k+1

(
t− p
1− p

)
= hp(t)dβk,n−k+1(t), t ∈

[
qp, 1

)
,

where hp is the non-negative increasing function

hp(t) =


1

(1−p)n
(
1− p

t
)k−1, t ∈

[
qp, 1

)
0, t ∈ (0, qp).

Now, we are ready to prove the main result of this section, which extends (when
restricting to the case of order statistics) Theorem 3.10 of Belzunce et al. [12].

Theorem 2. Let X and Y be non-negative random variables with finite means and absolutely
continuous distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let
Y1, . . . , Yn be i.i.d. as Y. Given 1 ≤ i < j ≤ n,

(a) Xj−i:n−i ≤ps Yj−i:n−i implies RX
i,j,n ≤icx RY

i,j,n;

(b) X1:n−i ≤ps Y1:n−i implies RX
i,j,n ≤icx RY

i,j,n,

where RX
i,j,n is defined by (2).

Proof. Let 1 ≤ i < j ≤ n. Using Theorem 2.4.1 in Arnold et al. [28], we note that the
survival function of the random variable RX

i,j,n is given by

FRi,j,n(x) =
∫ ∞

0
P
(
Xj:n > (x + 1)u|Xi:n = u

)
fi:n(u)du

=
∫ ∞

0
P
(
(X|X > u)j−i:n−i > u(x + 1)

)
dβi,n−i+1(F(u)).
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The change of variable F(u) = p yields

FRi,j,n(x) =
∫ 1

0
F

X∗p
j−i:n−i(x)dβi,n−i+1(p), (17)

where X∗p is given by (15). Consequently, RX
i,j,n ≤icx RY

i,j,n holds if and only if

∫ 1

0

(∫ ∞

s
F

X∗p
j−i:n−i(x)dx

)
dβi,n−i+1(p)

≤
∫ 1

0

(∫ ∞

s
G

Y∗p
j−i:n−i(x)dx

)
dβi,n−i+1(p), for all s. (18)

Now, to prove part (a), assume Xj−i:n−i ≤ps Yj−i:n−i. It follows from Lemma 3 that(
X∗p
)

j−i:n−i
≤icx

(
Y∗p
)

j−i:n−i
for all p ∈ (0, 1),

that is, ∫ ∞

s
F

X∗p
j−i:n−i(x)dx ≤

∫ ∞

s
G

Y∗p
j−i:n−i(x)dx, for all s

and the result holds via (18). To prove (b), assume X1:n−i ≤ps Y1:n−i. It follows from
Theorem 1 (a) that Xj−i:n−i ≤ps Yj−i:n−i, and the result follows by applying part (a).

Many authors have investigated conditions involving various stochastic orders, un-
der which two ordered random variables belong to the same equivalence class. Given two
random variables X and Y and a certain stochastic order ≤ord, these results are usually of
the form

X ≤ord Y and T(X) = T(Y), then X ≡ord Y,

where T is a characteristic, such as the mean, the variance, and others (see, for example,
Section 3 in Sordo [29] and references therein). In this vein, we provide a sufficient condition
for stochastic equality (up to a scale parameter) of two ≤ps-ordered random variables (the
expected proportional shortfall order is scale-free).

Theorem 3. Let X and Y be non-negative random variables with finite means and absolutely
continuous distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let
Y1, . . . , Yn be i.i.d. as Y. Given 1 ≤ i < n, if X1:n−i ≤ps Y1:n−i and

E
[

Xi+1:n − Xi:n
Xi:n

]
= E

[
Yi+1:n −Yi:n

Yi:n

]
then X ≡st c ·Y, for some c > 0.

Proof. From (17), we can write

FRi,i+1,n(x) =
∫ 1

0
F

X∗p
1:n−i(x)dβi,n−i+1(p)

=
∫ 1

0

[
F((1 + x)F−1(p))

1− p

]n−i

dβi,n−i+1(p)

=

(
n
i

) ∫ 1

0

[
F((1 + x)F−1(p))

]n−i
dβi,1(p), (19)
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where we used

dβi,n−i+1(p) =
n!

(i− 1)!(n− i)!
pi−1(1− p)n−idp

=

(
n
i

)
(1− p)n−idβi,1(p).

Rewriting (19), we see that

FRi,i+1,n(x) =
(

n
i

) ∫ 1

0
F(

(X−F−1(p))/F−1(p)
)+

1:n−i

(x)dβi,1(p).

Making the change of variable p = β−1
1,n−i(t) and using the same argument as in the

proof of Lemma 2, we have

FRi+1,i,n(x) =
(

n
i

) ∫ 1

0
F(

(X1:n−i−F−1
1:n−i(t))/F−1

1:n−i(t)
)+(x)dφ(t),

where
φ(t) = βi,1(β−1

1,n−i(t)) =
(

1− (1− t)1/(n−i)
)i

.

Now, given 1 ≤ i < n, we have

E
[

Xi+1:n − Xi:n
Xi:n

]
=

∫ ∞

0
FRi+1,i,n(x)dx

=

(
n
i

) ∫ ∞

0

(∫ 1

0
F(

(X1:n−i−F−1
1:n−i(t))/F−1

1:n−i(t)
)+(x)dφ(t)

)
dx

=

(
n
i

) ∫ 1

0

(∫ ∞

0
F(

(X1:n−i−F−1
1:n−i(t))/F−1

1:n−i(t)
)+(x)dx

)
dφ(t)

=

(
n
i

) ∫ 1

0
AX

1:n−i(t)dφ(t),

where

AX
1:n−i(t) =

∫ ∞
F−1

1:n−i(t)
F1:n−i(x)dx

F−1
1:n−i(t)

.

From the assumptions, we note that

AX
1:n−i(t) ≤ AY

1:n−i(t), for all t ∈ (0, 1) (20)

and ∫ 1

0

(
AY

1:n−i(t)− AX
1:n−i(t)

)
dφ(t) = 0. (21)

Combining (20) and (21) and taking into account the strictly monotony of φ, it follows
that AX

1:n−i(t) = AY
1:n−i(t) for all t ∈ (0, 1). Since the expected proportional shortfall order

is scale-invariant (see Belzunce et al. [15]), this holds if and only if

F1:n−i(t) = G1:n−i(c · t), for some c > 0, for all t,

which is equivalent to(
F(t)

)n−i
=
(
G(c · t)

)n−i, for some c > 0, for all t.

This means that X and Y have the same distribution up to a scale parameter, which
ends the proof.
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By taking i = n− 1 in Theorem 3, we obtain the corollary presented below.

Corollary 1. Let X and Y be two non-negative random variables with finite means and absolutely
continuous distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let
Y1, . . . , Yn be i.i.d. as Y. If X ≤ps Y and

E
[

Xn:n − Xn−1:n
Xn−1:n

]
= E

[
Yn:n −Yn−1:n

Yn−1:n

]
then X ≡st c ·Y, for some c > 0.

Remark 1. Under the assumption X ≤ps Y, Corollary 1 can be used to build a test for the
null hypothesis

H0 : X =st cY, for some c > 0,

against the alternative

H1 : X ≤ps Y and X 6=st cY for all c > 0.

Clearly, the functional ∆ = E
[

Yn:n−Yn−1:n
Yn−1:n

]
− E

[
Xn:n−Xn−1:n

Xn−1:n

]
is a measure of departure from

H0 in favor of H1. Corollary 1 suggests to reject the null hypothesis if ∆̂(n, m) > k, where ∆̂(n, m)
is an estimator of ∆ based on two random samples (x1, . . . , xn) and (y1, . . . , ym) drawn from X
and Y, respectively, and k depends on the null distribution of ∆̂(n, m).

3. Application to the Comparison of Parametric Families of Income Distributions in
Terms of Relative Deprivation

Let X be an income random variable with distribution function F and let X1:n, ..., Xn:n
be the corresponding order statistics. As explained in Section 1, the expectation of

RDPX
i,n =

1
n

n

∑
j=i+1

(Xj:n − Xi:n

Xi:n

)
=

1
n

n

∑
j=i+1

RX
i,j,n,

is a measure of relative deprivation of X. According to Chakravarty and Moyes [24], we say
that there is no more relative deprivation in situation X than in Y (denoted by X ≥RDP Y) if

E
[

RDPX
i,n

]
≤ E

[
RDPY

i,n

]
, for i = 1, 2, . . . , n− 1.

We obtain the result presented below.

Corollary 2. Let X and Y be two random variables with finite means and absolutely continuous
distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let Y1, . . . , Yn be
i.i.d. as Y. If X1:n−1 ≤ps Y1:n−1 for some n ≥ 2, then X ≥RDP Y.

Proof. If X1:n−1 ≤ps Y1:n−1, it follows from Theorem 1 (b) that X1:n−i ≤ps Y1:n−i, for all
1 ≤ i ≤ n − 1 and from Theorem 2 (b) that RX

i,j,n ≤icx RY
i,j,n for i = 1, ..., n − 1 and

j = i + 1, ..., n. The result follows using that RX
i,j,n ≤icx RY

i,j,n implies E[RX
i,j,n] ≤ E[RY

i,j,n].

Since, in view of Corollary 2, the condition X1:n ≤ps Y1:n is useful in comparing
income distributions in terms of relative deprivation, we characterize this condition within
several parametric families. We focus on the generalized gamma (GG) and generalized
beta of the second kind (GB2), which include, as particular cases, some of the most popular
distributions used in the analysis of income. They are defined in terms of their densities
as follows (see Chapter 10 of the book by Arnold and Sarabia [20] for a review and
Sarabia et al. [30] for some recent applications).

Definition 3. Given a random variable X, we say that
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(i) X follows a generalized gamma distribution with parameters a, b, p > 0 (denoted by X ∼
GG(a, b, p)) if its density function is given by

f (x) =
axap−1e−(x/b)a

bapΓ(p)
, for all x > 0,

where Γ(p) =
∫ ∞

0 zp−1e−zdz is the gamma function.
(ii) X follows a type II generalized beta distribution with parameters a, b, p, q > 0 (denoted by

X ∼ GB2(a, b, p, q)) if its density function is given by

f (x) =
axap−1

bapβ(p, q)[1 + (x/b)a]p+q , for all x > 0,

where β(p, q) = Γ(p)Γ(q)/Γ(p + q) is the beta function.

First, we characterize the condition X1:n ≤ps Y1:n within the generalized gamma
family. Particular members of this family are gamma (a = 1) and Weibull (p = 1).

Corollary 3. Let X ∼ GG(a1, b1, p1) and Y ∼ GG(a2, b2, p2) be two income distributions. Then,
X1:n ≤ps Y1:n if and only if a1 ≥ a2 and a1 p1 ≥ a2 p2.

Proof. First, note that the role of the parameters b1 and b2 is irrelevant since they are
scale parameters and the expected proportional shortfall order is scale-invariant. Now,
assume X1:n ≤ps Y1:n. It follows from (11) that X ≤ps Y, which holds (Theorem 3.1 in
Belzunce et al. [16]) if and only if a1 ≥ a2 and a1 p1 ≥ a2 p2. Conversely, the assumptions
a1 ≥ a2 and a1 p1 ≥ a2 p2 imply X ≤∗ Y (Theorem 3.1 in Belzunce et al. [16]). This
is equivalent, using F−1

1:n (p) = F−1(β−1
1,n(p)), to X1:n ≤∗ Y1:n. From (6), it follows that

X1:n ≤ps Y1:n.

The proofs of the following results follow the same lines as the proof of Corollary 3,
using corollaries 3.7 to 3.11 of Belzunce et al. [16]. The distributions under consideration
are particular members of the GB2 family, namely, type II beta distributions (GB2(1, p, q)),
Singh–Maddala distribution (GB2(a, 1, q)), Dagum distribution (GB2(a, p, 1)), Lomax dis-
tribution (L(q) = GB2(1, 1, q)), and Fisk distribution (GB2(a, 1, 1)).

Corollary 4. Let X ∼ GB2(1, p1, q1) and Y ∼ GB2(1, p2, q2) be two income distributions with
qi > 1 for i = 1, 2. Then, X1:n ≤ps Y1:n if and only if p1 ≥ p2 and q1 ≥ q2.

Corollary 5. Let X ∼ GB2(a1, 1, q1) and Y ∼ GB2(a2, 1, q2) be two income distributions with
aiqi > 1 for i = 1, 2. Then, X1:n ≤ps Y1:n if and only if a1 ≥ a2 and a1q1 ≥ a2q2.

Corollary 6. Let X ∼ GB2(a1, p1, 1) and Y ∼ GB2(a2, p2, 1) be two income distributions with
ai > 1 for i = 1, 2. Then, X1:n ≤ps Y1:n if and only if a1 ≥ a2 and a1 p1 ≥ a2 p2.

Corollary 7. Let X ∼ GB2(1, 1, q1) and Y ∼ GB2(1, 1, q2) be two income distributions with
qi > 1 for i = 1, 2. Then, X1:n ≤ps Y1:n if and only if q1 ≥ q2.

Corollary 8. Let X ∼ GB2(a1, 1, 1) and Y ∼ GB2(a2, 1, 1) be two income distributions with
ai > 1 for i = 1, 2. Then X1:n ≤ps Y1:n if and only if a1 ≥ a2.

4. Further Remarks

The expected proportional shortfall order is related to the excess wealth order, which
is defined below.
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Definition 4. Let X and Y be two random variables with respective distribution functions F and
G; we say that X is less than Y in the excess wealth order (denoted by X ≤ew Y) if and only if∫ ∞

F−1(p)
F(t)dt ≤

∫ ∞

G−1(p)
G(t)dt, for all p ∈ (0, 1).

For some recent references on this order, see Castaño-Martínez et al. [31], Arriaza and
Sordo [32], Wu et al. [33], Toomaj and Di Crescenzo [34,35], and Ortega-Jiménez et al. [36].
The following result is similar to Theorem 2 but in terms of the excess wealth order, and it
extends (when restricting to the case of order statistics) Theorem 3.1 of Belzunce et al. [10].
The proof follows the same lines as the proof of Theorem 2; therefore, it is omitted.

Theorem 4. Let X and Y be two random variables with finite means and absolutely continuous
distribution functions F and G, respectively. Let X1, . . . , Xn be i.i.d. as X and let Y1, . . . , Yn be
i.i.d. as Y. Given 1 ≤ i < j ≤ n,

(a) Xj−i:n−i ≤ew Yj−i:n−i implies SX
i,j,n ≤icx SY

i,j,n;

(b) X1:n−i ≤ew Y1:n−i implies SX
i,j,n ≤icx SY

i,j,n,

where SX
i,j,n is defined by (1).
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