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Abstract: In many interactive environments, operators may have to deal with different work objec-
tives at the same time. In a realistic context, such as differences in the target type to be addressed, or
changes in the behavior of other operators, operators may therefore have to cope with by adopting
different work levels (strategies) at any given time. On the other hand, the importance or influence
brought by operators may vary depending on many subjective and objective factors, such as the
size of the constituency represented by a congressman, and the bargaining power of a business
personnel which may vary. Therefore, it is reasonable that weights are apportioned to operators and
arbitrary usability should be distributed according to these weights under various working levels
and multiattribute situations. In pre-existing results for allocation rules, weights might be always
apportioned to the “operators” or the “levels” to modify the differences among the operators or its
working levels respectively. By applying weights to the operators and its working levels (strategies)
simultaneously, we adopt the maximal marginal variations among working level (strategy) vectors
to propose an allocation rule under multiattribute situations. Furthermore, we introduce some
axiomatic outcomes to display the rationality for this weighted allocation rule. By replacing weights
to be maximal marginal variations, a generalized index is also introduced.

Keywords: allocation rule; weight; the maximal marginal variation; axiomatic result; multiat-
tribute situation

1. Introduction

In different topics, from biomedical engineering, sciences to environment, and the
management sciences, operators confront a raising demand to concentrate on multiple
objectives effectively in its working procedures. Related conditions involve dissecting dis-
tribution tradeoffs, selecting optimal decisions or planning course, or arbitrary situations
where one requires an effective rule with tradeoffs among several objectives. In many cases
these real-world effective conditions might be modeled as a mathematical multiattribute
optimization game. The rules of such conditions lacks appropriate notions to present
optimal outcomes that—unlike traditional notions or viewpoints—apply various functions
of the objectives into account. Several pre-existing results considered multiattribute situ-
ations. For example, Bednarczuk et al. [1] converted the multiple-choice knapsack issue
into a bi-purpose optimal issue whose solution collection covers solutions of the original
multiple-choice knapsack issue. Goli et al. [2] addressed the optimization of the multivari-
ate manufacture portfolio issue under return uncertainty, which is addressed here. The
main outcome is based on the utilization of a hybrid ameliorated artificial intelligence and
robust optimization, providing a new notion for determining the risk of a manufacture port-
folio. A two-objective (maximizing return and minimizing risk) mathematical shape is also
introduced. By focusing on multiattribute analysis techniques under several complex con-
ditions (e.g., with various viewpoints to be pondered and multi-grade operators involved),
the goal of the outcomes due to Guarini et al. [3] is to outline a procedure with which
to pick the rule best matched to the particular demands of evaluation, which commonly
appear while addressing strategy-making issues. A resilient combinatorial optimization
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modeling process due to Mustakerov et al. [4] is progressed for multi-choice yielding with
various strategy maker prerequisites. The characterized process is built on formulation of
multiattribute linear mixed integer optimization assignments. Tirkolaee et al. [5] pointed
out the multiattribute multi-mode utility-constrained manufacture scheduling issue with
remuneration planning where the energies could be completed through one of the possible
modes and the goals are to minimize the completion time and maximize the net present
value simultaneously.

Under traditional games, each operator is either completely participated or entirely
outside of participation with other operators. Back by a dose of reality in many real
situations, however, such as changes in the current situation, differences in the target type
to be addressed, or changes in the behavior of other operators, operators may therefore have
to cope with them by adopting different work levels (strategies) at any given time. Under
multi-choice games, each operator is permitted to operate with infinite working levels (or
strategies). Thus, a multi-choice game could be treated as a generalization of a traditional
game. By determining overall outcomes for a given operator on a multi-choice game,
Hwang and Liao [6], Liao [7,8] and Nouweland et al. [9] proposed several generalized rules
for several traditional allocation rules respectively.

On the other hand, the importance or influence brought by operators may vary
depending on many subjective and objective factors, such as the size of the constituency
represented by a congressman, the contribution arisen by a member of a hospital, and the
bargaining power of a business personnel may vary. Besides, lack of symmetry might arise
if alternative bargaining skills for alternative operators are formed. In line with the previous
interpretations, one would now crave that arbitrary usability might be shared among the
operators and its working levels in proportion to weights. Weights rise up involuntary in the
context of allocating-usability. For instance, one might be dealing with an issue of usability
allocation among investing plans. Thus, the weights could be appointed to the profitability
of the different options of all plans. In the issue of distributing travel charges among various
areas attended, the weights could be the amount of days used at each one (cf. Shapley [10]).
In general, weights might be apportioned to the “operators” or the “levels” to distinguish
the differences among the operators or its working levels respectively.

Under the axiomatic processes for allocation rules under cooperative games, stability
(or consistency) is a critical notion of advantageous rules. The notion after this kind of
stability could be described as follows: For a specific game, operators might progress
anticipations of the game and may be agreeable to consent the computation of its remuner-
ations to be built upon these anticipations. The allocation rule satisfies stability if it allots
coincident remunerations to operators under the initial situation as it does to operators
of the imaginary reduced situation. Therefore, stability is an essential factor of the inner
“robustness” of compromises. Stability has been always analyzed under many subjects
by considering reduced games, such as bargaining issues, resource distribution issues, and
so on. Based on notion the equal allocation of non-separable costs (EANSC, Ransmeier [11]),
Liao et al. [12] introduce two allocation rules by assigning weights to the operators and
its activity levels (decisions) respectively under multiattribute multi-choice situations. In-
spired by the axiomatic techniques due to Moulin [13], Liao et al. [12] also proposed an
extended complement-reduced game to manifest that these two allocation rules present fair
mechanisms for allocating usability.

The above mentioned existing outcomes generate one motivation:

• Whether different rule concepts might be considered by applying weights to the
operators and its working levels (strategies) simultaneously under multiattribute
multi-choice situations.

The article discusses the motivation. The main outcomes of this article are as follows.

1. Three rules, the weighted lower-aggregate multiattribute index (WLAMI), the weighted
regular multiattribute index (WRMI), and the weighted upper-aggregate multiattribute index
(WUAMI), are introduced by assigning weights to the operators and its working levels
(strategies) simultaneously in Section 2. These three rules are weighted generalizations



Mathematics 2021, 9, 617 3 of 14

of the maximal multiattribute index (MMI) due to Liao et al. [12] under multiattribute
multi-choice games.

2. In order to realize the rationality for these weighted rules, we consider an extended
reduction to manifest the following outcomes in Section 3:

• The WLAMI is the only rule matching the axioms of multiattribute weighted
lower-aggregate principle and multiattribute bilateral stability;

• The WRMI is the only rule matching the axioms of multiattribute weighted regular
principle and multiattribute bilateral stability;

• The WUAMI is the only rule matching the axioms of multiattribute weighted
upper-aggregate principle and multiattribute bilateral stability.

3. Under some situations, the legitimacy or fairness of the weights may be questioned.
Therefore, it is a reasonable concept to use the relative maximal marginal variations
as weights under different situations naturally. Maximal marginal variations instead
of weights naturally in Section 4, different allocation rules and related axiomatic
outcomes are also introduced under multiattribute multi-choice situations.

2. Preliminaries
2.1. Definitions and Notations

Assume that UO is the universe of operators, for example, the set formed by humans
throughout the Earth. Any s ∈ UO is said to be a member of UO, for example, a human
of Earth. For s ∈ UO and fs ∈ N, we define Fs = {0, 1, . . . , fs} to be the working level
(strategy) set of operator s and F+

s = Fs \ {0}, where 0 means no operation. Assume that
O ⊆ UO is the largest set of all members of an interactive system in UO, for example, all
citizens of a country on Earth. Let FO = ∏s∈O Fs be the product set of the working level
sets for every operators of O. For every K ⊆ O, a operator-alliance K corresponds in a
standard mode to the multi-choice alliance eK ∈ FO, which is the vector matching eK

s = 1 if
s ∈ K, and eK

s = 0 if s ∈ O \ K. Denote 0O the zero vector of RO. For m ∈ N, we also define
0m to be the zero vector of Rm and Γm = {1, 2, . . . , m}.

A multi-choice game is denoted to be (O, f , h), where O 6= ∅ is a finite set of operators,
f = ( fs)s∈O ∈ FO is a vector that presents the number of working levels for every operator,
and h : FO → R is a mapping with h(0O) = 0 which apportions to each working level
vector λ = (λs)s∈O ∈ FO the benefit that the operators can receive when each operator s
operates at level λs. A multiattribute multi-choice game is denoted by (O, f , Hm), where
m ∈ N, Hm = (ht)t∈Γm and (O, f , ht) is a multi-choice game for every t ∈ Γm. We also
denote the family of all multiattribute multi-choice games to be ∆.

A rule is a map τ apportioning to each (O, f , Hm) ∈ ∆ an element:

τ
(
O, f , Hm) = (τt(O, f , Hm))

t∈Γm
,

where τt(O, f , Hm) = (
τt

s
(
O, f , Hm))

s∈O ∈ RO and τt
s
(
O, f , Hm) is the remuneration of

the operator s when s operates in
(
O, f , ht). Let (O, f , Hm) ∈ ∆, K ⊆ O and λ ∈ RO, we

set that S(λ) = {s ∈ O|λs 6= 0} and λK ∈ RK to be the restriction of λ to K. Given s ∈ O,
we also define λ−s to stand for λO\{s}. Furthermore, γ = (λ−s, c) ∈ RO is defined by
γ−s = λ−s and γs = c.

Liao et al. [12] provided a multi-choice generalized EANSC under multiattribute
situation as follows.

Definition 1. The maximal EANSC (MEANSC), β, is defined by:

βt
s(O, f , Hm) = βt

s(O, f , Hm) +
1
|O| ·

[
ht( f )− ∑

k∈O
βt

k(O, f , Hm)
]

for every (O, f , Hm) ∈ ∆, for every t ∈ Γm, and for every s ∈ O. The value βt
s(O, f , Hm) =

maxq∈F+
s
{ht( f−s, q) − ht( f−s, 0)} is the maximal lower-aggregate marginal variation
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among all working levels of operator s in (O, f , ht). Here we apply bounded multi-choice games,
considered as the games (O, f , ht) such that, there exists Nh ∈ R such that ht(λ) ≤ Nh for
every λ ∈ FO. We apply it to guarantee that βs(O, f , ht) is well-defined. Under the notion of
β, all operators firstly receive its maximal marginal variations, and further introduce the rest of
usability equally.

A rule τ matches multiattribute effectiveness (MECE) if for every (O, f , Hm) ∈ ∆ and
for every t ∈ Γm, ∑s∈O τt

s (O, f , Hm) = ht( f ). A rule τ matches multiattribute principle for
games (MPFG) if τ(O, f , Hm) = β(O, f , Hm) for every (O, f , Hm) ∈ ∆ with |O| ≤ 2. Axiom
MECE presents that all operators allocate whole the usability completely. Axiom MPFG is
a generalized form of the two-agent principle condition of Hart and Mas-Colell [14].

Moulin [13] considered the reduced game as that in which each alliance in the sub-
group could attain remunerations to its operators only if they are agreeing with the original
remunerations to “total” the operators out of the subgroup. A generalized Moulin reduction
under multiattribute multi-choice games is considered as follows.

Let (O, f , Hm) ∈ ∆, K ⊆ O and τ be a rule. The reduced game (K, fK, Hm
K,τ) is defined

by Hm
K,τ = (ht

K,τ)t∈Γm and for every λ ∈ FK,

ht
K,τ(λ) =

 0 if λ = 0K,
ht(λ, fO\K

)
− ∑

s∈O\K
τt

s (O, f , Hm) otherwise,

Furthermore, a rule τ matches multiattribute bilateral stability (MBSTA) if
τt

s (K, fK, Hm
K,τ) = τt

s (O, f , Hm) for every (O, f , Hm) ∈ ∆, for every t ∈ Γm, for every
K ⊆ O with |K| = 2 and for every s ∈ K.

As mentioned in the Introduction, weights rise up involuntarily in the context of
usability allocation. For instance, we might be dealing with an issue of usability allocation
among investing plans. Thus, the weights could be appointed to the profitability of
the alternative options of all plans. Also, weights are contained in contracts approved
by the proprietors of a townhouse and adopted to distribute the cost of maintaining
or building common apparatus. Another application is patent pooling or data among
trading companies where the scope of the trading companies, examined for instance by
its market shares, could be natural weights. In general, weights might be apportioned
to the “operators” or the “levels” to distinguish the dissimilarity among the operators or
its working levels respectively. If d : U → R+ be a positive map, then d is said to be a
weight map for operators. If w : ∪s∈U F+

s → R+ be a positive map, then w is said to be a
weight map for levels. By these two kinds of weight maps, two weighted extensions of
the MEANSC is considered by Liao et al. [12] as follows.

Definition 2.

• The 1-maximal weighted allocation of non-separable costs (1-MWANSC), ηd, is con-
sidered by for every (O, f , Hm) ∈ ∆, for every weight map for operators d, for every t ∈ Γm
and for every operator s ∈ O,

ηd,t
s (O, f , Hm) = βt

s(O, f , Hm) +
d(s)

∑
k∈O

d(k)
·
[
ht( f )− ∑

k∈O
βt

k(O, f , Hm)
]
.

By definition of ηd, all operators get its maximal lower-aggregate marginal variations firstly,
and further distribute the remaining usability proportionally by weights for operators.
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• The 2-maximal weighted allocation of non-separable costs (2-MWANSC), ηw, is con-
sidered by for every (O, f , Hm) ∈ ∆, for every weight map for operators w, for every t ∈ Γm
and for every operator s ∈ O,

ηw,t
s (O, f , Hm) = βw,t

s (O, f , Hm) +
1
|O| ·

[
ht( f )− ∑

k∈O
βw,t

k (O, f , Hm)
]
,

where βw,t
s (O, f , Hm) = max

q∈F+
s

{w(q) · [ht( f−s, q)− ht( f−s, 0)]} is the maximal weighted

lower-aggregate marginal variation among all working levels of operator s. By definition
of ηw,t, all operators get its maximal weighted lower-aggregate marginal variations firstly, and
further distribute the remaining usability equally.

A rule τ matches 1-weighted principle for games (1WPFG) if τ(O, f , Hm) =
ηd(O, f , Hm) for every (O, f , Hm) ∈ ∆ with |O| ≤ 2 and for every weight map for op-
erators d. A rule τ matches 2-weighted principle for games (2WPFG) if τ(O, f , Hm) =
ηw(O, f , Hm) for every (O, f , Hm) ∈ ∆ with |O| ≤ 2 and for every weight map for levels w.

Several axiomatic results of the MEANSC, the 1-MWANSC and the 2-MWANSC are
proposed by Liao et al. [12] as follows.

Theorem 1.

• On ∆, the MEANSC is the only rule matching MPFG and MBSTA;
• On ∆, the 1-MWANSC is the only rule matching 1WPFG and MBSTA;
• On ∆, the 2-MWANSC is the only rule matching 2WPFG and MBSTA.

2.2. Motivating and Practical Examples

As mentioned in the Introduction, each performer might be admitted to operate with
alternative levels under real-world situations respectively. On the other hand, multiat-
tribute analysis is a notion of multiple criterion investigations that is concerned with
situations involving simultaneously more than one objective to be optimized. Multiat-
tribute analysis also has been adopted in various issues, including biomedical sciences,
environmental analysis, information engineering, strategical management sciences, and
logistics where efficacious strategies need to be adopted in the presence of trade-offs
among several objectives. For instance, minimizing cost while maximizing comfort while
marketing a central air conditioning mode, and maximizing efficacy whilst minimizing
emission of pollutants and sources consumption are exemplifications of multiattribute
efficacious issues involving respectively various objectives. Under various cases, there
might be more than three objectives. Hence, we focus on the framework of multiattribute
multi-choice schemes throughout this paper. Nevertheless, it might not be appropriate
under various situations if arbitrary additional fixed usability should be shared equally
among the operators who are concerned. Thus, it is reasonable that weights could be
appointed to operators or its working levels, and arbitrary fixed usability should be shared
according to these weights.

Next, a concise motivating example of multiattribute multi-choice schemes will be
presented under the situation of “management”. Let O be a set of all operators of a
multiattribute management organization (O, f , Hm). The function ht could be pondered
as an usability function which appoints to each level vector α = (αs)s∈O ∈ FO the worth
that the performers can gain if each performer s operates at operational strategy αs ∈ Fs
under sub-management organization (O, f , ht). Modeled by this notion, the multiattribute
management organization (O, f , Hm) could be generalized to be a multiattribute multi-
choice game, with ht being every characteristic mapping and Fs being the collection of total
operational strategies of the operator s.

Subsequently, we further present a practical application of power evaluation under
a legislature. Let O be a collection of total agents of a legislature in a sovereign state.
Under the legislature, all agents of the legislature are chosen via voting or recommendation
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from parties. All agents possess the power to discuss, establish, propose, and veto all
acts. They dedicate alternative grades of attention and participation to alternative acts
depending upon related academic expertise and the public judgment they exhibit. The
level of involvement is also intimately associated with the agreement tactic generated
for the interests of alternative political parties. For the aforementioned considerations,
tactics applied by each agent of the legislature show distinct tactics of participation and
certain amounts of multiplicity. The mapping ht could be pondered as a power evaluation
which appoints to every tactic vector α = (αs)s∈O ∈ FO the power that the agents could
dedicate if every agent s takes operational strategy αs ∈ Fs in an acts affairs committee.
Modeled by this notion, an acts affairs committee could be pondered as a multi-choice
game (O, f , ht), with ht being every characteristic mapping and Fs being the collection
of total operational tactics of the agent s. The legislature operational scheme could be
generalized as a multiattribute multi-choice game (O, f , Hm). To evaluate the influence of
each agent in the legislature, applying the power indexes in Definitions 1 and 2, one could
assess the maximal influence each legislature agent has accumulated over previous act
meetings based on multi-tactics.The remaining shared power distribution should be shared
equally by all agents, which is the MEANSC presented in Definition 1. As every legislature
agent possesses alternative academic expertise and represents alternative public judgments,
they naturally carry alternative levels of significance under various situations thus, they
generate alternative weights of agents from a weight mapping d. The rest of shared
power distribution also should be shared in proportion to the weight derived for each
agent, which is the 1-MWANSC presented in Definition 2. As each tactic has alternative
operational significance, these tactics naturally carry alternative levels of significance under
various situations thus, these tactics generate alternative weights from a weight mapping w.
The representative influence of each agent should be computed by its maximal weighted
variation. The remaining shared power distribution might also be shared equally by all
agents, which is the 2-MWANSC presented in Definition 2.

3. Different Weighted Extension

As we mention in the Introduction, we introduce different extensions of the MEANSC
in this section by simultaneously applying weights to the operators and its working levels
(strategies). Based on MBSTA, we further characterize these weighted rules.

Definition 3.

• The weighted lower-aggregate multiattribute index (WLAMI), βd,w, is defined by for
every (O, f , Hm) ∈ ∆, for every weight map for operators d, for every weight map for levels
w, for every t ∈ Γm and for every operator s ∈ O,

βd,w,t
s (O, f , Hm) = βw,t

s (O, f , Hm) +
d(s)

∑
k∈O

d(k)
·
[
ht( f )− ∑

k∈O
βw,t

k (O, f , Hm)
]
.

By definition of βd,w, all operators get its maximal weighted lower-aggregate marginal vari-
ations firstly, and further distribute the remaining usability proportionally by weights for
operators.

• The weighted regular multiattribute index (WRMI), αd,w, is defined by for every
(O, f , Hm) ∈ ∆, for every weight map for operators d, for every weight map for levels
w, for every t ∈ Γm and for every operator s ∈ O,

αd,w,t
s (O, f , Hm) = αw,t

s (O, f , Hm) +
d(s)

∑
k∈O

d(k)
·
[
ht( f )− ∑

k∈O
αw,t

k (O, f , Hm)
]
,

where αw,t
s (O, f , Hm) = max

q∈F+
s

{w(q) · [ht( f−s, q) − ht( f−s, q − 1)]} is the maximal

weighted regular marginal variation among all working levels of operator s. By defi-
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nition of αd,w, all operators get its maximal weighted regular marginal variations firstly, and
further distribute the remaining usability proportionally by weights for the operators.

• The weighted upper-aggregate multiattribute index (WUAMI), γd,w, is defined by for
every (O, f , Hm) ∈ ∆, for every weight map for operators d, for every weight map for levels
w, for every t ∈ Γm, and for every operator s ∈ O,

γd,w,t
s (O, f , Hm) = γw,t

s (O, f , Hm) +
d(s)

∑
k∈O

d(k)
·
[
ht( f )− ∑

k∈O
γw,t

k (O, f , Hm)
]
,

where γw,t
s (O, f , Hm) = max

q∈F+
s

{w(q) · [ht( f )− ht( f−s, q− 1)]} is the maximal weighted

upper-aggregate marginal variation among all working levels of operator s. By definition
of αd,w, all operators get maximal weighted upper-aggregate marginal variations firstly, and
further distribute the remaining usability proportionally by weights for operators.

Lemma 1. The rules βd,w, αd,w, γd,w match MECE.

Proof of Lemma 1. Let (O, f , Hm) ∈ ∆, t ∈ Γm, d be weight map for operators and w be
weight map for levels. By Definition 3,

∑
s∈O

βd,w,t
s (O, f , Hm)

= ∑
s∈O

βw,t
s (O, f , Hm) + ∑

s∈O

[
d(s)

∑
k∈O

d(k) ·
[
ht( f )− ∑

k∈O
βw,t

k (O, f , Hm)
]]

= ∑
s∈O

βw,t
s (O, f , Hm) +

∑
s∈O

d(s)

∑
k∈O

d(k) ·
[
ht( f )− ∑

k∈O
βw,t

k (O, f , Hm)
]

= ∑
s∈O

βw,t
s (O, f , Hm) + ht( f )− ∑

k∈O
βw,t

k (O, f , Hm)

= ht( f ).

The proof is finished. Similarly, it is easy to manifest that the rules αd,w, γd,w also
match MECE.

Lemma 2. The rules βd,w, αd,w, γd,w match MBSTA.

Proof of Lemma 2. Let (O, f , Hm) ∈ ∆, K ⊆ O, t ∈ Γm, d be weight map for operators and
w be weight map for levels. Let |O| ≥ 2 and |K| = 2. By Definition 3,

βd,w,t
s (K, fK, Hm

K,βd,w)

= βw,t
s (K, fK, Hm

K,βd,w) +
d(s)

∑
k∈K

d(k) ·
[
ht

K,βd,w( fK)− ∑
k∈K

βw,t
k (K, fK, Hm

K,βd,w)
] (1)

for every s ∈ K and for every t ∈ Γm. By definitions of βw,t and ht
K,βd,w ,

βw,t
s (K, fK, Hm

K,βd,w) = max
q∈F+

s

{w(q) · [ht
K,βd,w( fK\{s}, q)− ht

K,βd,w( fK\{s}, 0)]}

= max
q∈F+

s

{w(q) · [ht( f−s, q)− ht( f−s, 0)]}

= βw,t
s (O, f , Hm).

(2)
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By Equations (1) and (2) and definitions of ht
K,βd,w and βd,w,

βd,w,t
s (K, fK, Hm

K,βd,w)

= βw,t
s (O, f , Hm) + d(s)

∑
k∈K

d(k) ·
[
ht

K,βd,w( fK)− ∑
k∈K

βw,t
k (O, f , Hm)

]
= βw,t

s (O, f , Hm) + d(s)
∑

k∈K
d(k) ·

[
ht( f )− ∑

k∈O\K
βd,w,t

k (O, f , Hm)− ∑
k∈K

βw,t
k (O, f , Hm)

]
= βw,t

s (O, f , Hm) + d(s)
∑

k∈K
d(k) ·

[
∑

k∈K
βd,w,t

k (O, f , Hm)− ∑
k∈K

βw,t
k (O, f , Hm)

]
(MECE of βd,w)

= βw,t
s (O, f , Hm) + d(s)

∑
k∈K

d(k) ·
[ ∑

k∈K
d(k)

∑
p∈O

d(p) ·
[
ht( f )− ∑

p∈O
βw,t

p (O, f , Hm)
]]

= βw,t
s (O, f , Hm) + d(s)

∑
p∈O

d(p) ·
[
ht( f )− ∑

p∈O
βt

p(O, f , Hm)
]

= βd,w,t
s (O, f , Hm)

for every s ∈ K and for every t ∈ Γm. The proof is finished. Similarly, it is easy to manifest
that the rules αd,w, γd,w also match MBSTA.

Inspired by the work of Hart and Mas-Colell [14], we adopt MBSTA to characterize the
WMMI. A rule τ matches weighted lower-aggregate principle (WLAP) if τ(O, b, Hm) =
βd,w(O, b, Hm) for every (O, b, Hm) ∈ ∆ with |O| ≤ 2, for every weight map for operators
d and for every weight map for levels w. A rule τ matches weighted regular principle
(WRP) if τ(O, b, Hm) = αd,w(O, b, Hm) for every (O, b, Hm) ∈ ∆ with |O| ≤ 2, for every
weight map for operators d and for every weight map for levels w. A rule τ matches
weighted upper-aggregate principle (WUAP) if τ(O, b, Hm) = γd,w(O, b, Hm) for every
(O, b, Hm) ∈ ∆ with |O| ≤ 2, for every weight map for operators d and for every weight
map for levels w.

Theorem 2.

1. On ∆, the WLAMI is the only rule matching WLAP and MBSTA;
2. On ∆, the WRMI is the only rule matching WRP and MBSTA;
3. On ∆, the WUAMI is the only rule matching WUAP and MBSTA.

Proof of Theorem 2. By Lemma 2, the rules βd,w, αd,w, γd,w match MBSTA. Clearly, the
rules βd,w, αd,w, γd,w match WLAP, WRP, and WUAP respectively.

To demonstrate the uniqueness of outcome 1, suppose that τ matches WLAP and
MBSTA. By WLAP and MBSTA of τ, it is easy to clarify that τ also matches MECE, hence
we omit it. Let (O, f , Hm) ∈ ∆, d be weight map for operators and w be weight map for
levels. By WLAP of τ, τ(O, f , Hm) = βd,w(O, f , Hm) if |O| ≤ 2. The condition |O| > 2: Let
s ∈ O, t ∈ Γm and K = {s, p} with p ∈ O \ {s}.

τt
s (O, f , Hm)− βd,w,t

s (O, f , Hm)

= τt
s (K, fK, Hm

K,τ)− βd,w,t
s (K, fK, Hm

K,βd,w)

(MBSTA of βd,w,t and τ)
= βd,w,t

s (K, fK, Hm
K,τ)− βd,w,t

s (K, fK, Hm
K,βd,w,).

(WLAP of τ)

(3)

Similar to Equation (2),

βw,t
s (K, fK, Hm

K,τ) = βw,t
s (O, f , Hm) = βw,t

s (K, fK, Hm
K,βd,w,). (4)
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By Equations (3) and (4),

τt
s (O, f , Hm)− βd,w,t

s (O, f , Hm)

= βd,w,t
s (K, fK, Hm

K,τ)− βd,w,t
s (K, fK, Hm

K,βd,w,)

= d(s)
d(s)+d(p) ·

[
ht

K,τ( fK)− ht
K,βd,w( fK)

]
= d(s)

d(s)+d(p) ·
[
τt

s (O, f , Hm) + τt
p(O, f , Hm)

− βd,w,t
s (O, f , Hm)− βd,w,t

p (O, f , Hm)
]
.

Thus,
d(p) ·

[
τt

s (O, f , Hm)− βd,w,t
s (O, f , Hm)

]
= d(s) ·

[
τt

p(O, f , Hm)− βd,w,t
p (O, f , Hm)

]
.

By MECE of βd,w,t and τ,[
τt

s (O, f , Hm)− βd,w,t
s (O, f , Hm)

]
· ∑

p∈O
d(p)

= d(s) · ∑
p∈O

[
τt

p(O, f , Hm)− βd,w,t
p (O, f , Hm)

]
= d(s) ·

[
ht( f )− ht( f )

]
= 0.

Hence, τt
s (O, f , Hm) = βd,w,t

s (O, f , Hm) for every s ∈ O and for every t ∈ Γm. Similarly,
the proofs of outcomes 2 and 3 could be finished.

In the following we exhibit some examples to display that every of the properties
applied in Theorem 2 is independent of the rest of properties.

Example 1. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆, for every weight map
for operators d, for every weight map for levels w, for every t ∈ Γm and for every operator s ∈ O,

τt
s (O, f , Hm) =

{
βd,w,t

s (O, f , Hm) if |O| ≤ 2,
0 otherwise.

Clearly, τ matches WLAP, but it does not match MBSTA.

Example 2. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆, for every weight map
for operators d, for every weight map for levels w, for every t ∈ Γm, and for every operator s ∈ O,

τt
s (O, f , Hm) =

{
αd,w,t

s (O, f , Hm) if |O| ≤ 2,
0 otherwise.

Clearly, τ matches WRP, but it does not match MBSTA.

Example 3. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆, for every weight map
for operators d, for every weight map for levels w, for every t ∈ Γm, and for every operator s ∈ O,

τt
s (O, f , Hm) =

{
γd,w,t

s (O, f , Hm) if |O| ≤ 2,
0 otherwise.

Clearly, τ matches WUAP, but it does not match MBSTA.

Example 4. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆, for every weight map
for operators d, for every weight map for levels w, for every t ∈ Γm, and for every operator s ∈ O,
τt

s (O, f , Hm) = 0. Clearly, τ matches MBSTA, but it does not match WLAP, WRP, and WUAP.
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Example 5. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆, for every weight map
for operators d, for every weight map for levels w, for every t ∈ Γm ,and for every operator s ∈ O,
τt

s (O, f , Hm) = 0. Clearly, τ matches MBSTA, but it does not match MWP.

4. Other Generalizations and Revised Stability

In Sections 2 and 3, several weighted generalizations are generalized by simultane-
ously using weights to the operators and its working levels (strategies). But sometimes
the fairness or legitimacy of the weight functions might be questioned. The weights to the
operators and its working levels (strategies) might be apportioned artificially. Therefore, it
is a reasonable concept to use the relative maximal marginal variations as weights under
different circumstances naturally.

“Maximal marginal variations” instead of “weights”, several generalizations could be
considered as follows.

Definition 4.

1. The 1-interior multi-choice multiattribute index (1IMMI), η1, is considered by for every
(O, f , Hm) ∈ ∆∗, for every t ∈ Γm and for every operator s ∈ O,

η1,t
s (O, f , Hm) = βt

s(O, f , Hm) +
βt

s(O, f , Hm)

∑
k∈O

βt
k(O, f , Hm)

·
[
ht( f )− ∑

k∈O
βt

k(O, f , Hm)
]
,

where ∆1∗ = {(O, f , Hm) ∈ ∆| ∑
k∈O

βt
k(O, f , Hm) 6= 0 for every t ∈ Γm}. By definition of

η1, all operators get its maximal lower-aggregate marginal variations firstly, and further
distribute the remaining usability proportionally by its maximal lower-aggregate marginal
variations.

2. The 2-interior multi-choice multiattribute index (2IMMI), η2, is considered by for every
(O, f , Hm) ∈ ∆∗, for every t ∈ Γm and for every operator s ∈ O,

η2,t
s (O, f , Hm) = αt

s(O, f , Hm) +
αt

s(O, f , Hm)

∑
k∈O

αt
k(O, f , Hm)

·
[
ht( f )− ∑

k∈O
αt

k(O, f , Hm)
]
,

where αt
s(O, f , Hm) = max

q∈F+
s

{·[ht( f−s, q)− ht( f−s, q− 1)]} is the maximal regular marginal

variation and ∆2∗ = {(O, f , Hm) ∈ ∆| ∑
k∈O

αt
k(O, f , Hm) 6= 0 for every t ∈ Γm}. By defi-

nition of η2, all operators get its maximal regular marginal variations firstly, and further
distribute the remaining usability proportionally by its maximal regular marginal variations.

3. The 3-interior multi-choice multiattribute index (3IMMI), η3, is considered by for every
(O, f , Hm) ∈ ∆∗, for every t ∈ Γm and for every operator s ∈ O,

η3,t
s (O, f , Hm) = γt

s(O, f , Hm) +
γt

s(O, f , Hm)

∑
k∈O

γt
k(O, f , Hm)

·
[
ht( f )− ∑

k∈O
γt

k(O, f , Hm)
]
,

where γt
s(O, f , Hm) = max

q∈F+
s

{·[ht( f ) − ht( f−s, q − 1)]} is the maximal upper-aggregate

marginal variation and ∆3∗ = {(O, f , Hm) ∈ ∆| ∑
k∈O

γt
k(O, f , Hm) 6= 0 for every t ∈ Γm}.

By definition of η3, all operators get the maximal upper-aggregate marginal variations firstly,
and further distribute the remaining usability proportionally by its maximal upper-aggregate
marginal variations.

In the following, we would like to characterize the 1IFMI, 2IFMI, and 3IFMI by apply-
ing stability. A rule τ matches 1-multiattribute interior principle (1MIP) if τ(O, b, Hm) =
η1(O, b, Hm) for every (O, b, Hm) ∈ ∆ with |O| ≤ 2. A rule τ matches 2-multiattribute inte-
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rior principle (2MIP) if τ(O, b, Hm) = η2(O, b, Hm) for every (O, b, Hm) ∈ ∆ with |O| ≤ 2.
A rule τ matches 3-multiattribute interior principle (3MIP) if τ(O, b, Hm) = η3(O, b, Hm)
for every (O, b, Hm) ∈ ∆ with |O| ≤ 2.

It is trivial to verify that ∑
k∈K

βt
k(O, f , Hm) = 0 (or ∑

k∈K
αt

k(O, f , Hm) = 0, ∑
k∈K

γt
k(O, f , Hm)

= 0) for some (O, f , Hm) ∈ ∆, for some K ⊆ O, and for some t ∈ Γm, i.e., η1,t(K, fK, Hm
K,η)

(or η2,t(K, fK, Hm
K,η), η3,t(K, fK, Hm

K,η)) does not exist for some (O, f , Hm) ∈ ∆, for some
K ⊆ O and for some t ∈ Γm. So, we focus on the multiattribute revised stability as
follows. A rule τ matches multiattribute revised-stability (MRSTA) if (K, fK, Hm

K,τ) and
τ(K, fK, Hm

K,τ) exist for some (O, f , Hm) ∈ ∆, for some K ⊆ O and for some t ∈ Γm, it holds
that τs(K, fK, Hm

K,τ) = τs(O, f , Hm) for every s ∈ K.
Similar to Theorems 1 and 2, related axiomatic outcomes of η1, η2, η3 also could be

provided as follows.

Theorem 3.

1. The rules η1, η2, η3 match MECE on ∆1∗, ∆2∗, ∆3∗ respectively;
2. The rules η1, η2, η3 match MRSTA on ∆1∗, ∆2∗, ∆3∗ respectively;
3. On ∆1∗, the 1IFMI is the only rule matching 1MIP and MRSTA;
4. On ∆2∗, the 2IFMI is the only rule matching 2MIP and MRSTA;
5. On ∆3∗, the 3IFMI is the only rule matching 3MIP and MRSTA.

Proof of Theorem 3. The proof is similar to Lemmas 1, 2, and Theorem 2.

In the following we give some examples to display that every of the properties applied
in Theorem 3 is independent of the rest of properties.

Example 6. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆1∗, for every t ∈ Γm and
for every operator s ∈ O,

τt
s (O, f , Hm) =

{
η1,t

s (O, f , Hm) if |O| ≤ 2,
0 otherwise.

Clearly, τ matches 1MIP, but it does not match MRSTA.

Example 7. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆2∗, for every t ∈ Γm and
for every operator s ∈ O,

τt
s (O, f , Hm) =

{
η2,t

s (O, f , Hm) if |O| ≤ 2,
0 otherwise.

Clearly, τ matches 2MIP, but it does not match MRSTA.

Example 8. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆3∗, for every t ∈ Γm and
for every operator s ∈ O,

τt
s (O, f , Hm) =

{
η3,t

s (O, f , Hm) if |O| ≤ 2,
0 otherwise.

Clearly, τ matches 3MIP, but it does not match MRSTA.

Example 9. We consider the rule τ as follows. For every (O, f , Hm) ∈ ∆∗, for every t ∈ Γm, and
for every operator s ∈ O, τt

s (O, f , Hm) = 0. Clearly, τ matches MRSTA, but it does not match
1MIP, 2MIP, and 3MIP.
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In the following, we provide a numerical example which shows (a) how the new rules
would allocate value differently than the old rules and (b) differently from each other.
Let (O, f , Hm) ∈ ∆ with O = {i, j, k}, m = 2, f = (2, 1, 1), Fi = {0, 1i, 2i}, Fj = {0, 1j},
Fk = {0, 1k}, d(i) = 5, d(j) = 1, d(k) = 2, w(1i) = 3, w(2i) = 4, w(1j) = 7, w(1k) = 4.

Furthermore, let h1(2, 1, 1) = 5, h1(1, 1, 1) = 7, h1(2, 1, 0) = 3, h1(2, 0, 1) = 2,
h1(2, 0, 0) = 9, h1(1, 1, 0) = 3, h1(1, 0, 1) = −4, h1(0, 1, 1) = 4, h1(1, 0, 0) = −1, h1(0, 1, 0) =
2, h1(0, 0, 1) = −3, h2(2, 1, 1) = 9, h2(1, 1, 1) = 3, h2(2, 1, 0) = 5, h2(2, 0, 1) = 6, h2(2, 0, 0) =
4, h2(1, 1, 0) = −3, h2(1, 0, 1) = 4, h2(0, 1, 1) = 3, h2(1, 0, 0) = 7, h2(0, 1, 0) = −2,
h2(0, 0, 1) = 3 and h1(0, 0, 0) = 0 = h2(0, 0, 0). By Definitions 1–4,

β1
i (O, f , Hm) = 2, β1

j (O, f , Hm) = 2, β1
k(O, f , Hm) = 1,

β2
i (O, f , Hm) = 14

3 , β2
j (O, f , Hm) = 5

3 , β2
k(O, f , Hm) = 8

3 ,

ηd,1
i (O, f , Hm) = 9

8 , ηd,1
j (O, f , Hm) = 21

8 , ηd,1
k (O, f , Hm) = 5

4 ,

ηd,2
i (O, f , Hm) = 7

2 , ηd,2
j (O, f , Hm) = 5

2 , ηd,2
k (O, f , Hm) = 3,

ηw,1
i (O, f , Hm) = −2, ηw,1

j (O, f , Hm) = 10, ηw,1
k (O, f , Hm) = −3,

ηw,2
i (O, f , Hm) = 20

3 , ηw,2
j (O, f , Hm) = 11

3 , ηw,2
k (O, f , Hm) = −4

3 ,

βd,w,1
i (O, f , Hm) = −93

8 , βd,w,1
j (O, f , Hm) = 135

8 , βd,w,1
k (O, f , Hm) = −1

4 ,

βd,w,2
i (O, f , Hm) = −17

2 , βd,w,2
j (O, f , Hm) = 29

2 , βd,w,2
k (O, f , Hm) = 3,

αd,w,1
i (O, f , Hm) = −93

8 , αd,w,1
j (O, f , Hm) = 135

8 , αd,w,1
k (O, f , Hm) = −1

4 ,

αd,w,2
i (O, f , Hm) = −17

2 , αd,w,2
j (O, f , Hm) = 29

2 , αd,w,2
k (O, f , Hm) = 3,

γd,w,1
i (O, f , Hm) = −111

8 , γd,w,1
j (O, f , Hm) = 141

8 , γd,w,1
k (O, f , Hm) = 5

4 ,

γd,w,2
i (O, f , Hm) = −17

2 , γd,w,2
j (O, f , Hm) = 29

2 , γd,w,2
k (O, f , Hm) = 3,

η1,1
i (O, f , Hm) = 15

8 , η1,1
j (O, f , Hm) = 15

8 , η1,1
k (O, f , Hm) = 5

4 ,

η1,2
i (O, f , Hm) = 54

13 , η1,2
j (O, f , Hm) = 27

13 , η1,2
k (O, f , Hm) = 36

13 ,

η2,1
i (O, f , Hm) = 15

8 , η2,1
j (O, f , Hm) = 15

8 , η2,1
k (O, f , Hm) = 5

4 ,

η2,2
i (O, f , Hm) = 54

13 , η2,2
j (O, f , Hm) = 27

13 , η2,2
k (O, f , Hm) = 36

13 ,

η3,1
i (O, f , Hm) = 5

6 , η3,1
j (O, f , Hm) = 5

2 , η3,1
k (O, f , Hm) = 5

3 ,

η3,2
i (O, f , Hm) = 54

13 , η3,2
j (O, f , Hm) = 27

13 , η3,2
k (O, f , Hm) = 36

13 .

5. Conclusions

1. Differing from existing investigations, we introduced the WLAMI, WRMI, WUAMI,
and related axiomatic outcomes by applying weights to the operators and its work-
ing levels (strategies) simultaneously under multiattribute multi-choice situations.
Maximal marginal variations instead of weights naturally were discussed, the 1IFMI,
2IFMI, and 3IFMI and related axiomatic outcomes were also introduced under multi-
attribute multi-choice situations. One should compare related existing outcomes with
the outcomes provided in this article.

• The WLAMI, WRMI, WUAMI, 1IFMI, 2IFMI, 3IFMI, and related outcomes were
proposed initially under multiattribute multi-choice games;

• Rule concepts of traditional games have only considered non-participation or
participation among all operators. In this article, we proposed two weighted
multi-choice rules to analyze distribution mechanism under multiattribute situa-
tions;

• Different from the SEANSC, the 1-SWANSC and 2-SWANSC due to Liao et al. [12]
on multiattribute multi-choice games, we proposed the WLAMI, WRMI, WUAMI,
1IFMI, 2IFMI, and 3IFMI by applying weights to the operators and its working
levels simultaneously.

– Under the SEANSC and the 2-SWANSC, any additional fixed usability
should be distributed equally among all operators.
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– Under the 1-SWANSC, all operators receive its maximal marginal variation
firstly.

– Clearly, the operators and its working levels are essential factors in the
framework of multiattribute multi-choice games. Therefore, the weights
should be considered simultaneously under the operators and its working
levels. Under the WLAMI, WRMI, and WUAMI, all operators get different
types of weighted maximal marginal variations firstly, and further distribute
the remaining usability proportionally by weights for operators.

– However, the weights may be apportioned artificially. Under the 1IFMI,
2IFMI, and 3IFMI, all operators get different types of maximal marginal vari-
ations firstly, and further distribute the remaining usability proportionally
by related maximal marginal variations.

2. The advantages of the rules proposed throughout this article are as follows.

• Allocation rules of traditional games were only considered non-participation or
participation among all operators. In this article, we considered that all operators
possess different working levels of participation;

• In a multitude of multi-choice game literature on allocation rules, although
it might be also assumed that all operators possess different working levels
of participation, most literature determined the value of a specific operator
presented with a specific working level of participation, such as Hwang and
Liao [15], Liao [16], and so on. In this article, we evaluated the overall value each
operator exerts with different working levels of participation;

• By considering many real-world situations, we propose the WLAMI, WRMI, and
WUAMI to allocate additional fixed usability among the operators and its work-
ing levels in proportion to two types of weights simultaneously. Furthermore,
several types of the maximal marginal variations were considered under the
WLAMI, WRMI, and WUAMI respectively. Since the legitimacy or fairness of the
weight functions may be questioned, the relative maximal marginal variations
were applied as weights under different circumstances under the 1IFMI, 2IFMI,
and 3IFMI naturally.

3. The disadvantages of the rules proposed throughout this article are as follows. As
mentioned in the advantages above, every operator possesses different working
levels. Although one could determine the overall value each operator exerts, it is
impossible to evaluate the value of a specific operator with a specific working level of
participation. Hence, in future research, we will consider alternative allocation rules
built on the simultaneous consideration of the overall value and the specific working
level of participation;

4. The outcomes of this article raise an additional motivation.

• Other traditional rules might be generated by adopting the maximal marginal
variations under multi-choice behavior and multiattribute situations.

This is left to the readers.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.



Mathematics 2021, 9, 617 14 of 14

References
1. Bednarczuk, E.M.; Miroforidis, J.; Pyzel, P. A multi-criteria approach to approximate solution of multiple-choice knapsack

problem. Comput. Optim. Appl. 2018, 70, 889–910. [CrossRef]
2. Goli, A.; Zare, H.K.; Tavakkoli-Moghaddam, R.; Sadegheih, A. Hybrid artificial intelligence and robust optimization for a

multi-objective product portfolio problem Case study: The dairy products industry. Comput. Ind. Eng. 2019, 137, 106090.
[CrossRef]

3. Guarini, M.R.; Battisti, F.; Chiovitti, A. A methodology for the selection of multi-criteria decision analysis methods in real estate
and land management processes. Sustainability 2018, 10, 507. [CrossRef]

4. Mustakerov, I.; Borissova, D.; Bantutov, E. Multiple-choice decision making by multicriteria combinatorial optimization. Adv.
Model. Optim. 2018, 14, 729–737.

5. Tirkolaee, E.B.; Goli, A.; Hematian, M.; Sangaiah, A.K.; Han, T. Multi-objective multi-mode resource constrained project
scheduling problem using Pareto-based algorithms. Computing 2019, 101, 547–570. [CrossRef]

6. Hwang, Y.A; Liao, Y.H. The unit-level-core for multi-choice games: The replicated core for TU games. J. Glob. Optim. 2010,
47, 161–171. [CrossRef]

7. Liao, Y.H. The maximal equal allocation of nonseparable costs on multi-choice games. Econ. Bull. 2008, 3, 1–8.
8. Liao, Y.H. The duplicate extension for the equal allocation of nonseparable costs. Oper. Res. Int. J. 2012, 13, 385–397. [CrossRef]
9. van den Nouweland, A.; Potters, J.; Tijs, S.; Zarzuelo, J.M. Core and related solution concepts for multi-choice games. ZOR-Math.

Methods Oper. Res. 1995, 41, 289–311. [CrossRef]
10. Shapley, L.S. Discussant’s Comment. In Joint Cost Allocation; Moriarity, S., Ed.; University of Oklahoma Press: Tulsa, OK, USA, 1982.
11. Ransmeier, J.S. The Tennessee Valley Authority; Vanderbilt University Press: Nashville, TN, USA, 1942.
12. Liao, Y.H.; Chung, L.Y.; Du, W.S.; Ho, S.C. Consistent solutions and related axiomatic results under multicriteria management

systems. Am. J. Math. Manag. Sci. 2018, 37, 107–116. [CrossRef]
13. Moulin, H. On additive methods to share joint costs. Jpn. Econ. Rev. 1985, 46, 303–332. [CrossRef]
14. Hart, S.; Mas-Colell, A. Potential, value and consistency. Econometrica 1989, 57, 589–614. [CrossRef]
15. Hwang, Y.A.; Liao, Y.H. Potential approach and characterizations of a Shapley value in multi-choice games. Math. Soc. Sci. 2008,

56, 321–335. [CrossRef]
16. Liao, Y.H. Consonance, symmetry and extended outputs. Symmetry 2021, 13, 72. [CrossRef]

http://doi.org/10.1007/s10589-018-9988-z
http://dx.doi.org/10.1016/j.cie.2019.106090
http://dx.doi.org/10.3390/su10020507
http://dx.doi.org/10.1007/s00607-018-00693-1
http://dx.doi.org/10.1007/s10898-009-9463-6
http://dx.doi.org/10.1007/s12351-012-0127-9
http://dx.doi.org/10.1007/BF01432361
http://dx.doi.org/10.1080/01966324.2017.1388201
http://dx.doi.org/10.1111/j.1468-5876.1995.tb00024.x
http://dx.doi.org/10.2307/1911054
http://dx.doi.org/10.1016/j.mathsocsci.2008.06.001
http://dx.doi.org/10.3390/sym13010072

	Introduction
	Preliminaries
	Definitions and Notations
	Motivating and Practical Examples

	Different Weighted Extension
	Other Generalizations and Revised Stability
	Conclusions
	References

