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1. Introduction

Fractal geometry appears in many phenomena in nature [1–6]. The methods of ordi-
nary integral and differential calculus are not effective or are inapplicable to the description
of processes on fractals due to the irregular self-similar geometry with a fractal dimension
exceeding the fractal’s topological dimension [7–11]. Sometimes, equations with derivatives
and integrals of fractional orders are used to describe processes on fractal structures [12].
However, it should be noted that the relationship between fractals and fractional calculus
is not evident, often artificial and criticized in some works [13]. In any case, the matter
is not complete without introducing additional procedures, for example, averaging over
realizations of random fractals [14–16]. A relation of fractional time derivatives to the
continuous time random walk theory with fractal time behavior is presented in [14] and
utilized in many works (see, e.g., [17–19]).

On the other hand, in the seminal paper of Gangal, fractal calculus was formulated
via generalization of the Riemann method and applied to the description of some physical
problems. Fractal calculus has advantages [7–11,20–25] important for its application. It
is algorithmic and applicable to deterministic fractals, and fractional order of arising
differential or integral operators is directly related to the fractal dimensions of structures.

In this paper, we consider some aspects of stochastic processes defined on fractal
sets. After a short review of the basics of fractal calculus and the definition of a fractal
Fourier transformation on thin Cantor-like sets, we define Brownian motion and fractional
Brownian motion on thin Cantor-like sets. Fractional Brownian motion on thin Cantor-like
sets is defined via non-local fractal derivatives, stochastic processes, and fractal integrals.
The fractal Hurst exponent is suggested, and its relation with the order of non-local fractal
derivatives is also derived.

Additionally, we relate the Gangal fractal derivative defined on a one-sided stochastic
fractal of time points to the fractional derivative after an averaging procedure over the
ensemble of random realizations. The counting process defined on a corresponding fractal
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time set becomes the fractional Poisson process. In this case, the fractal derivative is the
progenitor of the fractional derivative, which arises if we use a certain fractal distribution
of events on the time axis.

2. Basic Tools

In References [7,8], calculus on fractal subsets of a real line was systematically devel-
oped. Here, we provide some basic definitions of the fractal calculus, which we use to
“fractalize” stochastic processes.

2.1. Local Fractal Calculus

For some fractal set K ⊂ R, the flag function can be defined as follows [7]:

Q(K, J) =

{
1 if K ∩ J 6= ∅
0 otherwise,

(1)

where J = [b1, b2]. Then, ρα[K, W] is given in [7,8,22] by

ρα[K, W] =
n

∑
i=1

Γ(α + 1)(ti − ti−1)
αQ(K, [ti−1, ti]),

where W[b1,b2]
= {b1 = t0, t1, t2, . . . , tn = b2} is a subdivisions of J.

The mass function γα(K, b1, b2) is defined in [7,8,22] by

γα(K, b1, b2) = lim
δ→0

(
inf

W[b1,b2 ]
:|W|≤δ

ρα[K, W]

)
. (2)

The infimum in latter relation is evaluated over all subdivisions W of [b1, b2] in a way
that |W| := max1≤i≤n(ti − ti−1) ≤ δ.

In [7,8,22], the integral staircase function is introduced Sα
K(t) according to

Sα
K(t) =

{
γα(K, b0, t) if t ≥ b0

−γα(K, b0, t) otherwise,
(3)

where b0 is a fixed real number.
The γ-dimension of a set K ∩ [b1, b2] is given by

dimγ(K ∩ [b1, b2]) = inf{α : γα(K, b1, b2) = 0}
= sup{α : γα(K, b1, b2) = ∞}. (4)

The Kα-limit of a function g : R→ R is defined by the following:

∀ ε > 0, ∃ δ > 0 z ∈ K and |z− t| < δ⇒ |g(z)− l| < ε. (5)

If l exists, then
l = Kα

− lim
z→t

g(z). (6)

A function g : R→ R is Kα-continuous, if

g(t) = Kα
− lim

z→t
g(z). (7)

The Kα-derivative of g(t) at t is defined by [7]

Dα
Kg(t) =

{
Kα
− limz→t

g(z)−g(t)
Sα
K(z)−Sα

K(t)
, if, t ∈ K,

0, otherwise,
(8)
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if the limit exists.
The Kα-integral of g(t) on interval J = [b1, b2] is defined in [7,8] and approximately

given by

Iα
Kg(t) =

∫ b2

b1

g(t)dα
Kt ≈

n

∑
i=1

g(ti)(Sα
K(ti)− Sα

K(ti−1)). (9)

We refer the reader to [7,8,22] for more details.
The characteristic function of set K is defined by

χK(α, t) =

{
1

Γ(α+1) , t ∈ K;
0, otherwise.

(10)

The conjugacy between the fractal calculus and standard calculus can be illustrated by
the following map [7,8,22]:

f
Fractal Integral/Fractal Dervitives−−−−−−−−−−−−−−−−−−−→ f ′

Φ
y Φ−1

x
g

Standard Integral/Standard Dervitives−−−−−−−−−−−−−−−−−−−−−→ g′

where Dα
K = Φ−1DΦ and Iα

K = Φ−1 IΦ. The proof is given in [7,8], which makes it easy to
fractalize standard results.

2.2. The Thin Cantor-Like Sets

The thin Cantor-like sets/middle-b Cantor set are built in the following stages:

• From the middle of I = [0, 1], we take an open interval of length 0 < b < 1:

Cb
1 =

[
0,

1
2
(1− b)

]
∪
[

1
2
(1 + b), 1

]
. (11)

• Remove disjoint open intervals of length b from the middle of the remaining closed
intervals. The resulting set is

Cb
2 =

[
0,

1
4
(1− b)2

]
∪
[

1
4
(1− b2),

1
2
(1− b)

]
∪
[

1
2
(1 + b),

1
2

(
(1 + b) +

1
2
(1− b)2

)]
∪
[

1
2
(1 + b)

(
1 +

1
2
(1− b)

)
, 1
]

. (12)

...

• Delete disjoint open intervals of length b from the middle of the remaining closed
intervals of step k− 1; then, we have

Cb =
∞⋂

k=1

Cb
k . (13)

The Hausdorff dimension of the middle-b Cantor set is

dimH(Cb) =
log 2

log 2− log(1− b)
. (14)
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Needless to say, all definitions provided in the previous subsection can be applied to
the middle-b Cantor set (K = Cb). For more details, we refer the reader to [7,8,22].

3. Stochastic Lévy–Lorentz Gas and Fractal Time

Fractional derivatives in diffusion models often arise due to fractal properties of the
stochastic media [14,16–18,26–29]. Fractal derivative can be introduced for each realization
of this media, not only for the averaged system. The question arises whether the equations
with Gangal fractal derivatives for individual realizations of this media will correspond to
the transport equations with fractional derivatives for the effective medium. Consider the
following case of set K, the so-called stochastic Lévy–Lorentz gas [26,28].

The medium in this model is presented by points {Xj} = ..., X−2, X−1, X0 = 0, X1, X2, ...
(atoms), randomly distributed over x-axis. Let distances Xj−Xj−1 = Rj between neighboring
atoms be independent identically distributed random variables with a common distribution:

F(x) = P{R < x} =
∫ x

0
f (x)dx. (15)

In such a medium, the random positions Xj are correlated, and it is possible to separate
the set {Xj} into two independent sequences X1, X2, ... and X−1, X−2, ..., which originated
from a common initial point X0 = 0. This model is known as the one-dimensional Lorentz
gas [26].

The distribution of random number N+(x) of atoms in the interval (0, x]

W(n, x) ≡ P{N+(x) = n} = Fn(x)− Fn+1(x) (16)

is defined via the n-fold convolution Fn+1(x) =
∫ x

0 Fn(x− y)dF(y). Here, F1(x) = F(x).
The distribution of N−(x) in [−x, 0) can be found in a similar way. For various

distributions F(x), we obtain statistical ensemble of different kinds. To obtain a stochastic
medium with a fractal property, one can take a heavy-tailed distribution [28],

1− F(x) ∼ A
Γ(1− α)

x−α, A > 0, x → ∞. (17)

A statistically homogeneous medium is obtained if we take α > 2; the variance Var(R)
of R is finite in this case. For α < 2, Var(R) is infinite, and we deal with a stochastic fractal
medium called the Lévy–Lorentz gas [26,30]. In contrast with a homogeneous medium,
stochastic fractals do not obey the property of being self-averaging. For more details, we
refer the reader to [28] or Chapter 1 of the book [30].

Let the sequence of time points {Tj} = T1, T2, T3, ... be built in the same manner as the
sequence X1, X2, X3, ... above, namely 0 < T1 < T2 < T3 < ..., and T1, T2 − T1, T3 − T2, ...
are mutually identically independent distribution (i.i.d.) random variables with a general
distribution Q(t) = P{Tj+1 − Tj < t}.

Assuming in particular

1−Q(t) ∼ B
Γ(1− β)

t−β, t→ ∞, 0 < β < 1, (18)

we obtain
W(k, t)dk ∼ g(β,1)(τk)dτk = w(z, β)dz, (19)

where
τk = tcβn−1/β, z = k/〈K(t)〉, 〈K(t)〉 = 1

Γ(1 + β)
(t/cβ)

β ≡ K1tβ. (20)

Thus, the times of jumps T1, T2, T3, ... form a stochastic fractal set T β on the time axis
with fractal dimension β.
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Hilfer [31] studied fractal time random walks with generalized Mittag–Leffler func-
tions as waiting time densities. These densities are usually used in the so-called fractional
Poisson process [19].

The master equation for the fractional Poisson process (β ≤ 1) can be written in the
following form [29]:

0D
β
t pn(t) = µ[pn−1(t)− pn(t)] +

t−β

Γ(1− β)
δn0 , 0 < β ≤ 1. (21)

where 0D
β
t is the left-sided Riemann–Liouville.

The Poisson process on fractal sets was introduced in [20]. The corresponding master
equation has the following form:

Dα
Kpn(t) = µ[pn−1(t)− pn(t)] + δK(t)δn0 , 0 < α ≤ 1. (22)

where δK(t) is the delta function defined on the fractal set.
If we take K = T β, after averaging over the ensemble of random realizations, the

fractal derivative is proportional to the so-called fractional Marshaud derivative:

Mβ
+ f = lim

h↓0

β

Γ(1− β)

∞∫
h

f (z)− f (z− s)
sβ+1 ds, (23)

which for quite well functions coincides with the left-sided Riemann–Liouville derivative
of order β. Therefore, we arrive at Equation (21). Non-locality arises as a result of averaging
the local operator over the correlated distribution of time points.

The Poisson process is simple but one of the most important random processes for
applications. The most fundamental equations describing physical processes on a micro-
scopic level are obtained under the axioms of the Poisson process. Dealing with complex
macroscopic systems, another type of behavior can be observed including fractal behavior
and/or the presence of memory.

For the random walk on the fractal Lévy–Lorentz gas with trapping atoms [30], we de-
rived the following asymptotic (t→ ∞) equation with the Riemann–Liouville derivatives:

0D
β
t p(x, t) = θC 0Dα

x p(x, t) + c−α
α (C/2)(1− θ2) 0D2α

x p(x, t) + δ(x)t−β/Γ(1− β), 0 < α, β < 1, (24)

where p(x, t) is a probability density function and θ is an asymmetry parameter.
Fractional derivatives in different models often arise due to fractal properties of

systems (see, e.g., [12,14,16,29,31–33]). Here, we argue that the Gangal fractal derivative is
the progenitor of the fractional derivative. In this case, the fractal derivative is determined
for truly fractal sets, and in this sense, it is more fundamental. The fractional derivative
arises after the averaging procedure over certain stochastic fractal distributions.

3.1. Random Process on Thin Cantor Sets

In the section, we define the random process on thin Cantor set [20,22,34].
A fractal random process is a family of random variable is defined by

Z(t, ξ), t ∈ Cb, ξ ∈ E, (25)

where Cb is called the parameter fractal set of random process and E is called the probabil-
ity space.

For a fractal random process, denoted by Z(t, ξ), the autocorrelation function is defined
by

RZ(t1, t2) = E[Z(t1)Z(t2)], t1, t2 ∈ Cb, (26)

where E[.] is the mean of the random process.
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For a fractal random process, denoted by Z(t, ξ), the autocovariance function is
defined by

KZ(t1, t2) = RZ(t1, t2)− E[Z(t1)]E[Z(t2)], t1, t2 ∈ Cb. (27)

Local fractal Fourier transformation of a function f (t) ∈ Ωα (Ωα space of rapidly decreas-
ing test functions) with fractal support and then fractal Fourier transformation, denoted by
Fα( f (t)), can be defined as

f̂ (ω) = Fα(g(t)) =
∫ +∞

−∞
g(t)e−2πiSα

Cb (t)S
α
Cb (ω)dα

Cb t. (28)

The inverse fractal Fourier transformation is defined as

g(t) = F−1
α (g(t)) =

∫ +∞

−∞
ĝ(ω)e2πiSα

Cb (t)S
α
Cb (ω)dα

Cb ω. (29)

3.2. Non-Local Fractal Calculus

In this section, we review some definitions and properties of non-local fractal deriva-
tives [35].

The fractal right-sided Riemann–Liouville integral and derivative are defined as

xIβ
a g(x) =

1
Γα

Cb(β)

∫ a

x

g(t)
(Sα

Cb(x)− Sα
Cb(t))α−β

dα
Fε t,

xDβ
c g(x) =

1
Γα

Cb(n− β)
(Dα

Cb)
n
∫ c

x

g(t)
(Sα

Cb(x)− Sα
Cb(t))−nα+β+α

dα
Cb t,

where x < a and x < c. The fractal delta function is defined as

δα
Cb(x) =

{
∞, x = 0;
0, x 6= 0.

, while
∫ +∞

−∞
δα

Cb(x)dα
Cb x = 1, (30)

Non-Local fractal Fourier transformation of a function g(t) ∈ Ψα, where Ψα is the fractal
Lizorkin space, and then non-Local fractal Fourier transformation is defined as

ĝβ(ω) =
∫ +∞

−∞
g(t)Kβ(ω, t)dα

Cb t, (31)

where

Kβ(ω, t) =

{
exp(−iSα

Cb(t)|Sα
Cb(ω)|1/β), ω ≤ 0;

exp(iSα
Cb(t)|Sα

Cb(ω)|1/β), ω > 0,
(32)

where ω is fractal frequency.

3.3. Fractal Energy Spectral Density

Fractal energy spectral density demonstrates how the energy of a fractal signal or a
fractal time series is distributed with fractal frequency [34].

Fractal energy spectral density for a fractal signal, denoted by g(t) : Cζ → <, is defined
as

ECb =
∫ +∞

−∞
|g(t)|2dα

Cb t. (33)

Power spectral density of a random process X(t) is defined by

pX(ω) =
∫ ∞

−∞
RX(τ)e−iωτdα

Cb τ, (34)

where
RX(τ) = E[X(t)X(t + τ)] =

1
2π

∫ ∞

−∞
pX(ω)(τ)eiωτdα

Cb ω, , t ∈ Cb, (35)
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which is known as fractal autocorrelation. Equations (34) and (35) can be called fractal
Wiener–Khinchin relations.

If X(t) is assumed to be a random process on thin Cantor-like sets with the following
autocorrelation function,

RX(τ) = exp
(
−a|Sα

Cb(τ)|
)

, (36)

where a ∈ <+, then the power spectral density of X(t) using Equation (34) can be written as

pX(ω) = Fα(RX(τ)) =
2a

Sα
Cb(ω)2 + a2 . (37)

Properties: Some formulas of local and non-local fractal calculus are given in Table 1.

Table 1. Useful formulas in fractal calculus.

Formulas Formulas Remarks∫ b
a (a f (t) + bg(t))dα

Cb t

= a
∫ b

a f (t)dα
Cb t + b

∫ b
a g(t)dα

Cb t

Dα
Cb(a f (t) + b g(t))

= a Dα
Cb f (t) + b Dα

Cb g(t) Linearty∫ y
0 (S

α
Cb(t))ndα

Cb

= 1
n+1 (S

α
Cb(t))n+1

Dα
Cb(u(t)v(t))

= (Dα
Cb u(t))v(t) + u(t)(Dα

Cb v(t)) Leibnitz Rule

Dα
Cb(Sα

Cb(t))n

= n(Sα
Cb(t))n−1χCb(t)

f (Sα
Cb(λt))

= λnα f (Sα
Cb(t))

Scaling

0D
β
t ( f (Sα

Cb(λt)))

= λβα
0D

β
λt( f (Sα

Cb(t))),

Dα
Cb f (Sα

Cb(λt))
= λnα−αDα

Cb f (Sα
Cb(t))

Scaling

0I
β
t (S

α
Cb(t))η

=
Γα

Cb (η+1)

Γα
Cb (η+β+1) (S

α
Cb(t))η+β

0D
β
t (c χα

Cb)

= c
Γα

Cb (1−β)
(Sα

Cb(t))−β Fractal derivatives

0D
β
t (S

α
Cb(t))η

=
Γα

Cb (η+1)

Γα
Cb (η−β+1) (S

α
Cb(t))η−β

0D
β
t g(t) = C

0D
β
t g(t)+

∑n−1
j=0

(
Dα

t f (t)|Sα
Cb (0)

)j

Γ(j−β+1) Sα
Cb(t)j−β

4. Brownian Motion Defined on Fractal Sets

Let us define the normalized Brownian motion on fractal sets [36–45]. The normalized
Brownian motion on fractal sets is a random process that is denoted by Bζ

F(t), where
t ∈ F = Cb with the following properties: Its mean is given by

E[Bζ
F(t)] = 0, (38)

and its autocorrelation is defined by

E[Bζ
F(t)Bζ

F(s)] =
1
2
(|Sζ

F(t)|+ |S
ζ
F(t)| − |S

ζ
F(t)− Sζ

F(s)|). (39)

By using the upper bound Sζ
F(t) < tζ [7,46,47], we obtain

E[Bζ
F(t)Bζ

F(s)] ≈
1
2
(|tζ |+ |sζ | − |tζ − sζ |), (40)

where 0 < ζ ≤ 1 is the dimension of fractal time set, which is the fractal parameter space
of the random process. In Figure 1, we plotted a Brownian motion on a real line and on
fractal sets.
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Figure 1. Trajectories of the stochastic processes under consideration. (a) The Brownian motion on a real line with γ-
dimension = 1, H = 0.5. (b) The fractional Brownian motion on a real line with γ-dimension = 1, H = 0.75. (c) The Brownian
motion on a Cantor-like set with γ-dimension = α = 0.5, H = 0.25. (d) The fractional Brownian motion on a Cantor-like set
with γ-dimension = α = 0.5, H = 0.375.

5. Fractional Brownian Motion on Fractal Sets

In this section, we define the Fractional Brownian Motion (FBM) with fractal sup-
port in terms of probability density function, stochastic process, and fractal stochastic
integral [36,37,40–45].

It is known that the FBM is a random walk with a continuous time parameter space,
which provides useful models for many physical phenomena for which the empirical
spectral power is given by a fractional law. FBM is defined by the so-called Hurst exponent
H ∈ (0, 1). The increments of FBM are correlated (except the case H = 1/2) and obtained
from Gaussian noise via fractional integral [44],

BH(t) =
1

Γ(H + 1/2)

∫ ∞

−∞

[
(t− t′)H−1/2

+ − (−t′)H−1/2
+

]
dB(t′). (41)

producing an auto-correlation function

〈BH(t1)BH(t2)〉 = C
[
|t1|2H + |t2|2H − |t1 − t2|2H

]
, (42)

where C is a constant. Here, (t− t′)+ = 0, if (t− t′) < 0.
When H = 1/2, FBM becomes the ordinary BM. If 1/2 < H < 1, we have su-

perdiffusion (enhanced diffusion), and if H < 1/2, the process is subdiffusive. FBM is
non-stationary and non-Markovian but with stationary-dependent increments with normal
distribution. It has a self-similar structure, and it is defined as a stochastic integral of white
noise. Its transition probability function is a normal distribution, which is the solution
for heat equation. FBM is the generalization of the BM, which allows its increment to
be correlated over time which can be positive/persistent correlation or negative/anti-
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persistent correlation. On one hand, the fractional Gaussian noise (FGN) is defined as the
stochastic derivative of FBM. On the other hand, the stochastic integration of FGN gives
FBM; therefore, both of them are characterized by Hurst parameter (0 < H < 1), which is
defined by Q ∝ (∆t)H , where Q is standard derivation and ∆t indicates lag time. FBMs are
characterized by H in this way if H < 0.5. it is called anti-persistent, persistent if 0.5 < H,
and Brownian motion if H = 0.5. FBM is called a non-stationary stochastic process with
time-dependence variance, while FGN is stationary. Fractional derivatives (FDs) were used
to define FBM and show its properties; hence, both of them are associated with anomalous
diffusion. The fractional models have proven a linear relation with the order of derivatives
and fractal dimensions. FBMs trajectories are continuous but non-differentiable in the
sense of standard calculus. Anomalous diffusion in strong disorder media was studied
by using FBM and the corresponding mean square passion that does not increase linearly
with time. The DNA sequence was studied by using signal processing technique, which
leads to FBM [36–45,48,49].

The mean square displacement of different random walks was explained using fractal
derivatives [24,50]. Non-local derivatives were defined to model processes with long-
memory properties on fractal sets [35]. Several phenomena involving fractal time are very
interesting, and it is important to study them [51,52]. Equilibrium and non-equilibrium
statistical mechanics involving generalized fractal derivatives were reviewed [53].

First representation: To model anomalous sub-diffusion using non-local derivatives,
which is called fractal fractional Brownian motion, we have

Dζ
F,t p(x, t) = 0D

1−β
t (Γζ

F(β)D)(Dα
F,x)

2 p(x, t)

=
(

Sζ
F(t)

)β−1
D (Dα

F,x)
2, (43)

where D is constant and p(x, t) is the probability density function of fractal fractional
Brownian motion. The solution of Equation (43) is

p(x, t) =
1√

4πD(Sζ
F(t))

β
exp

[
−

Sα
F(x)2

4πD(Sζ
F(t))

β

]
. (44)

By using the upper bound of the staircase function,

0 < Sζ
F(t) ≤ tζ , (45)

Then, we have

p(x, t) ≈ 1√
4πDtζβ

exp
[
− x2α

4πD tζβ

]
, 0 < β < ζ, (46)

where ζ and α are fractal dimensions of the time and space, respectively, and β is a free
parameter, which is called the non-local order derivatives on fractal time space [54,55].
Using Equation (46), the mean square displacement is obtained as follows:

< Sα
F(x)2 > 2D(Sζ

F(t))
β. (47)

Using Equation (45), we obtain

< Sα
F(x)2 > ≈ 2Dtζβ. (48)

The mean square displacement in terms of Hurst parameter H is defined as

< Sα
F(x)2 > = 2DSζ

F(t)
2H . (49)
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Utilizing Equation (45), we have

< Sα
F(x)2 > ≈ 2Dt2ζH . (50)

Hence, we get

β = 2H, (51)

and

Hζ
F = ζH, (52)

where Hζ
F is the fractal Hurst exponent. We note that the fractal power law diffusivity is

related to fractional derivative.
Second representation: The fractional Brownian motion on thin Cantor-like sets is

defined as a stochastic process with the following properties. Let BHζ
F (t) = Bζ

F(t) and
Hζ

F ∈ [0, ζ], then its correlations function and self similarity properties can be expressed
as follows:
(1) Correlations:

E(Bζ
F(t)Bζ

F(s)) = Corr(t, s) =
1
2

(
|Sζ

F(t)|
2H + |Sζ

F(s)|
2H − |Sζ

F(t)− Sζ
F(s)|

2H
)

, (53)

or its approximation

Corr(t, s) ≈ 1
2

(
|tζ |2H + |sζ |2H − |tζ − sζ |2H

)
, t, s ∈ F. (54)

(2) Self Similarity:

Bζ
F(at) ∼ aHζ

F Bζ
F(t). (55)

(3) Second moment:

E(Bζ
F(t)− Bζ

F(s))
2 = E(Bζ

F(t))
2 + E(Bζ

F(s))
2 − 2E(Bζ

F(t)Bζ
F(s))

= |Sζ
F(t)|

2H + |Sζ
F(s)|

2H − |Sζ
F(t)|

2H − |Sζ
F(s)|

2H + |Sζ
F(t)− Sζ

F(s)|
2H

= |Sζ
F(t)− Sζ

F(s)|
2H . (56)

Third representation: The fractal fractional Brownian motion is defined by [44]

BHζ
F (t) =

1

Γα
F(Hζ

F +
1
2 )

∫ t

0
(t− s)(Hζ

F−1/2)dα
FB(s), (57)

where we suppose

φ(s) = (t− s)(Hζ
F−1/2). (58)

To interpret Equations (57) and (58), we define them for the partition t1 = a, ..., tl = b
and s ∈ (tj, tj+1], s ∈ F as follows:

∫ b

a
φ(s)dα

FB(s) =
l

∑
n=1

φ(s)Γ(α + 1)
(

BHζ
F (tj+1)− BHζ

F (tj)
)α

=
l

∑
n=1

φ(j)Γ(α + 1)
(

BHζ
F (tj+1)− BHζ

F (tj)
)α

. (59)

In Figure 1, we sketched the fractional Brownian motion on a real line and on fractal
sets.
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6. Spectral Density of Fractional Brownian Motion on Fractal Sets

In this section, we analyze the spectral density FBM on fractal sets. Because of the
conjugacy between the fractal calculus and standard calculus, we suggest the following
spectral density:

p
Bξ

F
(ω) = Cα

− lim
T→∞

p
Bξ

F,T
(ω) = Cα

− lim
T→∞

1
T

E|B̂(ω)|2, (60)

where

B̂(ω) =
∫ t0+T

t0

Bζ
F(t)d

α
Ft, (61)

is the fractal Fourier of Bζ
F(t) and

E|B̂(ω)|2

=
∫ t0+T

t0

∫ t0+T

t0

E(Bζ
F(t1)Bζ

F(t2))e−iSζ
F(ω)(Sζ

F(t1)−Sζ
F(t2))dα

Ft1dα
Ft2, (62)

where

E(Bζ
F(t1)Bζ

F(t2))

=
1
2
(|Sζ

F(t1)− Sζ
F(t0)|2H + |Sζ

F(t2)− Sζ
F(t0)|2H − |Sζ

F(t2)− Sζ
F(t1)|2H). (63)

By virtue of the conjugacy of fractal calculus with the ordinary one, we can write
the following:

p
Bξ

F,T
(ω) =


Sζ

F(T)
2H+1

2(H+1) , Sζ
F(ω) = 0;

π
4 (2H π2H−1

(Sζ
F(ω))2H+1

+
Sζ

F(T)
2H−1

Sζ
F(ω)2

), Sζ
F(ω) 6= 0.

∝


Tζ(2H+1)

2(H+1) , Sζ
F(ω) = 0;

π
4 (2H π2H−1

(ω)ζ(2H+1) +
Tζ(2H−1)

(ω)2ζ ), Sζ
F(ω) 6= 0.

(64)

and

p
Bξ

F
(ω) =



∞, Sζ
F(ω) = 0, 0 < H < 1,

Hπ2H

2
1

Sζ
F(ω)(2H+1)

, Sζ
F(ω) 6= 0, 0 < H < 1/2,

π
2

1
Sζ

F(ω)2
, Sζ

F(ω) 6= 0, H = 1/2,

∞, Sζ
F(ω) 6= 0, 1/2 < H < 1.

∝


∞, Sζ

F(ω) = 0, 0 < H < 1,
Hπ2H

2
1

ωζ(2H+1) , Sζ
F(ω) 6= 0, 0 < H < 1/2,

π
2

1
ω2ζ , Sζ

F(ω) 6= 0, H = 1/2,
∞, Sζ

F(ω) 6= 0, 1/2 < H < 1.

(65)

Remark 1. For example, if we consider FBM on the triadic Cantor set (ζ = 0.6), then the Hurst
parameter 0 < H < 0.6; in particular, we can characterize it as follows: if H < 0.3, then we have
anti-persistent FBM, FBM persistent if 0.3 < H, and BM if H = 0.3.

Using the virtue of spectral density, we can also categorize FBM on the triadic Cantor set
as follows: if 0 < H ≤ 0.3, then by using Equation (65), we have p

Bξ
F
(ω) ∝ ω−0.6(2H+1). In

addition, from Equation (64), if 0 < H ≤ 0.3⇒ p
Bξ

F ,T
(ω) ∝ ω−0.6(2H+1), but 0.3 < H < 0.6⇒

p
Bξ

F ,T
(ω) ∝ ω−1.2.
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Remark 2. Throughout the paper, one can obtain the standard results by choosing α = 1 (see
[42–45,56–58]).

7. Conclusions

In this paper, we considered fractal generalizations of Brownian motion and fractional
Brownian motion. These generalized processes were defined with the use of fractal calculus.
Fractalized fractional Brownian motion was given using non-local fractal derivatives,
stochastic processes, and stochastic integrals on thin Cantor-like sets. The fractal Hurst
exponent/parameter was defined as a characterized FFBM. The sample Brownian motion
and FFBM were plotted to show the validity of our obtained results. We claim that fractal
derivative defined on the one-sided Lévy–Lorentz set becomes fractional derivative after
the averaging procedure over the ensemble of random realizations. The counting process
defined on a corresponding fractal time set becomes the fractional Poisson process. In this
case, the fractal derivative is the progenitor of the fractional derivative, which arises if we
use a certain fractal distribution of events on the time axis.
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