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Abstract: In this article, we present an in-depth comparative analysis of the conventional and sequen-
tial learning algorithms for electricity load forecasting and optimally select the most appropriate
algorithm for energy consumption prediction (ECP). ECP reduces the misusage and wastage of en-
ergy using mathematical modeling and supervised learning algorithms. However, the existing ECP
research lacks comparative analysis of various algorithms to reach the optimal model with real-world
implementation potentials and convincingly reduced error rates. Furthermore, these methods are less
friendly towards the energy management chain between the smart grids and residential buildings,
with limited contributions in saving energy resources and maintaining an appropriate equilibrium
between energy producers and consumers. Considering these limitations, we dive deep into load
forecasting methods, analyze their performance, and finally, present a novel three-tier framework
for ECP. The first tier applies data preprocessing for its refinement and organization, prior to the
actual training, facilitating its effective output generation. The second tier is the learning process,
employing ensemble learning algorithms (ELAs) and sequential learning techniques to train over
energy consumption data. In the third tier, we obtain the final ECP model and evaluate our method;
we visualize the data for energy data analysts. We experimentally prove that deep sequential learning
models are dominant over mathematical modeling techniques and its several invariants by utilizing
available residential electricity consumption data to reach an optimal proposed model with smallest
mean square error (MSE) of value 0.1661 and root mean square error (RMSE) of value 0.4075 against
the recent rivals.

Keywords: energy consumption prediction; machine learning; sequential learning; deep learning;
artificial intelligence; smart grids; ensemble learning; renewable energy

1. Introduction

In recent decades, the consumption of energy in different sectors such as industries,
factories, transportation, and residential buildings, has tremendously increased due to
over population and economy growth. About 39% of total global energy is consumed
by buildings and 38% is dissipated in CO2 emissions [1]. Examining this, we need to
reduce the extra energy consumption in buildings to protect and preserve energy for more
efficient usage [2]. Therefore, predictions of future energy usage have encouraged several
researchers to boost smart grids’ performance, that directly affect the energy production
and consumption. Predictions of energy usage ensure that proper plans are available to
meet the energy demands of certain buildings and control energy distribution in ways that
add extra benefits to the setup of smart grids. Similarly, intelligent buildings’ profiling
plays a vital role in making decisions for energy conservation and its management [3,4]. It
assists users by providing insights about energy consumption behavior, that residential
owners can use for certain building operations relating energy usage and helps design
proper infrastructure [5]. Similarly, intelligent buildings profiling helps to detect outliers
in consumption and to perceive any risks in advance [6], which is helpful because energy
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demand is greatly affected by inhabitant’s behavior when using household electronic
devices. Considering this, the authorities operating smart grids are developing new
algorithms to handle the consumption of energy in efficient ways. Since home appliances
are normally used without proper forms of energy management, a lot of energy is being
wasted. Reducing this wastage is very important to preserve as much energy as possible
for future usage through efficient prediction techniques. Energy usage and its management
infrastructure vary from building to building and similarly in industrial zones worldwide.
The smart grid acts as a hub to cover both the transmission and distribution of energy. A
thorough overview of production and distribution scenario of a functional smart grid is
given in Figure 1a. The energy production resources include thermal, solar, wind, etc.
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Figure 1. Overview of a smart grid operation and the statistical details energy consumption in different sectors.
(a) Renewable energy is obtained by the smart grid, where it is organized and made suitable for usage. After pass-
ing the data from the initial stages, it is supplied to the consumers according to their demands. These consumers include
industries, households, offices, and public transport systems. (b) The statistical overview of the energy used in different
sectors of South Korea, where the industries consume huge amount of energy due to heavy machinery.

Similar to a number of production resources, energy is also consumed at varied points
and locations, depending upon the application under consideration. For instance, as given
in Figure 1b, energy consumption in South Korea is highlighted, that is distributed among
industries, residential buildings, transportation, etc. [7]. Statistical analysis [8] suggests
that the energy consumed by residential and commercial buildings, public, industries,
and transportation in South Korea is 38%, 6%, 55%, and 1% of total energy consumption,
respectively, as is shown in Figure 1b.

Analyzing the historical data from these varied consumption resources i.e., residential
buildings and industries assists in planning future energy production and its efficient
consumption. Maintaining a sufficient amount of energy supply has a vital role in human
welfare, while the energy production resources tends to maintain and continuously improve
their distribution services. The recorded amount of energy distributed in a certain time
and varied weather conditions assists to predict the future energy consumption. From
time-series analysis perspective, the energy patterns recorded in varied scenarios are either
fed to a mathematical model or a machine learning model for energy forecasting. Several
energy forecasting methods are used to estimate the future energy demand.

The existing energy forecasting literature has a lot of contributions from researchers
to effectively analyze the time-series data produced by smart meters. But studies reveal
that the majority of the methods model various features such as weather prediction,
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product price, household expenses, and their relationship through statistical methods.
These features allow the changes to be explained and the cost to be estimated relatively
easy. However, as shown in the energy domain and its related literature, the research
attention widely increased with the practice of deep learning and sequential time-series
methods. These methods have shown a tremendous performance in many data science
applications, including energy forecasting domain. Although, the usage of deep learning
in energy forecasting boosted the preciseness of current models, but existing literature has
rarely focused on household energy management. Regarding energy management and
forecasting problems, ensemble learning and its invariants has remained unexplored for
residential energy consumption data. Moreover, the literature on deep sequential learning,
such as recurrent neural networks (RNNs), reveal its reasonable outputs to deal with
different tasks and achieve superiority. However, its several variants are the missing pieces
of residential energy management. With the aforementioned assumptions in mind, this
article presents a novel three-tier framework for energy consumption prediction (ECP).
The notable contributions of the proposed method are given below:

• The data obtained via smart sensors and meters have several abnormalities, uncer-
tainties, and outliers that occur due to weather variations, government influences, etc.
To handle this issue, we employ a preprocessing step that includes data cleansing,
its organization, noise removal, normalization, and arrange it in rolling windows to
obtain the refined data, so that it is the best fit for the next training step.

• To deeply evaluate and consider mathematical modeling in the ECP domain, we
apply several ELAs in this research and compared their performances with several
deep sequential learning methods to learn about their effectiveness and real-world
implementation potentials.

• The literature on sequential learning, such as recurrent neural networks (RNNs),
shows promising outcomes for several tasks, improving on traditional learning meth-
ods. Inspired from this, we employ an RNN and its several variants such as long
short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and multilayer LSTM
(M-LSTM). These variants are more suitable for ECP of residential buildings.

• We experimentally prove that the sequential learning models are the most appropriate
algorithms to handle the energy forecasting problem, verified by the lowest error rates
using publicly available data.

The reminder of the paper is organized as follows: Section 2 covers the literature
review and Section 3 provides the three-tier method for ECP, while Section 4 discuss
the experimental results. Section 5 concludes the proposed method with some future
directions.

2. Literature Review

Due to the widespread usage of ECP applications across the world, it has gained a
considerable research attention. Several techniques have produced realistic and promising
results to manage energy consumption. To thoroughly overview the existing methods, we
divide them into conventional and deep learning-based methods.

2.1. Conventional Energy Management

In the initial stages, statistical methods were broadly used by the researchers. For
instance, Zhong et al. [9] proposed a support vector machine (SVR)-based method for
ECPs where the multidistortion generated the optimal features space in the data. They
approximated a high nonlinearity between the input and output through linearity. Next,
Guo et al. [10] introduced a machine learning-based model to predict the response time of
a building’s thermal energy. They considered multiple linear regression (MLR), support
vector machine (SVM), and extreme learning machine model for energy prediction. They
analyzed the performance of each model for heating analysis. Similarly, Liu et al. [11] ana-
lyzed SVM for ECPs in the buildings. Zhang et al. [12] explored the SVM model to predict
the energy consumption in the iron making process. Further, they considered a particle
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swarm algorithm to improve the consumption prediction. Cauwer et al. [13] detected and
quantified the correlation between the energy consumption and the kinematics parameters.
They considered the vehicle dynamics as the underlined physical model and used MLR for
the construction of three other models. The authors formed a distant level of aggregations
used by the models to allow predictions via different types of input parameters. Cai
et al. [14] classified the consumption ratings of 16,000 residential houses based on the data
collected from the whole region. They shortened the electric patterns using data mining
approaches and used the K-mean algorithm to accomplish clustering, where the electricity
usage was distributed through the obtained centers of each cluster and then SVM was used
for classification. Moreover, Fumo et al. [15] established a simple, multiple, and quadratic
regression for hourly and daily energy consumption in residential buildings.

Data quality is an important issue to consider in the forecasting problem and has a
high impact on the forecasting algorithm. For instance, Luo et al. [16] investigated the
integrity of data over the load forecasting problem. For this purpose, they considered
several regression models and simulated a few data integrity attacks to identify their effects
on the model’s performance. They demonstrated that the existing regression methods
failed to give reasonable forecasting results. Similarly, Zhang et al. [17] studied the impact
of data attacks over the accuracy of forecasting models. In their method, they verified
that the most robust and representative power forecasting models are SVM and K-nearest
neighbors (KNNs) combined with kernel density.

2.2. Deep Learning-Based Energy Management

Nowadays, research communities use deep learning methods due to their reasonable
results in solving different energy and computer vision related applications such as energy
systems [18]. Recently, He et al. [19] proposed a deep learning algorithm-based data
driven approach in an unsupervised learning manner to extract the sensitive consumption
features from the machinery data and developed a prediction model in a supervised
manner. Similarly, Hu et al. [20] developed the stacked hierarchy of reservoirs (DeepESN)
to predict the energy consumption and wind power generation through a deep learning
framework. DeepESN combined the time-series ability of the state network and learning
ability of the framework. Further, Ullah et al. [21] presented a clustering-based analysis
of energy consumption and categorized the usage of electricity. Similarly, Gao et al. [22]
proposed deep learning models such as a sequence to sequence model and two-dimensional
convolutional neural network (CNN). They used a transfer learning approach to empower
the prediction accuracy obtained for residential buildings. In addition, the sequential
learning techniques have also been considered for the forecasting problem. For instance,
Somu et al. [23] presented eDemand, which is an energy consumption model that employs
LSTM. They improved the sine and cosine optimization algorithms for building energy
forecasting. In this regard, Hussain et al. [24] enveloped the energy forecasting methods
into one platform that covers both the deep learning and conventional methods. They also
provided a statistical analysis of the energy forecasting methods. Furthermore, Li et al. [25]
proposed an evolutionary algorithm known as teaching–learning-based optimization
(TLBO) for short-term energy consumption in residential buildings. They further improved
the prediction process using an artificial neural network where the CNN layers are capable
of extracting spatial and temporal features from the data sequence. Recently, Ullah et al. [26]
proposed a method where the CNN is combined with multilayer bidirectional LSTM for
energy consumption of a household. Inspired by LSTM, Wen et al. [27] used a deep RNN
along with LSTM for power load and photovoltaic power forecasting in the microgrid.
They proved that the deep RNN with LSTM performed very well compared to multilayer
perceptron. They optimized the load dispatch by particle swarm optimization PCO.

3. Material and Method for ECP

In this section, we discuss each step of our method in a detailed fashion. We discuss
the ESA and sequential learning methods for ECP with the coverage of the statistical
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methods. The load data considered are from the household and are used to evaluate the
effectiveness of the proposed method.

3.1. Data Setting and Preprocessing

In this section, we discuss the data setting and how it is preprocessed. Usually,
during a data collection process, the smart meters are connected to the main board that
measures the power, current, voltage, etc., of all the appliances installed inside the house.
However, there is somehow uncertainty in the data, which is one of the big problems and
drastically affects the ECP. These uncertainties in the data are emerged due to different
environmental conditions such as the occupant’s behavior, building’s infrastructure, noisy
values generated by the system software during its settings, etc. The uncertainties in
the case of ECPs include outliers, and missing values, verifying its negative affect in the
final prediction results. However, energy forecasting is one of the critical steps in efficient
energy management to smartly utilize the energy that balances the smart grids and the
residential buildings. Prediction of energy consumption in the short term has been studied
extensively, while the forecasting is less explored when going deeper at the aggregate level.
The uncertainty increases as the samples size becomes smaller. Several methods [28,29]
have widely focused on the difficulties and uncertainties that arise when dealing with
the consumption prediction problem. Consequently, the proposed method is evaluated
by the publicly available benchmarks such as power consumption dataset. Hence, this
dataset contains missing values and noisy values. The initial data contain outliers and
uncertainties that lead the system to an incorrect prediction of energy consumption. To
deal with these uncertainties, the data are first passed through preprocessing layer that
applies smoothing filters to make the data perfect for the actual modeling. The missing
values are substituted by the previous values. Furthermore, there were some data outliers
that were replaced through the normalization technique which brought all the values into
same range to help in the smooth processing of the data. Once the data are refined and
ready for processing, different horizons are formed from the data, such as minutes, hours,
days, and weeks, for detailed investigation. This step is visually shown in Figure 2 as step 1
and step 2.

3.2. Learning Mechanism

We applied several ELAs to evaluate their performances for ECPs. Similarly, we used
the most popular deep sequential learning techniques that are abundantly used due to
their promising results, as given below.

3.2.1. ELA

In this section, we discuss several ELAs to assess their effectiveness and performance
for ECP. The ELAs blend multiple predictor forecasting techniques to increase the general-
ization and robustness. These algorithms can be categorized into (1) the average algorithm,
that considers several independent predictors to average forecasts such as those from
bagging methods or the random forest (RF) method, while (2) boosting algorithms combine
several low-level techniques to make a powerful performance ensemble such as Adaboost
(AB) and gradient boosting. In order to perform the short-term consumption prediction,
the actual power is considered from the energy data. Furthermore, a detailed explanation
is given below.

AB Algorithm

AB is the most popular machine learning algorithm that is introduced by Freund
et al. [30] and was originally based on the task of classification. The core concept of
this algorithm is to repeatedly fit the sequence from the weak learners by modifying the
data. The modification in the data is brought about through change in the weights for
each classifier. Firstly, all the weights are distributed equally and for each iteration, the
algorithm updates its weights. The weights are updated for those classifiers which wrongly
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predict the data sequence. This algorithm is adaptive in the case when its subsequent
weak learners are tweaked in the favor of instances that are wrongly predicted by the
previous classifier. AB obtains the input as a training set (X1, Y1), . . . , (xm, ym), where xi
belongs to a certain domain space while each yi is a label in set Y. AB continuously calls
the base algorithms a series of N = 1, . . . , N. The core idea of this algorithm is maintenance
of distribution or weights in the training set. Consequently, there is another flavor of
ensemble algorithm, ABR2 [31], which is the modified version of regression for the AB
ensemble [30]. This algorithm sequentially fits the estimators, where each estimator focuses
on the samples that were predicted by the high loss. The core features of AB R2 are the
dataset and the sampling distribution. Each training data element contains a value in
sampling distribution which shows the probability of the included element in the training
set. The detailed pseudocode of AB is given in Table 1 while the pseudocode for ABR2 is
given in Table 2.
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GBR Algorithm

The gradient boosting regression (GBR) algorithm was originally developed for re-
gression and classification problems. This algorithm produces a prediction model in an
ensemble of weak prediction models, such as the decision tree (DT) model. Next, it builds
the model stage-wise as other conventional boosting techniques. It generalizes the method
through the optimization of differentiable loss. This algorithm considers the low per-
formance method of DTs to develop the prediction model on the basis of the ensemble
algorithm. GBR sequentially keeps the model updated and uses the optimization of loss
function to reach its generalization.
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Table 1. Mathematical step-by-step explanation of the working flow of the ensemble learning
algorithm (ELA) representing Adaboost (AB) [32].

AB 1 ELA

Input: (x1, y1), . . . .( xm, ym) where x_i ε X, y_i εY = {−1, +1})
Initialize D_1(i) = 1

m
For n = 1, . . . .,N:

Train weak learner using Dn.
Obtain weak hypothesis hn: X→ {−1, +1} with error

εn= Pri∼Dn [hn(xi) 6= yi].
Select αn= 1

2 ln
(

1−εn
εn

)
Update:

Dt+1(i) = Dt(i)
Zi
×
{

e−at i f ht(xi) = yi
e−at i f ht(yi) 6= yi

=Di exp(−αnyiht(ai))
Zt

Here, Zt represents factor of normalization
Output: final hypothesis:

H(a) = sign (∑N
n=1 αnht(a))

Table 2. Mathematical step-by-step explanation of the working flow of ELA representing ABR2 [33].

AB2 ELA

Input: Dataset D: (x1, y1), . . . .( xm, ym)

1. Initialize S1 [i]= 1
m for all i; make n = 1

2. Construct Training-set from D using S1.
3. Develop network hn and train using Training-set
4. Find max loss, Lmax, over Dataset where: Lmax = sup| hn(xt)| over i

5. Calculate loss for each sample in Dataset by: Lt=
| hn( xn)− yn |

Lmax

6. Calculate weighted loss: L− = ∑n
i LnDn(i)

7. Set: βn= L−/(1 − L−)

8. Calculate next distribution: Dn+1(i) = Dn(i)β1−Ln
n

Zn
Where Zn shows normalization factor selected so that ∑n Dn+1 sums to 1.

n = n + 1; repeat 2-8 till L < 0.5.

GBR sequentially keeps the model updated and uses the optimization of loss func-
tion to achieve generalization. This algorithm considers the additive model from the
formula [34] given in Equation (1), where hm(x) represents the main functions that are
known as weak learners in the boosting context, while γm is the length that is chosen while
executing the function given in Equation (2).

F(x) =
M

∑
m=1

γmhm(x) (1)

γm = argminy

n

∑
i=1

L(yi, Fm(xi)− y
θL(yi, Fm − 1(xi))

θFm − 1(xi)
) (2)

Fm(x) = Fm − 1(x) + γmhm(x) (3)

Fm(x) = Fm − 1(x) + argminh

n

∑
i=1

L(yi, Fm − 1(xi)− h(x)) (4)

Consequently, as like other boosting algorithms, GBR has the capability to create the
additive model within forward stage, which is illustrated in Equation (3). At every stage,
hm(x) is used to minimize the loss function L in the model Fm − 1 and fit Fm − 1(xi), which
is shown in Equation (4). The GBR model is implemented in python with the scikit-learn
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library. The total number of estimators used is 50. The depth of the independent regression
predictors is tuned. The pseudocode of GBR is given in Table 3.

Table 3. Mathematical step-by-step explanation of the working flow of ELA representing gradient
boosting regression (GBR) [35].

GBR

Inputs:

� input sample (x, y)N
i=1

� iteration In
� loss function ψ(y, f)
� base-learner model L(a, θ)

Steps:

(1) initialize f0 using a constant
(2) for n = 1to In do
(3) find negative gradient gn(x)
(4) fit base learner function L(x, θn)
(5) compute best gradient descent step-size ρn:

ρn = argminρ ∑N
i=1 ψ[bi, fn−1(xi) + ρL(xi, θn)]

(6) Update function: fn← fn−1+ ρnL(x, θn)

end for

RF Algorithm

RF is also an ensemble learning method that is developed for regression and classifica-
tion problems and other tasks operated through constructing multitudes in DTs during the
training process. This algorithm was first introduced by Tin Kam Ho et al. [36] as a random
decision forest that was defined as ensemble learning for regression and classification. This
algorithm uses the technique of bagging to build an ensemble of DTs. Based on random
selection of data and variable selection, it develops many trees. This algorithm consists
of randomized DTs [37]. Each tree in the forest is trained from the random subsets of the
training samples and random features. To predict a certain example, the outputs from each
tree are averaged to find the overall output where each tree is traversed until it reaches
a leaf node. According to the training example ratio that belongs to the node of the leaf,
the probability scores are assigned. These scores are averaged for each tree present in the
forest which gives us the overall probability score of that sample. In this algorithm, the
number of estimators is 100. Furthermore, the pseudocode of RF is given in Table 4.

Table 4. Mathematical step-by-step explanation of the working flow of ELA representing random
forest (RF) [32].

RF

Input: Training set Ts = (x1, y1), . . . (xm, ym), number of trees in forest N, features Fe.

(1) function RANDOMFOREST (Ts, Fe)
(2) H←θ
(3) for i ε 1, . . . ., N do
(4) Ts

(i)← Sample from Ts

(5) hi← RTL(Ts
(i), Fe)

(6) H← H ∪{ hi}
(7) end for
(8) return H
(9) end function
(10) function RTL (Ts, Fe) at each node:
(11) fe←subset of Fe
(12) split on good feature in fe
(13) return Learned tree

end function
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KNN, SVR, DT

The KNN is a popular machine learning method adopted as supervised learning. For a
test sample, the K-neighbors are created for training, which are near to the test sample. The
search is carried out through the distance metric. The prediction is performed on the basis
of K-neighbors. This algorithm is also known as a nonparametric method. In KNN, the
data are labeled where the prediction is performed [38]. First of all, the Euclidean distance
is computed from the query sample to the labeled sample. Next, the labeled samples are
made in order through increasing the distance. By increasing the K-distance, the order of
the sample changes. Thirdly, K-number of nearest neighbors are heuristically found based
on the RMSE. This process is continued in cross-validation. Finally, a weighted average of
inverse distance with KNN is computed where the unlabeled data are labeled accordingly.

Furthermore, the SVR algorithm is commonly used to solve several machine learning
related tasks. We also use SVR to evaluate its performance for the prediction of energy
consumption. In regression, a function based on training samples is found that is used to
develop an appropriate mapping from the input domain into a real number. There is a
hyperplane in the middle of the samples with two outer lines that represent the decision
boundary. A plane with a large number of points is considered as a hyperplane. The goal
is to construct a decision boundary that will be the distance from the original plane such
that the data samples are near to the hyperplane or support vector. Only those points are
considered that come within the decision boundary and have the lowest error rate.

Similarly, we also used DTs, developed by J. R. Quinlan et al. [39], which build
regression models by forming a tree structure. It breaks the dataset into smaller pieces to
create subsets, while an associated tree is incrementally constructed at the same time. The
final result is a tree with leaf nodes and decision nodes. The decision nodes contain two or
more branches where each branch represents the attribute value that is tested. However,
the leaf node indicates the decision made on the number target. The topmost node inside
the tree corresponds to the best predictor, known as the root node. Further details are out
of the scope of the paper.

3.2.2. Sequential Learning Algorithm

The data information of time-series data can be referred as sequential data. The
significant property of these data is the order of information. For this purpose, different
methods have been developed to handle these data. RNNs have gained overwhelming
growth as tools to deal with sequential data. The important property of RNNs is the
usage of feedback connections inside them. This network starts reading the initial piece of
information and then proceeds to read the rest of the data. Inspired by this, we deliberately
practiced the sequential learning techniques for the prediction of energy consumption in
households, the detail of which is given below.

Long Short-Term Memory

A detailed discussion about the internal architecture of LSTM and its functionality for
the information processing is given in this section. LSTM is comprised of special memory
blocks in their recurrent layer that overcome the problem of a vanishing gradient. The
memory blocks have internal memory cells that are self-connected. These blocks have three
multiplicative units known as gates that store the temporal information of the sequence.
The three gates are input, output, and forget gate. The input gate controls the flow of
current information inside the memory cell, while the output controls the information in
the rest of the network. The forget gate sets the state of previous cell information and
retains part of the information in the current network. The internal details of the LSTM
architecture are given in Figure 3a. The three gates multiply the previous information with
a value ranging from 0 to 1. The information is discarded if the value is 0, while retained



Mathematics 2021, 9, 611 10 of 22

when the number is 1. The gates use the sigmoid function to turn the data into 0 and 1.
This function is given in Equation (5) [40].

σ(x) =
1

1 + e−x (5)

it, ft, and ot represent input, forget, and output gate, respectively, while the intermediate
value is represented by Ct, which can be calculated as follows:

it = σ(Wxixt + Whiht1 + WciCt−1 + bi). (6)

if = σ(Wxixt + Whiht1 + WciCt−1 + bi) (7)

ct = FXIOCt−1 + IT O tan h(WXC + WHCht−1 + bC) (8)

ot = σ(WxoxT + Whoht−1 + Wcoo ct + bo) (9)

ht = ot o tan h(ct) (10)
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Here, Wxi, Whi, Wci, W f , Wh f , Wc f , Wxo, Who, and Wco show the weights, while bi, bf,
bC, and bo represent bias vectors. xt indicates the current input while t1 and ht−1 show the
output of information at current time t and previous time t− 1, respectively.

Bidirectional LSTM

We also studied and evaluated the performance of bidirectional LSTM for energy
consumption, which is another variant of RNNs proposed by Schuster et al. [41]. The
core concept of Bi-LSTM can be retrieved from RNNs [41], where the input data sequence
is processed in both forward and backward directions inside the hidden layers. Each
layer operates using the reversed time-step direction. Basically, two layers operate where
one layer processes the sequence in the forward direction while the other layer operates
in the backward direction. This representation is given in Figure 3b. This network has
widely shown promising results in several fields of ECP and computer vision tasks such as
activity analysis [42,43] and forecasting problems. However, M-LSTM is also used for the
prediction of energy consumption. In M-LSTM, the state of the first layer obtains the input
from the previous layer and the previous state of the same layer. In conventional deep
neural networks, the neurons have a huge dimensions in their activation values. These
activations have the capability of learning the sequence in big data. Therefore, stacking
multiple layers of LSTM guarantees the extraction of long-term sequence information from
the data.
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4. Results

In this section, we discuss and deeply investigate the experimental results obtained
by the proposed method. Similarly, we add the software and implementation details and
the data are also structured and analyzed for its usage.

4.1. System Software Settings and Implementation Details

Several kinds of experiments were performed to verify and confirm the effectiveness
of the proposed method. The proposed three-tier framework was implemented in Python
(Version 3.5) with the famous deep learning framework Keras having TensorFlow as the
backend, and Adam was used as an optimizer. We used 10-fold cross-validation during
experiments, where the data are divided into N = 10 parts and the N − 1 part is used for
testing and the remaining part is used for training. This validation process is repeated
until the whole data points are passed from the training and testing phases. Furthermore,
we also used the holdout method, where the training and testing sets were formed for
validation. Similarly, as we are dealing with a regression problem, we used different error
metrics including MSE, RMSE, mean absolute percentage error (MAPE), RMSE, and mean
absolute error (MAE). Their detailed formulations are given as follows:

y∼i represents the variable values for n prediction numbers of energy consumption,
while yi shows the observed/predicted values, so Equations (11)–(14) show MSE, MAPE,
RMSE, and MAE, respectively.

MSE =
1
n

n

∑
i=1

(yi − y∼i )
2 (11)

MAPE =
100
n

n

∑
i=1
|
yi − y∼i

yi
| (12)

RMSE =

√
1
n

n

∑
i=1

(
yi − y∼i

)2 (13)

MAE =
1
n

n

∑
i=1
|yi − y∼i | (14)

4.2. Dataset

To evaluate the proposed method, we used the household power consumption dataset.

House Hold Power Consumption Dataset

We used the public power consumption dataset that is available on machine learning
UCI repository [44] and consists of data measured through a smart meter in the period of
2006 to 2010, adding up to 4 years of total data. This dataset consists of 2,075,259 instances
where 25,979 are missing values, equating to 1.25% of missing data. However, these
missing values were handled in the preprocessing step. The data recorded in this dataset
are organized in one-minute resolutions over four years. In these data, the total active
power is represented using submetering 1, submetering 2, and submetering 3, which
are consumed every minute and given in watt-hours. To predict the future energy, we
used different resolutions such as minutes, hours, days, and weeks where the input data
were given to training network as a series in window sequence. In Table 5, the detailed
descriptions of the variables are given and its quantitative details are given in Table 6.
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Table 5. Detailed description of each attribute in the dataset including units and remarks.

# Attribute/Unit Remarks

1 Data/dd.mm.yyyy
This variable represents the date of each instance and includes days,
months, and years. The days range from 1 to 30, months from 1 to 12,

and years from 2006 to 2010.

2 Time/hh.mm.ss
This variable provides the timing information in minutes, hours, and

seconds. The hour resolutions range from 0 to 23 while minute range is
from 0 to 59.

3 Global Active Power (GAP)/Kilowatts The total active power consumed over each appliance in the household
in each minute, represented by GAP.

4 Global Reactive Power (GRP)/Kilowatts The total reactive power consumed over each appliance in the
household in each minute, represented by GRP.

5 Voltage(V)/Volts The total voltage measured in each minute.

6 Global Intensity(GI)/Ampere The total intensity of current measured in each minute is the GI.

7 Sub-metering(S1)/watt-hours This energy is related to the power consumed inside the kitchen, which
includes the oven, dishwasher, and microwave.

8 Sub-metering(S2)/watt-hours This energy is related to the power consumed in the laundry room
including the refrigerator, washing machine, and tumble-drier.

9 Sub-metering(S3)/watt-hours The energy consumed to electric water-cooler, heater, and
air-conditioner.

Table 6. Quantitative structure of the power consumption dataset.

Units GAB GRP V GI S1 S2 S3

Mean 1.0916 0.1237 240.83 4.6277 1.1219 1.2985 6.4584
Std 1.0572 0.1127 3.2399 4.4443 6.1530 5.8220 8.4371

Minimum 0.0760 0.0000 223.2000 0.2000 0000 0000 0000
50% 0.6020 0.1000 241.0100 2.6000 0000 000 0000

Maximum 11.1220 0.3900 254.1500 48.4000 88.000 80.000 31.000

4.3. Data Interpretation

We visualized the variables and analyzed the patterns of each variable as can be seen
in Figure 4, which is provided in minute resolutions. This presentation provides a clear
interpretation of each variable and the consumption patterns with time. In the proposed
method, we totally focused on Global Active Power (GAP), which covers the power
consumed over all the appliances; therefore, we further analyzed GAP for its different
horizons and its consumption prediction.
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Before feeding the data into the network, it is a significant step to verify and assess the
performance of a prediction model to clarify the objectives. Therefore, we created different
time horizons of the dataset including hours, days, weeks, and months. For each horizon,
an energy prediction was performed. The representation of each horizon is illustrated in
Figure 4. In Figure 5, it can be seen that the distribution and observations made in GAP
steadily decreased (in kilowatts). Next, Figure 6 represents the visual representation of the
data in minutes’ horizons. The distribution is bimodal with a peak, where a long tail is seen
in the distribution towards higher values of kilowatts. The drop in energy is observable
from Figure 7 when there is no individual at home or all the occupants are asleep, while
the peak usage is witnessed when all the appliances in the household are functional. The
distribution and the observations made for all variables is given using a histogram in
Figure 7.
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4.4. Results On ELA

This section discusses the detail experiments carried out using ELAs. We used the
K-fold cross-validation method to evaluate the effectiveness of the methods, where the
value of K was set 10. In this way, the data were divided into 10 equal parts. K-1 was
used for testing and the other K-folds were used for training. At the first, we used the AB
algorithm in a practice run to assess its performance against other ELAs. The AB stands
for adaptive boosting, which is widely used as an ELA to deal with different regression
problems in machine learning. At first, the data were separated into an X- and Y-label to
split them. The model was defined as AB regression class and the number of estimators
was set as default (n = 50) and the other parameters were set defaults without any change.
The metrics used to evaluate its performance are MSE, RMSE, MAE, and MAPE, and the
results for the 10-fold method are given in Table 7, while the results of the hold-out method
are given in Table 8.

Table 7. Results obtained using ELA on different horizons using 10-fold method.

Resolution Method MSE RMSE MAE MAPE

Minutely

AB 9.6452 3.1056 3.0154 15.3534
GBR 9.2423 3.0401 2.9235 13.3543
RF 7.1582 2.6753 2.3433 11.4332
DT 8.7545 2.9588 2.5454 12.7422

KNN 8.1876 2.8613 2.7434 12.4212
SVR 6.0581 2.4613 2.4136 11.2833

Hourly

AB 7.7812 2.7894 2.3443 12.8293
GBR 7.3241 2.7063 2.2323 10.3721
RF 5.2962 2.3013 1.9652 11.0038
DT 6.7941 2.6065 2.5424 9.3432

KNN 6.1813 2.4862 2.3767 9.4532
SVR 5.0241 2.2414 2.2385 10.1702

Daily

AB 5.8671 2.4222 2.2561 10.1298
GBR 5.7631 2.4006 2.30972 8.3421
RF 4.7652 2.1829 1.9879 9.2313
DT 5.2321 2.2873 1.9852 8.3431

KNN 4.9561 2.2262 2.1788 7.7834
SVR 4.0501 2.0124 1.9413 7.5234

Weekly

AB 4.6532 2.1571 2.0873 7.9363
GBR 4.3907 2.0953 2.0586 7.7695
RF 3.7637 1.9400 1.8643 6.9878
DT 4.3521 2.0861 2.0243 7.1301

KNN 3.9785 1.9946 1.8732 7.0814
SVR 3.1321 1.7697 1.6801 6.6231
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Table 8. Results obtained using ELA on different horizons using hold-out method.

Resolution Method MSE RMSE MAE MAPE

Minutely

AB 8.2145 2.8660 2.1537 14.1932
GBR 8.0147 2.8310 2.5721 13.7589
RF 6.2617 2.5023 2.3547 10.5241
DT 7.3467 2.7104 2.5917 12.1256

KNN 7.0327 2.6519 2.3147 12.3459
SVR 5.1394 2.2670 2.0952 10.1568

Hourly

AB 8.5893 2.9307 2.5758 10.4579
GBR 8.4673 2.9098 2.4849 8.4867
RF 6.3584 2.5215 2.3217 9.1473
DT 7.4953 2.7377 2.5874 7.4096

KNN 7.2934 2.7006 2.3958 7.2851
SVR 6.1467 2.4792 2.2539 8.0987

Daily

AB 5.3098 2.3043 1.9765 10.0738
GBR 5.1976 2.2798 1.8764 8.2865
RF 4.0867 2.0215 1.6938 9.1964
DT 5.1875 2.2776 1.7456 8.2756

KNN 4.1583 2.0391 1.1987 7.6483
SVR 4.0174 2.0043 1.1064 7.4973

Weekly

AB 4.8976 2.2130 1.9897 6.9746
GBR 4.7756 2.1853 1.9387 6.8645
RF 3.8275 1.9563 1.7463 5.8674
DT 4.4984 2.1209 1.9647 6.2365

KNN 3.9128 1.9780 1.7936 6.1856
SVR 3.2975 1.8159 1.2975 5.4726

The MSE obtained for AB is 9.6452. After AB, we applied GBR to improve the weak
learners and create the final prediction model. The DTs were used as base learners in
this algorithm. These learners were identified through a gradient in loss function. The
prediction made by the weak learner was compared with the actual results to calculate the
error. Based on this error, the model defined the gradient and it changed the parameters
that decrease the error rate in the next training. Similar to AD, we also used 50 estimators
and the same strategy to make X and Y. The MSE value obtained for GBR is 9.2423.

Furthermore, we used RF, which is an ensemble algorithm that is also based on
learning of DTs. Here, the estimator fits multiple trees on the extracted subsets and
averages their prediction. The number of estimators and the other variables are set to their
default values. The RF gives a value of 7.1582 for MSE. Moreover, we evaluated DT, which
is a well-known machine learning algorithm most commonly used in regression problems.
This model is based on the decision rules that are extracted from the training data. Instead
of the class, the model uses and MSE for decision accuracy. DT does not exhibit a good
performance in generation and is very sensitive to variation in the training data. A minute
change in training data widely affects the prediction accuracy. The minimum number of
sample leaves used was 4 and the max depth was set to 2 in the model. The MSE value
obtained for DT was 8.7545 in minute resolutions.

KNN is a supervised learning strategy where K is a constant; we used its default
value (K = 5). The distance vector of nearest neighbors is computed by its value. The MSE
obtained using KNN was 8.1876 in minute resolutions. Similarly, we used SVR which
applies a similar procedure as SVM does for regression analysis. As regression data are a
continuous number, to fit the model on such data, the SVR approximates the best values
with a margin known as epsilon-tube by considering the model complexity and the error
rate. The value of MSE in minute resolution in SVR is 6.0581. All these algorithms have
different time durations taken during testing and training. These algorithms widely depend
on the configuration settings and the data horizons, such as the number of given instances,
their resolutions, etc., which affects their timings etc. We calculated the training and testing
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times of three algorithms such as AB, GBR, and RF. However, the time calculated for AB
was used for ABR2 as it the latest version of AB and is used in the proposed method.
The time complexity of these algorithms is given in Table 9, which is calculated for days’
resolutions as we are widely focus on short-term analysis. The analysis carried out for
short-term shows that the RF is the most expensive in terms of its training and testing.

Table 9. Time complexity analysis of the algorithms.

Algorithm Training Time (s) Testing Time (s)

AB 142.8020 0.0140
GBR 591.6442 0.0030
RF 1522.0820 0.0949

4.5. Results On Sequential Learning

In this section, we technically discuss the results obtained for ECP using deep sequen-
tial learning and debate on their predictions for future. The same strategy of the K-fold
validation method and hold-out method was applied over the used dataset. At first, we
performed the experiments on the LSTM network, which is a type of RNN that process
the energy sequential data. The LSTM learns the input data sequence by iterating it and
acquires the information regarding the observed sequence. Based on learned information,
the prediction is performed in the next sequence. We created X and Y sequences in the used
dataset and apply the window method with the size of the step value i.e., minutely, hourly,
etc. The Y-value was generated after the sequence of X-values. After this, the window was
shifted into the next element of X, and then Y was predicted and this process continued.

After applying LSTM, we used Bi-LSTM, which processes the data sequence in forward
and backward directions to remember the past information and predict the future data
information. We also used M-LSTM where multiple layers of LSTM were used to reduce
error and enhance the accuracy and the MSEs obtained for LSTM, Bi-LSTM, and M-LSTM
were 0.2821, 0.1855, and 0.1661 in minute resolutions, respectively. These results were
obtained using the 10-fold cross-method and are presented in Table 10, while the results of
the hold-out method are presented in Table 11.

Table 10. Results obtained for the sequential learning algorithm on different horizons using 10-fold
method where the bold values represent the best achieved values.

Resolution Method MSE RMSE MAE MAPE

Minutely
LSTM 0.2821 0.5311 0.4941 2.0526

Bi-LSTM 0.1855 0.4306 0.3214 1.9423
M-LSTM 0.1661 0.4075 0.3821 1.8666

Hourly
LSTM 0.1986 0.4456 0.4221 1.6435

Bi-LSTM 0.1329 0.3645 0.3563 1.7575
M-LSTM 0.1181 0.3436 0.3401 1.4766

Daily
LSTM 0.1502 0.3875 0.3632 1.2323

Bi-LSTM 0.1423 0.3772 0.3502 1.4731
M-LSTM 0.1081 0.3287 0.3201 1.4533

Weekly
LSTM 0.1881 0.4337 0.4281 2.4511

Bi-LSTM 0.1834 0.4282 0.4103 2.1051
M-LSTM 0.1821 0.4267 0.4201 2.0121
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Table 11. Results obtained for sequential learning algorithm on different horizons using hold-out method.

Resolution Method MSE RMSE MAE MAPE

Minutely
LSTM 0.2981 0.5459 0.4756 2.0975

Bi-LSTM 0.1948 0.4413 0.3963 1.9654
M-LSTM 0.1479 0.3845 0.3597 1.8794

Hourly
LSTM 0.1784 0.4223 0.4085 1.8275

Bi-LSTM 0.1285 0.3584 0.3297 1.7367
M-LSTM 0.1087 0.3296 0.3086 1.4574

Daily
LSTM 0.1684 0.4103 0.3686 1.4586

Bi-LSTM 0.1583 0.3978 0.3576 1.4368
M-LSTM 0.1184 0.3440 0.3139 1.3857

Weekly
LSTM 0.1945 0.4410 0.4295 2.4968

Bi-LSTM 0.1886 0.4342 0.4176 2.1186
M-LSTM 0.1847 0.4297 0.4132 2.0286

4.6. Comparative Analysis

In this section, we compare the techniques used for energy predictions. The employed
techniques are generalized as ELA and sequential learning. Sequential learning is known to
be a subset of machine learning which functions in a similar fashion. If an algorithm based
on artificial intelligence (AI) makes an incorrect prediction, we have to make adjustments.
In deep/sequential learning, the algorithms determine on their own whether a prediction
is accurate or not using their neural networks. Here, in the prediction problem, the
machine learning algorithm parses the data and learns from it to make an informed
prediction based on what it has learned. However, the deep sequential learning creates
an artificial neural network that learns and makes intelligent predictions. In the proposed
study, the sequential learning algorithms perform better than ensemble/conventional
machine learning algorithms, which that can be verified by the error values given in
Tables 7 and 10. Additionally, their architectural details are explained in each section,
which widely shows the good performance of the deep sequential learning algorithms.
The best performers in ensemble learning and sequential learning are SVR and M-LSTM,
respectively. Overviewing this, the most appropriate model is M-LSTM from sequential
learning. Energy prediction for minutes and hours are given in Figure 8, while for days and
week are given in Figure 9. Furthermore, Figure 10 shows a detailed visual representation
of the comparative analysis of the methods.

4.7. Comparison with State-of-the-Art Techniques

In this section, we discuss and compare the proposed method with the state of the
art to confirm and verify the effectiveness of the proposed algorithm using the household
power consumption dataset. To fairly compare the results, we used the same one-minute
resolution and the 10-fold results were considered. At first, we investigated the method
presented by Kim et al. [45], where a deep learning-based autoencoder was used to forecast
future energy by applying backpropagation through a time algorithm and train the model.
The MSE and MAE obtained for this method are 0.3840 and 0.3953, respectively. Similarly,
a method proposed by Kim et al. [46] formed a hybrid connection of CNNs and LSTM to
forecast the residential power and obtained 0.3738 and 0.6114 values for MSE and RMSE,
respectively. Similarly, another study by Marino et al. [47] proposed deep neural networks
(DNNs) by adding a sequence to sequence architecture LSTM. They used the RMSE metric
to evaluate their method and obtained values of 0.5505 and 0.742 for MSE and RMSE,
respectively. Furthermore, Mocano et al. [48] investigated stochastic models such as the
factored conditional restricted Boltzmann and conditional restricted Boltzmann for the
energy forecasting problem and obtained values of 0.4439 and 0.666 for MSE and RMSE.
Finally, we pose our proposed results where the obtained MSE, RMSE, MAE, and MAPE
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values are 0.1661, 0.4075, 0.3821, and 1.8666, respectively. The overall comparison is shown
in Table 12.
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Table 12. Comparative analysis of the proposed method with state-of-the-art methods where the
bold wording represents the proposed results.

Ref
Evaluation Metrics

MSE RMSE MAE MAPE

[45] 0.3840 0.6196 0.395 —
[46] 0.3738 0.611 0.349 0.3484
[47] 0.5505 0.742 —- —-
[48] 0.4439 0.6663 —- —-

Proposed
method 0.1661 0.4075 0.3821 1.8666
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which shows the better performance of the deep sequential learning algorithms over ELA.
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5. Conclusions

The technological growth and industrial electrical machineries advancements have re-
sulted in a large amount of energy consumption in terms of power, fuel, oil, and gas without
proper infrastructure. The practice of smart energy management over the decades has re-
ceived considerably lower research attention when compared to computer vision and many
other data science problems. A large amount of energy is wasted due to improper manage-
ment and no proper adjustment being made between the residential buildings/areas and
smart grids. To handle this problem, researchers apply several techniques to forecast and
efficiently manage energy consumption through machine learning techniques. Though, the
existing techniques have widely focused on the study of a single strategy and are selective
for conventional approaches, their performance is still far from real-world implementation.
Thus, in this paper, we developed a three-tier novel ECP framework and we dive deep into
a detailed comparative analysis of conventional and deep sequential forecasting learning
methods by investigating them for predictions and error rates. Conventional forecasting
learning includes several ELAs while deep sequential learning contains popular techniques
such as LSTM, Bi-LSTM, and M-LSTM. In the first tier, the input data sequence is given to
preprocessing layer for noise and outlier removal. The second tier feds the refined data into
the training phase for learning while the third tier gives the final ECP through actual and
prediction graphs. We also evaluated the effectiveness of the proposed method using basic
error metrics. Furthermore, we visualized the data and the results to analyze the data pat-
terns that show better interpretations. The proposed method used individual a household
power consumption dataset that is publicly available on UCI machine learning repository.

In future, we aim to consider different forms of energy acquired from the real-world
environment such as temperature, humidity, heating, cooling, energy from solar, water, and
wind related data. Based on these data, we aim to explore distinct forecasting models using
mathematical and theoretical modeling, AI, complex neural networks, and reinforcement
learning. Similarly, energy storage systems are important aspects to be considered in
energy management to aid efficient energy consumption. Next, the energy generation is
not properly aligned with the residential areas for proper energy usage; therefore, a system
to match the smart grid and residential areas for energy production and consumption
need to be included in the energy related literature. Moreover, we intend to focus on
edge computing and include resource-constrained devices with lower computational costs.
Using the edge concept will ease ECPs in terms of lower compositionality and ensure
timely responses.
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