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Abstract: The use of electrical energy is directly proportional to the increase in global population,
both concerning growing industrialization and rising residential demand. The need to achieve
a balance between electrical energy production and consumption inspires researchers to develop
forecasting models for optimal and economical energy use. Mostly, the residential and industrial
sectors use metering sensors that only measure the consumed energy but are unable to manage
electricity. In this paper, we present a comparative analysis of a variety of deep features with several
sequential learning models to select the optimized hybrid architecture for energy consumption
prediction. The best results are achieved using convolutional long short-term memory (ConvLSTM)
integrated with bidirectional long short-term memory (BiLSTM). The ConvLSTM initially extracts
features from the input data to produce encoded sequences that are decoded by BiLSTM and then
proceeds with a final dense layer for energy consumption prediction. The overall framework consists
of preprocessing raw data, extracting features, training the sequential model, and then evaluating
it. The proposed energy consumption prediction model outperforms existing models over publicly
available datasets, including Household and Korean commercial building datasets.

Keywords: prediction model; sequential learning model; energy consumption; convolutional LSTM

1. Introduction

The precise prediction of energy consumption in residential and industrial sectors
assists smart homes and grids to manage the demand of occupants efficiently and establish
policies for energy preservation. Therefore, energy load forecasting for smart grids has
become a hot research area and a top priority for smart city development [1]. Smart grids
are responsible for the distribution of power acquired from different sources at different
levels depending on consumption and future demand [2]. The overall chain of electrical
energy consists of three stages—production at power plants, management/distribution
at grids, and consumption in various sectors [3]. Hence, the smart grid is the main hub
acting as a supervisor to keep the balance or act as a bridge between production and
consumption through using appropriate scheduling and management policies to avoid
wasteful energy generation and financial loss [4]. For this purpose, energy forecasting
methods play a key role in maintaining stability and ensuring proper planning between
producers and consumers [5]. Similarly, the costs of unpredictability and noisy data
acquired from metering devices sometimes result in wrong predictions, which cause severe
economic damage. For instance, UK power authorities reported a 10-million-pound loss per
year in 1984 due to a 1% increase in forecasting error [6]. Therefore, numerous prediction
models have been proposed that are mainly focused on reducing the prediction error rate
and improving the quality of the power grids by optimizing energy use.

Sustainable buildings and construction are making progress in terms of energy preser-
vation, but developments remain out of step with the growth of the construction sector and
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the rising demand for energy services [7]. Therefore, urban planners must adopt ambitious
energy planning policies to ensure that future construction is carried out in a way that
increases energy efficiency in buildings [8]. In this regard, energy consumption prediction
and demand response management play an important role in analyzing each influencing
factor that leads to energy preservation and reduces its impact on the environment [9].
Moreover, energy consumption prediction models can help in understanding the impact
of energy retrofitting and energy supply programs because these models can be used to
define energy requirements as a function of input parameters [10]. These factors make
the energy predictive models the most useful tool for energy managers, urban planners,
and policymakers when establishing national or regional energy supply requirements.
On a smaller scale, they can be used to determine changes in energy demand for specific
buildings. Hence, policy decisions related to building-sector energy can be enhanced using
these forecasting models in sustainable urban or smart city development projects [11].

Power consumption forecasting is a multivariate time series data analysis task that
is affected by various factors such as weather and occupant behavior. These make it
difficult for machine learning techniques to learn the data pattern sequences for energy
forecasting [12]. On the other hand, deep learning models have shown tremendous results
in many complex domains such as image/video [13], audio [14], and text [15] processing
applications and with prediction and estimation problems [16]. During the last few years,
researchers from these domains have developed hybrid deep models by integrating the
features of multiple deep models or combing the architectures to achieve higher accuracy.
Similarly, a number of different hybrid deep models have been developed for energy
consumption prediction [17,18]. However, there is still room for accuracy enhancement
with minimum resource utilization. Therefore, in this study, we conducted a comparative
analysis of sequential learning models to select the optimum proposed model. The key
contributions of this study are summarized as follows:

e A comparative study is conducted over sequential learning models to select the
optimum combination with deep features for energy consumption prediction;

e The input dataset is passed through a preprocessing phase in which redundant data
are removed and the missing values are filled with corresponding data values from the
previous 24 h. Next, the data are normalized to achieve adequate predictive results;

e A novel hybrid architecture combining ConvLSTM with BiLSTM is proposed in which
ConvLSTM extracts and encodes spatial characteristics from input data and BiLSTM
decodes these characteristics for forecasting;

e  The experimental results show that the proposed architecture has the best performance
in comparison to other models. The measurement metrics report the lowest energy-
consumption prediction value for mean squared error (MSE), mean absolute error
(MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE).

The rest of the paper is organized as follows. Section 2 represents the related research
for technical forecasting of energy consumption. Section 3 represents the technical details
of the proposed framework, followed by experimental results in Section 4. Finally, the
paper is concluded in Section 5 along with some future research directions.

2. Literature Review

Employed energy forecasting methods can be categorized into two classes—statistical
and deep learning-based. Recently, comprehensive surveys on energy forecasting have been
published by Fallah et al. [19], covering methods from 2001 to 2019, and Hussain et al. [20],
covering the related methods from 2011 to 2020. However, in this paper, we explored
only deep learning-based literature due to their tremendous contributions in forecasting
models, especially for time series data. For instance, Kong et al. [21] analyzed resident
behavior learning with long short-term memory (LSTM) to propose a short-term load
forecasting (STLF) model. The basic theme of this paper was to overcome the challenging
problem of variant behavior of the residential loads that hinder the precise prediction
results. Similarly, Almalaq and Zhang [22] proposed a hybrid technique by integrated
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deep learning and genetic algorithm with LSTM for energy forecasting of residential
buildings. Kim and Cho [23] presented a hybrid energy prediction model in which two
layers of convolutional neural network (CNN) are used to extract the complex features and
then a simple LSTM [24] for sequence learning is adopted followed by a dense layer for
final prediction. This study is further improved by Khan et al. [17], who used an LSTM
autoencoder (LSTM-AE) instead of a simple LSTM and reported that their model is more
efficient in terms of time complexity.

Another hybrid model is presented by Le et al. [25] in which deep features from CNN
were forwarded to BiLSTM in both forward and backward directions. This study is further
extended by Ullah et al. [26], who used a multi-layer BiLSTM for sequential learning. Wen
et al. [27] integrated a deep recurrent neural network with LSTM for the forecasting of
power load at solar-based microgrids. A swarm algorithm was then applied to the sequen-
tial data from LSTM for an optimized load dispatched by the connected grids. Kim and
Cho [18] extracted features for energy consumption data using CNN and then forwarded
these features to state expendable autoencoder for future consumption predictions based
on 15-, 30-, 45-, and 60-min resolutions. Recently, Sajjad et al. [28] proposed a hybrid
sequential learning model for energy forecasting by integrating CNN and gated recurrent
units (GRU) into a unified framework for accurate energy consumption prediction.

Energy forecasting has an important role in the formulation of successful policies to
efficiently use natural resources. For instance, Rahman et al. [29] presented an approach
for the prediction of the total energy consumption in India to assist the policymakers for
energy management. Their proposed model is based on the simple regression model (SRM)
and multiple linear regression (MLR) along with other techniques that give satisfying
results. Similarly, Jain et al. [30] proposed a support vector regression (SVR) based machine
learning approach for the energy prediction of the multi-family residential buildings in
one of the dense city New York. Zheng et al. [31] presented a hybrid LSTM-based model
along with the selection of similar days and empirical mode decomposition (EMD) for
the short-term load prediction of the electricity. Chujai et al. [32] proposed autoregressive
integrated moving average (ARIMA) and autoregressive moving average (ARMA) models
for power consumption forecasting. The ARIMA model demonstrated efficient results for
monthly power consumption forecasting, while the ARMA model has the advantages of
daily and weekly forecasting. Kim et al. [23] combined CNN with LSTM and presented
a hybrid CNN-LSTM neural network approach for energy prediction with a very small
RMSE value.

In real-time energy forecasting, a proper plan is needed to accomplish the demand of
consumers and operate electrical appliances without any problems. For this management,
Muralitharan et al. [33] proposed a model for the prediction of consumer demand based
on CNN and genetic algorithm techniques, which reveal convincing results for short-term
forecasting. Similarly, Aslam et al. [34] developed a trust-worthy energy management sys-
tem by utilizing mixed-integer linear programming (MILP) and also established a friendly
environment between consumers and energy generation. Bourhnane et al. [35] presented a
model for energy forecasting and scheduling in smart buildings by integrating artificial neural
network (ANN) and genetic algorithms. Further, they also tested the model in real-time,
which produced incredible output for both short- and long-term forecasting. This study is
further improved by Somu et al. [36], proposing a novel forecasting model by employing
LSTM with a robust sine cosine algorithm for the prediction of heterogeneous data in an
efficient way. Sometimes, smart sensor devices generated unusual data due to numerous
weather conditions; therefore, Shao et al. [37] fine-tuned the support vector machine (SVM)
by handling two extra parameters, including weather and air-conditioning system, to prove
the model stability on critical input values. Another precise energy consumption prediction
in real-time was achieved in a study by Ruiz et al. [38] in which clustering techniques were
applied to select the optimal one for analyzing discriminative patterns from data. In addition,
to extract temporal features from raw input data, Fang et al. [39] followed a hybrid approach
by incorporating LSTM and domain adversarial neural network (DANN) that mainly focuses
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on relevant features. They verified the performance of transfer learning strategy and domain
adaptability through various experiments. Short- and long-term energy forecasting strategies
have a significant role in the energy sector because they meet the energy required on the
consumer side. Therefore, Hu et al. [40] introduced a novel deep learning idea by combining
non-linear and stacked hierarchy models to analyze and authenticate the model reliability.
Summarizing the con and pros of the energy forecasting models in the literature, we conclude
that in contrast to traditional machine learning approaches, the above-mentioned deep se-
quential learning models for energy show good performance in terms of reduced error rates.
However, there still exist several sequential models that have not yet been explored. Hence,
an optimum hybrid model is still in need to achieve better accuracy with a small amount of
resource utilization.

3. Proposed Framework

Precise forecasting of energy consumption in commercial and residential buildings
assists smart grids to efficiently manage the demand of occupants and conserve energy for
the future. Several traditional sequential learning forecasting models have been developed
for energy consumption forecasting that reveal inadequate performance due to the utiliza-
tion of unclean data. These approaches face various problems while learning parameters
from scratch, such as overfitting, and short-term memory difficulties, such as data increases
or the association between variables, become more complex [41]. These problems can be
easily tackled through sequential learning models that have the ability to capture spatial
and temporal patterns from smart meters data at once. Based on this assumption, we
developed a novel forecasting framework that provides a useful way to overcome the
energy forecasting problem. The overall dataflow of the proposed framework is divided
into three steps, as shown in Figure 1. First, the total consumed energy data are obtained
from smart meters/sensors that contain abnormalities due to external influence. Next, data
cleansing techniques are applied to the collected data in preprocessing step for eliminating
the abnormalities. In the final step, the preprocessed data are fed into the one-dimensional
ConvLSTM for features encoding, followed by the BILSTM network that efficiently decodes
the feature maps and learns the sequence patterns. The proposed framework is evaluated
on various resolutions of data, i.e., minutely, hourly, daily, and weekly for short- and
long-term forecasting using common error evaluation metrics. A detailed description of
each step of the proposed framework is provided in the following subsections.

3.1. Data Acquisition and Preprocessing

This section provides a detailed description of the data collection and preprocessing
strategy. Recent studies have shown that the performance of trained artificial intelligence
(AI) models depend on the input data. Therefore, if the smart meter’s data are well polished
and organized, they can assist in training any model of Al in a more convenient way. The
consumed energy data obtained from meters installed on each floor of a residential building
is stored in a raw, incomplete, and non-organized format. Moreover, sometimes the data
contain abnormalities due to wire break, occupant’s behavior, and weather condition.
Hence, using these data directly for energy consumption forecasting degrades the overall
performance of the model. Therefore, we first passed the obtained data to the preprocessing
step in which missing values are handled by replacing subsequent values. The pre- and
post-processing data distributions are shown in Figure 2; we removed noise from the data
and normalize them via min-max process while the outliers are detected and removed
using the standard deviation method. There are 1.25% missing values in the Household
Dataset, which are filled with the corresponding values of the previous 24-h data.



Mathematics 2021, 9, 605 50f17

X "

4 N\ 4 N - N
I Pata I e I Minutes Data I Hours Data
Sub-Meter Active
1 Power I Days Data Weekly Data
Reactive Sub-Meter Resampled Power Data
Power 2

Voltage I Intensity

Sub-Meter
3

Raw Data Representation

I Normalization I Resampling Convolutional LSTM Layers
*

A
H3 Hal
Outlier - HSl
Removal | s™ U = !j [ 5w Ij--
L L

Preprocessing

- —s =

Smart Home
"’_‘ Smart meter . e -
o & : = Bidirectional LSTM Layers
Power = e "
Consumption Data i - i MW I MAPE I MSE I RMSE I MAE
Smart Factory ) Re%i?\e Power Consumption Data Prediction Evaluation
L Step 1: Data Acquisition y Step 2: Preprocessing ) L Step 3: Training Processes )

Figure 1. The proposed framework for power energy consumption prediction comprises three main steps—Step 1: the
smart microgrids generate power energy and supply it to residential buildings/smart factories where smart meters measure
the consumed energy; Step 2: smart meters’ data are significantly influenced by environmental factors that generate
abnormalities; therefore, data cleansing schemes are applied as preprocessing step; and Step 3: train the model with refined
data in which ConvLSTM and BiLSTM layers are used for encoding and decoding the numerous resolutions of data to
obtain a minimum error rate.
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Figure 2. Household Dataset representation (a) before and (b) after the preprocessing step.

3.2. ConvLSTM for Data Encoding

Fully connected LSTM is one of the effective approaches to manage the sequential
correlations in data; however, it contains massive redundancy for spatial data, which
is not able to handle spatiotemporal information [42]. To tackle such a problem, we
utilized the extended version of fully connected LSTM called ConvLSTM [43], which has a
convolutional structure in input and state-to-state transition having the ability to preserve
the spatial characteristics of the data. In this study, we arranged multiple ConvLSTM
layers to build generalize encoding model that can be utilized for forecasting problems and
for spatiotemporal, sequence-to-sequence prediction. For instance, fully connected LSTM
handles the spatiotemporal data by converting it into a 1D vector that results in a vital loss
in sequence information. In contrast, ConvLSTM takes input in a 3D format in which it
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keeps spatial sequential data in the last dimension. In addition, the next state of a specific
cell is dependent on previous and input states that can be obtained by convolutional
operators for both state-to-state and input-to-state transitions. ConvLSTM mainly contains
encoding and forecasting networks that are formed by stacking multiple ConvLSTM layers
mathematically; the whole process is represented in Equations (1)—(5), and the internal
architectures of LSTM and ConvLSTM are depicted in Figure 3a,b, respectively.

It = o(Wxp * X + Wy * Hr—1 + WcroCr_1 + by) (1)

Fr = oc(Wxp * X7 + Wy * Hr 1 + WcpoCi1 + br) (2)
Cr=FroCr_1+Iro tanh(WXC * X1+ Whe xHiq + bc) 3)
Or = U(on * X7 4+ Who * Hr—1 + Wceo Ct + bo) 4)

Hr = o7 o tanh(Cr) (5)

where Wxr, Wyr, Wxi, Wi, Wxe, Whe, Wer, and Wer depict the weight matrices, I;, Oy, F,
Ct, and H; represent input gate, output gate, and forget gate, latest cell output, and hidden
state, respectively.

__________________ C _eJI staﬁ
|

Forget gate
L

1) = >

[ @k

N I.'n;.)ut gété.

Output gate /

(a)

Figure 3. The internal architecture of (a) fully connected long short-term memory (LSTM) and (b) convolutional long

short-term memory (ConvLSTM).

In the forecasting network, all the states have the same input dimensionality; therefore,
all states are concatenated and passed into 1 x 1 convolutional layer to produce the final
results, similar to the concept as followed in [44]. The function of encoding LSTM is to
condense the input sequence and hidden state tensor, whereas forecasting LSTM expands
the hidden state that generates the final prediction. In ConvLSTM, the functionality and
architecture are the same as LSTM, but the ConvLSTM takes input in 3D tensors fashion,
and it preserves the spatial information [45]. This network has strong representation ability
due to multiple stacked ConvLSTM layers, which make it suitable for complex sequences.

3.3. BiLSTM for Data Decoding

While processing the complex and long sequences using forward-to-backward forms,
recurrent neural networks (RNNs) usually face issues such as short-term memory and
vanishing gradient problems [46,47]. In addition, this technique is not appropriate for
processing long-term sequencing because it ignores the significant information from the
earlier input level [48]. In backpropagation, the layers gradually stop learning due to
changes that occur in the gradient and reduced numbers of weights. To fix these concerns,
Hochreiter and Schmidhuber [49] proposed an extended version of RNN known as LSTM.
The inner structure of LSTM contains various gates that properly handle and preserve cru-
cial information. In each level of backpropagation, weights are evaluated that either retain
or erase the information in memory. Furthermore, all the cell states are interconnected,
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and they communicate if one cell updates its information, which can be mathematically
presented using Equations (6)—(10).

iy = O'(Wxixt + Wyihy 1 + W, Ciq + bz) 6)

fr = O'(fot + thht—l + chct—l + bf) (7)

¢t = F,;,OCi_1+ It O tanh(ch + Wychi 1+ bC) (8)
ot = 0(WxoXT + Wioht—1 4 Weo0 ¢t + bo) )

hy = ot o tanh(cy) (10)

where Wy;, Wy;, W, Wiy, ch, Wye, Wyo, and Wy, depict the weight matrices and iy, o4, ft,
represent input, output, and forget gates while ¢; and ; represent the latest cell output and
hidden state, respectively.

Another sequence learning model is BILSTM that is an advanced version of RNN
proposed by Paliwal and Schuster [50]. Two layers of the network are concurrently pro-
cessing the input data, with each one operating a particular function. More precisely,
another two layers also operate on sequence data but in a different direction, and in the
last step, the final outcomes of both layers are combined with the appropriate method [51].
In this study, a hybrid model is proposed by integrating ConvLSTM [43] with BiLSTM [50]
for energy data forecasting after extensive experiments and ablations study of various
sequence learning models.

3.4. One-Dimensional (1D) Convolutional Neural Network (CNN)

In computer vision, 2D CNN models have shown an encouraging performance on
both image and video data such as facial expression analysis [52], action recognition [53],
movie/video summarization [54], violence detection [55], etc. The 2D model accepts input
in the two-dimension format in which pixels of images with color channels are processed
simultaneously known as feature learning [56]. The same process can be applied in 1D
sequential data but with variations in the input. Therefore, 1D CNNs are considered as
an efficient approach for time series data to extract fixed-length feature vectors. In the
case of non-linear tasks such as energy consumption prediction/forecasting, CNN utilizes
the weight sharing concept that provides minimum error rate in terms of MSE [57]. In
this study, we use two 1D CNN and pooling layers for efficient encoding the sequences
of energy data, as shown in Figure 4, where x1, x2, X3, ... xn represent the input data, cl,
c2,c3, ... cn, indicate the 1D convolutional layers for generating feature maps, and p1, p2
illustrate pooling layers that are employed to reduce the feature maps dimensions.

Y T

= c1 c1

c2

=
&)

X cn cn

2006

N

Input 1DConv 1DConv  Pool Layer

Figure 4. One-dimensional (1D) convolutional neural network (CNN) representation, which includes
input, convolutional, and pooling layers.
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4. Experimental Evaluation

This section provides details for the evaluation of the proposed model, including
dataset description, evaluation metrics, ablation study, time complexity comparison, and
comparative analysis with state-of-the-art models. Note that we use different resolutions
of the data such as minutely, hourly, daily, and weekly for the comparative analysis of the
proposed models. However, for comparison with state-of-the-art, we only consider the
commonly used resolution, i.e., hourly. We implemented the proposed approach in Keras
(2.3.1) library with TensorFlow (1.13.1) as a backend using python language (3.5.5). Besides,
Windows 10 operating system with GeForce RTX 2070 SUPER is used to train the model for
50 epochs, using batch size 32 and optimization algorithm (Adam) with an initial learning
rate of 0.001.

4.1. Datasets Description

The proposed models are evaluated on two publicly available datasets. The household
power energy consumption prediction dataset [58] is obtained from the University of
California, Irvine (UCI) repository, which is originally recorded during the years 2006-2010
from residential buildings in France. This dataset is available with one-minute samples,
consisting of 2,075,259 instances with 1.25% of missing values. Similarly, the second
dataset [17] is collected from the commercial buildings in South Korea consisting of 99,372
instances with 15-min samples. First, both datasets are passed from preprocessing step
for data cleansing and normalization. Next, these datasets are arranged in four samples,
i.e., minutely, hourly, daily, and weekly for both short- and long-term predictions. The
common attributes along with respected units for both datasets are listed in Table 1, while
statistics of both datasets are provided in Table 2.

Table 1. Common attributes, units, and their description of the datasets used for the evaluation of the proposed model.

Attribute Unit Description
The most important feature to indicate consumption of the power at
Date DD/MM/YYYY specific days and months, where DD ranges from 1 to 31, MM from 1 to 12,
and YYYY from 2006 to 2010.

s T e oy wod o or s e e il ond

Global Active Power (GAP) K-W This feature contains per minute data of total household average data.
Global Reactive Power (GRP) K-W Each minute data of overall building average power reactive.
Voltage (V) Volts Per-minute voltage level.
Global Intensity (GI) Amp Overall average power intensity per minute.

Table 2. Statistics of the datasets including max, min, standard deviation, and average values for the used feature.

Dataset Household Dataset Commercial Dataset

Features GAP GRP Voltage GI GAP GRP
Min 0.076 0.000 223.20 0.200 0.000 0.000
Max 11.122 1.390 254.150 48.400 7.443 2.541
S.D. 1.055 0.113 3.239 4.435 0.564 0.114
Ave 1.089 0.124 240.844 4.618 0.405 0.071

4.2. Evaluation Metrics

Four common evaluation metrics are used to evaluate the proposed models and
comparative analysis. These four evaluation matrices are mean squared error (MSE), mean
absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error
(MAPE), which are mathematically expressed in Equations (11)—(14), respectively. MSE
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is basically the average squared difference between estimated and actual values, which
always gives a non-negative value, with values closer to zero considered better, while
RMSE is the square root of MSE. MAE measures the errors between paired observations
expressing the same phenomenon, while MAPE is a common measure to calculate a
forecast error in time series analysis that reflects the percentage variation between the
forecasted variables.

1 n N
MSE = -} (v —v)* (1)
i=1
1 n ~
MAE = ") lyi — i (12)
i=1
1 n ~
RMSE = [} (i — ;) (13)
i=1
MAPE = % Y1 100 (14)
=1y

where y and § are the predicted and actual values, respectively.

4.3. Comparison Based on Sequential Learning Models via Hold-Out Method

To evaluate the sequence learning models for short- and long-term prediction, we
conducted experiments for different resolutions of the data, i.e., minutely, hourly, daily, and
weekly. Table 3 represents the results based on the minute resolution, in which ConvLSTM-
BiLSTM obtained the least error rate for both datasets. The least error is indicated in
bold, and the runner-up is represented by underlined text. For the Household Dataset,
ConvLSTM-BiLSTM obtained 0.035%, 0.187%, 0.075%, and 30.75% error rates for MSE,
RMSE, MAE and MAPE, respectively. On the other hand, the results for the Commercial
Dataset are slightly better than the Household Dataset with 0.025%, 0.158%, 0.055%, and
28.55% values for MSE, RMSE, MAE, and MAPE, respectively. The runner-up model for
each dataset is CNN-BiLSTM. Hence, it is evident that features extracted from ConvLSTM
perform better than CNN.

Table 3. Performance of the proposed models on the minutely resolution.

Household Dataset Commercial Dataset
Model
odes MSE RMSE MAE  MAPE(%)  MSE RMSE MAE  MAPE (%)
BiLSTM 0.745 0.863 0.625 50.50 0.855 0.925 0.522 51.3
ED-BiLSTM 0.525 0.724 0.515 40.55 0.624 0.789 0.415 35.34
CNN-BiLSTM 0.365 0.604 0.435 33.55 0.453 0.673 0.358 33.25
ConvLSTM-BiLSTM 0.035 0.187 0.075 30.75 0.025 0.158 0.055 28.55

Similarly, Table 4 represents the results based on the hourly resolution; here, also the
ConvLSTM-BiLSTM obtained the least error rate for both datasets except MAPE (38.06%)
for the Commercial Dataset. The CNN-BiLSTM model is found to be the second-best model,
which beats ConvLSTM-BiLSTM model in MAPE (32.44%) values for the Commercial
Dataset, while encoder-decoder-BiLSTM (ED-BiLSTM) obtained the second least error for
MAPE (36.48%) for the Commercial Dataset. Overall, the results of ConvLSTM-BiLSTM
with the hourly resolution are still better than the rest of the sequential learning models.
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Table 4. Performance of the proposed models on the hourly resolution.

Household Dataset Commercial Dataset

Model
odels MSE RMSE MAE  MAPE (%) MSE RMSE

MAE

MAPE (%)

BiLSTM 0.505 0.711 0.515 40.55 0.305 0.552
ED-BiLSTM 0.405 0.636 0.425 35.45 0.225 0.474
CNN-BiLSTM 0.305 0.552 0.315 31.45 0.205 0.452
ConvLSTM-BiLSTM 0.105 0.324 0.311 30.05 0.115 0.339

0414
0.426
0.416
0.333

41.22
36.48
32.44
38.06

Next, the performance results of day resolution are presented in Table 5. For all the

metrics, ConvLSTM-BiLSTM obtained the least error rate in each dataset. For instance,
for the Household Dataset, ConvLSTM-BiLLSTM obtained 0.035, 0.187, 0.175, and 18.35 for
MSE, RMSE, MAE, and MAPE, respectively, whereas CNN-BiLSTM obtained the second-
least error on this dataset. Similarly, for the Commercial Dataset, ConvLSTM-BiLSTM still
remains the best in terms of the least error rate, while the runner-up models are different
for each metric. For instance, ED-BiLSTM obtained 0.255 and 0.312 for MSE and MAE,
BiLSTM obtained 0.425 for RMSE, and CNN-BiLSTM obtained 25.55 for MAPE.

Table 5. Performance of the proposed models on day resolution.

Household Dataset Commercial Dataset

Model
odels MSE RMSE MAE  MAPE(%)  MSE RMSE

MAE

MAPE (%)

BiLSTM 0.225 0.474 0.285 40.15 0.335 0.425
ED-BiLSTM 0.155 0.393 0.255 35.25 0.255 0.505
CNN-BiLSTM 0.125 0.353 0.225 30.25 0.355 0.596
ConvLSTM-BiLSTM 0.035 0.187 0.175 18.35 0.025 0.158

0.344
0312
0.335
0.145

35.33
30.55
25.55
20.45

Finally, we performed experiments for long-term prediction by keeping the weekly
resolution, as shown in Table 6. The best prediction model on the weekly dataset is also
ConvLSTM-BiLSTM that obtains the least error rate for both datasets. For instance, for the
Household Dataset, ConvLSTM-BiLSTM obtained 0.028, 0.167, 0.155, and 20.15 for MSE,
RMSE, MAE and MAPE, respectively, and 0.025, 0.158, 0.143, and 20.91 for the Commercial
Dataset. In contrast, the second-least error is obtained by CNN-BiLSTM. To summarize
all the results in one graph, we calculated the average of each resolution (i.e., minutely,
hourly, daily, and weekly), as illustrated in Figure 5. The MAPE value is ranged between
zero and one instead of percentage for better representation. It is clear from Figure 5 that
ConvLSTM-BIiLSTM is leading in each dataset and metrics in terms of least error rate,
followed by CNN-BiLSTM, ED-BiLSTM, and BiLSTM as runner up, third, and fourth
place, respectively.

Table 6. Performance of the proposed models on the weekly resolution.

Household Dataset Commercial Dataset

Models MSE RMSE MAE  MAPE (%) MSE RMSE

MAE

MAPE (%)

BiLSTM 0.115 0.339 0.255 33.55 0.112 0.334
ED-BiLSTM 0.095 0.308 0.235 32.34 0.085 0.292
CNN-BiLSTM 0.085 0.291 0.215 30.25 0.075 0.274
ConvLSTM-BiLSTM 0.028 0.167 0.155 20.15 0.025 0.158

0.324
0.254
0.224
0.143

36.45
35.43
31.81
20.91
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Figure 5. Average of the resolution-based error rate on hold-out validation method; (a) Household
Dataset and (b) Commercial Dataset.

4.4. Comparison of the Sequential Learning Models Based on Cross-Validation Method

To validate the proposed model further in terms of learning and forecasting at the same
time, we conducted experiments using a cross-validation method. In the cross-validation
method, the overall dataset is divided into K equal segments or fold and K iterations for
training and testing, which is conducted in such a way that each segment is kept for testing
one by one, and the remaining K-1 segments are used for training. Finally, average accuracy
is calculated over all iterations. In our case, we selected K = 10 (i.e., 10-fold validation)
for the experiments over the household power energy prediction dataset [58]. Table 7
represents the overall results for different sequential models over various data resolutions.
Here also, ConvLSTM-BiLSTM obtained the least error rates on each data resolution,
compared to other sequential models, while CNN-BiLSTM remains the runner-up model,
except for the weekly resolution. The ED-BiLSTM remains the runner-up for weekly
resolution in MSE and RMSE metrics, obtaining 0.103 and 0.322 error rates, respectively.
Hence, the reported results based on the cross-validation method provide evidence that
ConvLSTM-BiLSTM is the most effective combination in terms of learning and forecasting
among the other models. Figure 6 illustrates the average results of overall resolution for
each model, in which the MAPE value is presented in the range of zero and one instead of
percentage for better presentation.
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Table 7. Performance of the proposed models using cross-validation method for various data resolutions.

MSE RMSE MAE MAPE (%)
Model
odels Minute Resolution
BiLSTM 0.697 0.834 0.593 49.87
ED-BiLSTM 0.518 0.719 0.512 40.12
CNN-BiLSTM 0.398 0.631 0.459 34.79
ConvLSTM-BiLSTM 0.031 0.176 0.072 29.14
Hour Resolution
BiLSTM 0.496 0.704 0.502 40.01
ED-BiLSTM 0.401 0.633 0.415 35.29
CNN-BiLSTM 0.301 0.548 0.312 31.19
ConvLSTM-BiLSTM 0.102 0.319 0.304 30.03
Day Resolution
BiLSTM 0.229 0.478 0.291 41.19
ED-BiLSTM 0.159 0.398 0.263 31.96
CNN-BiLSTM 0.121 0.347 0.221 30.19
ConvLSTM-BiLSTM 0.029 0.167 0.138 17.98
Week Resolution
BiLSTM 0.138 0.371 0.264 35.37
ED-BiLSTM 0.103 0.322 0.239 33.01
CNN-BiLSTM 0.108 0.328 0.223 31.73
ConvLSTM-BiLSTM 0.031 0.176 0.162 21.03
¥ BiLSTM W ED- BiLSTM CNN-BiLSTM ConvLSTM-BIiLSTM

Metrics

Figure 6. Average resolution-based error rate obtained using cross-validation method based on

Household Dataset.

4.5. Comparative Analysis Based on Time Complexity of the Sequential Models

This section presents the time complexity analysis between the sequential learning
models proposed in this study over two different platforms, i.e., central processing unit
(CPU) and graphics processing unit (GPU). Table 8 represents the time complexity of
the training and testing sessions in seconds (s) over the Household Dataset. For this
comparison, we considered two data resolutions (i.e., day and week), through which it can
be analyzed that low-resolution data comparatively have low-time complexity and vice-
versa. It is clear from Table 8 that BILSTM achieved the overall lowest, while ED-BiLSTM
achieved the maximum time complexity. However, ConvLSTM-BiLSTM achieved the best
trade-off between time complexity and accuracy.
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Table 8. Comparative analysis of the sequential models based on time complexity in seconds (s) over Household Dataset.

CPU GPU
Models
Training Time (s) Testing Time (s) Training Time (s) Testing Time (s)
Day Resolution
BiLSTM 174.57 1.16 64.30 0.42
ED-BiLSTM 418.77 2.78 191.48 1.27
CNN-BiLSTM 192.07 1.28 83.20 0.55
ConvLSTM-BiLSTM 217.49 1.44 108.52 0.72
Week Resolution

BiLSTM 20.38 0.13 07.37 0.04
ED-BiLSTM 48.29 0.32 21.57 0.14
CNN-BiLSTM 29.74 0.19 11.12 0.07
ConvLSTM-BiLSTM 4143 0.27 17.14 0.11

4.6. Comparative Analysis with State-of-the-Art Models

This section presents a comparative analysis of the proposed prediction model with
seven recent state-of-the-art hybrid models based on hourly sampled data of the Household
Dataset, as shown in Table 9. All the methods in comparison extract features using simple
CNN and then forward the extracted features to different sequential learning models for en-
ergy consumption predictions. For instance, LSTM [23], auto encoder (AE) [18], Multi-layer
Bidirectional LSTM [26], Bidirectional LSTM [25], LSTM followed by AE [17], GRU [28],
and CNN with multilayer bidirectional gated recurrent unit (CNN-MB-GRU) [59]. For this
comparison, we select the best-proposed model from Section 4.3, i.e., ConvLSTM-BiLSTM,
which uses ConvLSTM as an encoder and bidirectional LSTM as a decoder. The proposed
model outperforms state-of-the-art models in MSE and RMSE with the least error rate
of 0.10 and 0.32, respectively. The proposed model reduced the error rate up to 0.08 and
0.1 points compared to the runner-up model CNN-MB-GRU [59] with MSE and RMSE
values of 0.18 and 0.42, respectively. However, the least error rate for MAE is achieved by
CNN-MB-GRU [59] with 0.29, while the proposed and CNN-LSTM-AE models remain
runner up with a difference of 0.02. The proposed model achieved 30.05 error rate for
MAPE metrics and remains runner up with a very little difference. The least error rate is
achieved by CNN-MultiLayer-BiLSTM [26] with 29.10 and the difference with proposed
model is only 0.95. Hence, the overall results demonstrate the superiority of the proposed
model over state-of-the-art based on Household Dataset. Lastly, Figure 7 illustrates the
prediction results of the proposed sequential learning models on hourly resolution data for
both datasets.

Table 9. Comparative analysis of the proposed model with state-of-the-art models based on hourly data resolution of

Household Dataset.
Error Metrics
Method Strategy/Models MSE RMSE MAE MAPE (%)
Kim and Cho [23] CNN-LSTM 0.37 0.61 0.34 34.48
Kim and Cho [18] CNN-AE 0.38 - 0.39 -
Ullah et al. [26] CNN-MultiLayer-BiLSTM 0.31 0.56 0.34 29.10
Le et al. [25] CNN-BiLSTM 0.29 0.54 0.39 50.09
Khan et al. [17] CNN-LSTM-AE 0.19 0.47 0.31 -
Sajjad et al. [28] CNN-GRU 0.22 0.47 0.33 -
Khan et al. [59] CNN-MB-GRU 0.18 0.42 0.29 -
Proposed ConvLSTM-BiLSTM 0.10 0.32 0.31 30.05
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Figure 7. Prediction results of the proposed sequential models on hourly resolution data; (a) Household Dataset and (b)

Commercial Dataset.

5. Conclusions

In this paper, we provided a comparative analysis of various sequential learning
models and selected the optimum one as the proposed model after extensive experimental
findings. The proposed hybrid architecture for energy prediction is developed by inte-
grating ConvLSTM and BiLSTM models. In detail, the proposed framework consisted
of three main steps. First, the preprocessing step is applied to the input data for data
cleansing such as normalization and missing values adjustment. Next, the preprocessed
data are forwarded to the proposed hybrid model for training, in which ConvLSTM is
used to extract and encode the spatial characteristics of the data, while BILSTM is used
to decode and learn the sequential patterns. Finally, the models are tested for both short-
and long-term predictions using four resolutions, i.e., minutely, hourly, daily, and weekly,
based on two datasets. In the comparative analysis, the proposed model achieved the least
error rates against recent state-of-the-art energy prediction models. In the future, we aim to
develop efficient prediction models that can be deployed over resource-constrained devices
for smart metering and smart home appliances’ energy management.
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