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Abstract: In Veliz-Cuba and Stigler 2011, Boolean models were proposed for the lac operon in
Escherichia coli capable of reproducing the operon being OFF, ON and bistable for three (low, medium
and high) and two (low and high) parameters, representing the concentration ranges of lactose
and glucose, respectively. Of these 6 possible combinations of parameters, 5 produce results that
match with the biological experiments of Ozbudak et al., 2004. In the remaining one, the models
predict the operon being OFF while biological experiments show a bistable behavior. In this paper,
we first explore the robustness of two such models in the sense of how much its attractors change
against any deterministic update schedule. We prove mathematically that, in cases where there is
no bistability, all the dynamics in both models lack limit cycles while, when bistability appears, one
model presents 30% of its dynamics with limit cycles while the other only 23%. Secondly, we propose
two alternative improvements consisting of biologically supported modifications; one in which both
models match with Ozbudak et al., 2004 in all 6 combinations of parameters and, the other one,
where we increase the number of parameters to 9, matching in all these cases with the biological
experiments of Ozbudak et al., 2004.

Keywords: lac operon; catabolite repression; bistability; Boolean network; dynamic; attractor; steady
state; limit cycle; update schedule

1. Introduction

The lac operon in Escherichia coli is a paradigmatic example of a genetic regulation
system involving the interaction of positive and negative regulatory molecules. The system
encodes a pathway for lactose catabolism that is hierarchically controlled by glucose
availability, and it has been reported to exhibit a bistable behavior, since the catabolic
genes are either uninduced (OFF) or induced (ON) in a single cell, depending on previous
activation history and specific extracellular lactose and/or glucose concentrations [1,2]. The
lac operon has been used as a model system for gene regulation since its initial description
in [3], where the concept of an operon was first introduced. Since the molecular components
of the regulatory system have been well characterized, it is an excellent candidate for global
analysis and modeling. The operon includes three genes involved in the uptake and
catabolism of lactose and/or structurally similar sugars. The first gene, lacZ, encodes
for the enzyme β-galactosidase, which converts lactose to allolactose and to subsequent
catabolic intermediates; lacY, the second structural gene of the pathway, encodes for lactose
permease, a membrane transporter for lactose uptake. Finally, the product of gene lacA is
an acetyltransferase that takes part in the degradation and excretion of non-lactose sugars
that may be misrouted through the lactose degradation pathway.

The fundamental states of the lac operon are described schematically in Figure 1. In
brief, when a low level of extracellular lactose occurs, a strong binding of the LacI protein
to the operator sequences strongly represses lac gene expression, thus allowing only a very
low amount of mRNA to be transcribed (Figure 1a), which can be considered as an OFF
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state. However, even at this low expression level, a few LacY permease molecules can
reach the cytoplasmic membrane and take up any eventual lactose that appears outside the
cells. The presence of low amounts of LacZ in the cytoplasm leads to transformation of
this lactose into allolactose, the true natural inducer of the lac operon. When this happens,
allolactose interacts allosterically with the LacI repressor protein, decreasing its affinity for
operator sequences and releasing the negative control of the lacZ promoter, rendering the
system into an ON state (Figure 1b). Positive feedback loops, like the one described here
for the lac system, have been proposed as a typical property of bistable systems [4].

(a)

(b)

Figure 1. (a) The lac operon OFF state is characterized by transcription of low mRNA levels, due to
the strong binding of the LacI repressor to operator sequences. (b) The lac operon ON state involves
transcription of high mRNA levels and increased production of the different lac proteins.
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On the other hand, an essential feature of the regulatory system is that high extracel-
lular glucose concentrations can also inhibit the expression of lac genes, a phenomenon
traditionally considered as a type of catabolite repression that is directly mediated by the
glucose molecule. Such a repression has usually been assumed to involve the transcrip-
tional activator protein Crp (cAMP receptor protein), which also takes part in lac gene
expression as a cAMP-dependent positive regulator (Figure 1). In the repression model,
glucose uptake by the cells produces a drastic reduction in the intracellular cAMP levels,
negatively affecting Crp activity and abolishing lac gene expression, which would explain
the metabolic preference of glucose over lactose in E. coli [5]. An additional explanation of
the catabolic hierarchy of glucose is given by the inducer exclusion effect, which involves
glucose-mediated inhibition of lactose uptake, by means of a direct reduction of LacY
permease activity [6]. This would greatly contribute to the regulatory effect of glucose by
preventing the inducer molecule to reach the LacI repressor.

Bistability is normally defined as a condition where a system can respond to the same
external signal or input in two different manners, depending on the internal state and/or
the previous history of the system. However, true bistability requires the system to switch
in an all-or-none way between alternative fixed points, without the appearance of inter-
mediate states or a “quantitative” cellular response. Although a quantitative continuous
response to the presence of lactose, or the gratuitous inducer thiomethyl-β-D-galactoside
(TMG), was initially shown in experiments measuring the average response of whole cul-
ture populations, containing several millions of cells, observations with individual bacteria
showed unequivocally that each cell responds in a discrete manner, switching alternatively
among the OFF and ON states [1,2], with virtually no evidence of intermediate responses.
This shows that bistability can be a characteristic of the lac system. Using genetically
engineered E. coli reporter cells, gratuitous inducers and sophisticated experiments, the
authors in [7] showed a discrete hysteretic response of lac gene expression in individual
bacteria when pre-incubated in the presence or absence of extracellular lactose and then
transferred to fresh medium with different lactose concentrations. Their results showed
that, depending on the cell’s previous history, the response profile to lactose in the fresh
medium varied significantly within a specific concentration range, while outside its limits,
cells would respond independently of their previous incubation conditions: Any concentra-
tion lower than 3 µM would not lead to lacZ induction, whereas any concentration higher
than 30 µM would induce the reporter gene. However, most values within the 3–30 µM
window were found to induce lacZ expression only for lactose preincubated cells. This
window of bistability was very clearly defined in the absence of extracellular glucose but
when this sugar was present, the concentration window moved towards higher lactose
concentrations (see Figure 2c in [7]).

Thus, the above all-or-none and bistable behavior that characterizes the lac system
makes it suitable for discrete modeling. In particular, Boolean models have been used
successfully to analyze genetic regulatory systems on numerous occasions [8–10]. They are
useful for the analysis of large regulatory networks when mechanistic details underlying
are scarce, insufficiently defined, or even controversial, as it has been discussed that, in such
models, the interaction type (inhibition or activation) and network topology are enough for
capturing dynamics of gene networks [11,12], without the need of estimating parameters,
thereby reducing model complexity. For example, they are being used extensively to
represent interactions revealed by high throughput sequencing technologies in the context
of systems biology [13,14]. Although some of these assumptions make them less applicable
for certain biological processes, they have proved very valuable for predicting the behavior
of genes during bacterial metabolism [15] or in the context of interspecies interactions [16].
Even more, other researchers have been able to reproduce bistability for eukaryotic cell
differentiation [17], surfactant production in bacteria [18] and microbial signaling [19] using
Boolean models.

In this context, the authors of [20] modeled the lac regulation system using a Boolean
network that was able to reproduce the bistability of the system under certain but not all
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of the conditions described in [7]. Figure 2 displays a scheme of this model, where Ge
and (Le, Lem) are parameters that account for different concentration levels of glucose and
lactose, respectively. This allows to assign specific values as inputs in order to predict the
final outcome of the network in terms of fixed points (steady states) that are consistent with
the operon being ON, OFF, or in a bistable condition. When the nodes are updated in a
parallel regime, the model can reproduce the experimental results in [7] when extracellular
glucose is low or absent. However, the predicted outcome of the model differs from the
actual behavior of the lac system when lactose and glucose concentrations are high, a
feature that limits the usefulness of this initial model for representing lactose fermentation
by E. coli.

M

PB

A L

LmAm

R

Rm

C

L em

L eGe

fM = C ∧ ¬R ∧ ¬Rm
fP = M
fB = M
fC = 1
fR = ¬A ∧ ¬Am

fRm = (¬A ∧ ¬Am) ∨ R
fA = L ∧ B
fAm = L ∨ Lm
fL = P ∧ Le ∧ ¬Ge
fLm =

[
(Lem ∧ P) ∨ Le

]
∧ ¬Ge

Figure 2. The original model of [20] (left) and its local Boolean functions (right). A solid (dashed)
edge represents an activation (inhibition). We use the red box to differentiate the parameters of the
model (outside) from its variables (inside).

In this work, we first analyze the dynamics of the Boolean models considered but
under all different updating schemes in order to know how robust they are in the sense
of whether or not new attractors appear. In general, this is a difficult task because the
number of different updates schemes associated to a network grow exponentially with
its size [21]. Fortunately, there are currently mathematical tools that can significantly
reduce this analysis [22]. Secondly, we propose improvements for the performance of
the model considered by a rational redesign of the specific Boolean functions in order
to predict the operon behavior in each of the sugar combinations tested experimentally
in [7], including combined scenarios of low, medium and high concentrations of glucose
and lactose. Furthermore, we have taken into account current biological data, regarding
catabolic repression and inducer exclusion mechanisms, to bring function definitions up
to date.

The paper is organized as follows; Section 2 summarizes the basic mathematical
concepts and definitions used along the manuscript, Section 3 contains the most relevant
aspects taking into account of [20], in Section 4 our main mathematical results are presented,
in Section 5 alternative improvements for the studied models are proposed. Finally, we
discuss on our findings in the conclusions section.

2. Mathematical Background

A Boolean Network (BN) is a couple (G, F), where G = (V, E) is a finite directed
graph named interaction digraph (e.g., Figure 2(left)), V is a set of n nodes (n also called
the network size), E ⊆ V × V is the set of edges and F = ( f1, ..., fn) : {0, 1}n → {0, 1}n

is a Boolean function composed by n local functions fi : {0, 1}n → {0, 1} such that
x ∈ {0, 1}n → xi = fi(x) ∈ {0, 1} (x is called a configuration while the value of the variable
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xk associated with node k is known as an state). Besides, the local functions fi depends only
on variables xj such that (j, i) ∈ E (e.g., Figure 2(right)).

Among the different ways that the states of a BN can be updated is the family of
(deterministic) update schedules [22] defined as functions s : V → {1, ..., n} such that s(V) =
{1, ..., m} for some m ≤ n. In particular, the well-known parallel (or synchronous) and
sequential (or asynchronous) update schedules are obtained when m = 1 (i.e., all states are
updated at the same time) and m = n (i.e., all states are updated at different times but
following a predetermined order), respectively. We denote by Sn the set of deterministic
update schedules that exist for a BN of size n. If the states of a configuration x ∈ {0, 1}n are
updated according to a given update schedule s, a new configuration x′ = F(x) ∈ {0, 1}n

will be obtained. The change from x to x′ can be represented by the arc x → x′ and is
known as transition from x to x′. Thus, the 2n configurations and their respective transitions
give rise to the dynamics of the system which can be represented in a state transition graph
Furthermore, because it is finite, the dynamics has limit behaviors called attractors, which
are of 2 types:

• Fixed point (or steady state): configuration x ∈ {0, 1}n such that F(x) = x.
• Limit cycle: sequence of configurations x0, ..., xl−1 ∈ {0, 1}n pairwise distinct such that

F(xj) = xj+1, for all j = 0, ..., l − 2, F(xl−1) = x0 and l > 1 is a integer named the
length of the limit cycle.

The set of configurations that converge to a specific attractor is called the attrac-
tion basin.

3. The lac Operon Boolean Models to Be Considered: Main Aspects and
Choice Justification

In [20] the authors proposed different Boolean models explaining the bistability of
the lac operon in Escherichia coli. These are BNs that have the following characteristics in
common:

1. All of them have qualitative behaviors that match very well with the experiments
performed in [7].

2. The interaction digraph is composed by nodes that represent mRNA, proteins, and sug-
ars. Its edges represent the type of interaction between the nodes (activation/inhibition).

3. The dynamic is obtained considering the parallel update schedule.

Next, we will specify which are the models of [20] that we choose. Hence, we will
summarize the main points that their authors studied and with which we will work from
Section 4 onwards. Finally, we justify our choices.

3.1. The Chosen Models of Veliz-Cuba and Stigler 2011: Those without Catabolite Repression

We will consider the alternative model without catabolite repression proposed in [20]
which differs from the initial one presented in that work only in the definition of the local
function fC; in the initial one fC = ¬Ge while in the alternative model without catabolite
repression fC = 1 (see our justification in Section 3.4). In addition, we will also consider
its reduced version (without catabolite repression) and, from now on, we will refer to this
alternative model without catabolite repression and its reduced version as the original and
reduced one, respectively. We show the details of these models in Figures 2 and 3, where we
point out that the networks have been drawn “disarming” those of [20] which consider
some pairs of nodes as a single node, but the reader can easily check that our networks and
the corresponding of [20] are equivalents.
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]
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Figure 3. The reduced model of [20] (left) and its local Boolean functions (right). Dashed/solid
edges represent inhibitions/activations.

3.2. The Dynamics Produced by the Original and Reduced Models

According to [20], the original model (Figure 2) assumes two concentration of glucose,
low (Ge = 0) or high (Ge = 1), and three concentrations of extracellular lactose, low,
medium or high, represented by the pairs of parameters (Le, Lem) = (0, 0), (0, 1) and
(1, 1), respectively (the pair (Le, Lem) = (1, 0) has no meaning, therefore is not considered).
This gives a total of six different combinations of parameters and, consequently, each one
will have its corresponding dynamic. Here, a configuration corresponds to the vector
(M, P, B, C, R, Rm, A, Am, L, Lm) ∈ {0, 1}10 and, for purposes of relating the dynamics to
the results of [7] (see details in Section 3.3), only its steady states matter, i.e., limit cycles (if
they exist) are ignored. Besides, when (M, P, B) = (1, 1, 1) (when (M, P, B) = (0, 0, 0)) it
will be said that the operon is ON (OFF). Abusing this notation, henceforth, we will call
ON (OFF) to a steady state that verifies the above condition.

Therefore, if the dynamics for each of the six combinations of parameters are obtained
and only are observed its steady states, then, there exist the following four cases:

Case 1: Ge = 1. Any configuration eventually converges to the unique fixed point
OFF = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0).

Case 2: Ge = Le = Lem = 0. Any configuration eventually converges to the unique fixed
point OFF= (0, 0, 0, 1, 1, 1, 0, 0, 0, 0).

Case 3: Ge = 0 ∧ Le = Lem = 1. Any configuration eventually converges to the unique
fixed point ON= (1, 1, 1, 1, 0, 0, 1, 1, 1, 1).

Case 4: Ge = Le = 0 ∧ Lem = 1. Any configuration eventually converges to one of the
two fixed points; OFF= (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) or ON= (1, 1, 1, 1, 0, 0, 0, 1, 0, 1), i.e.,
bistability is obtained.

Notice that case 1 implicitly covers three of the six combinations of parameters (those
obtained when high concentration of glucose is combined with low, medium and high
concentration of extracellular lactose, respectively), all three having the same dynamic. The
remaining three combinations of parameters are those obtained in cases 2, 3 and 4, each
with a different dynamic.

We summarize the four cases in Table 1 and their respective dynamics in Figure 4.
Regarding the reduced model (Figure 3), four cases similar to the original one are

obtained, which can be summarized using the same Table 1. It should be mentioned that,
in this reduced model, a configuration is of the form (M, L, Lm) ∈ {0, 1}3, and the operon
is ON (OFF) when M = 1 (M = 0). In the Figure 5, we show the dynamics of its four cases.

Notice that although only 3 different dynamics are generated (because its cases 1 and
2, involving 4 out of 6 combinations of parameters, generate a single dynamic), they are
still in accordance with the summary of Table 1.
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Table 1. The possible cases in the original model for each of the six combinations of parameters.

Lactose
Glucose Low

Ge = 0
High

Ge = 1

Low: (Le, Lem) = (0, 0) Case 2
(OFF)

Case 1
(OFF)

Medium: (Le, Lem) = (0, 1) Case 4
(Bistability)

Case 1
(OFF)

High: (Le, Lem) = (1, 1) Case 3
(ON)

Case 1
(OFF)

(a) (b)

(c) (d)

Figure 4. State transition graphs of the original model under parallel update schedule for: (a) Case 1,
(b) Case 2, (c) Case 3 and (d) Case 4 (bistability appears). The circles represent all the 210 = 1024
configurations (M, P, B, C, R, Rm, A, Am, L, Lm) ∈ {0, 1}10, in particular, the red one correspond to
the steady state OFF while the green one correspond to the steady state ON. The sizes of its attraction
basins are 1024 for cases 1, 2 and 3 and 1006 and 18 for the OFF and ON steady states of case
4, respectively.
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Figure 5. State transition graphs of the reduced model under parallel update schedule. Case 4 (left):
low glucose and medium lactose. Case 3 (center): low glucose and high lactose. Cases 1 and 2 (right):
the other four combination of parameters.

3.3. Stochastic Simulations in the Original Model Which Largely Coincide with the Biological
Experiments of Ozbudak et al., 2004

The bistability of the lac Operon, according to [23], means that it must be a region
of bistability, i.e., for a range of parameters, a set of “cells” may have both, OFF and ON,
fixed points. In [20], this is accomplished by considering stochasticity in the uptake of
the inducer in the following way, considering that glucose is absent (Ge = 0) while that
extracellular lactose is given as the discretization of a random variable L ∼ N(µ, σ) taken
from a normal distribution with µ equal to the mean of {0.6, ..., 2.8} incremented by 0.2
and σ = 0.3 (these values are chosen in order to be consistent with those measured in the
biological experiments of [7]). Then, the extracellular lactose (Le, Lem) is given as a function
of L defined by

(Le, Lem) =


(0, 0) = low, if L ≤ 1
(0, 1) = medium, if 1 ≤ L < 2
(1, 1) = high, if 2 ≤ L

Below, we summarize the stochastic experiment carried out in [20]:

(1) Starting with the normal distribution N(0.6, 0.3) for L, to generate randomly a set
of values for L and calculate for each of them the corresponding value for the pair
(Le, Lem).

(2) Assuming Ge = 0, to find which are the steady states of the dynamic obtained for each
value (Le, Lem) of (1), it is simply one of the three possibilities showed in the second
column of Table 1; OFF, bistable (i.e., OFF and ON) or ON.

(3) To repeat (1) and (2) but for N(µ, 0.3) with µ ∈ {0.8, 1.0, 1.2, ..., 2.8}.
The results of this experiment were those that matched with the biological experiments

of [7] in 5 out of 6 combinations of parameters described in Section 3.2. In the remaining
one, where glucose and lactose concentrations are high (see Table 1), the original model (as
well as the reduced one) predicts the operon being OFF while the biological experiments
of [7] show a bistable behavior.

3.4. Our Justification for the Choice of Models without Catabolite Repression

One of the most relevant outcomes of the Boolean models proposed in [20] is that the
presence of glucose at a medium or high concentration would be able to completely repress
the expression of the lac mRNA, which is a direct consequence of the inhibition function
fC = ¬Ge, which aims to take into account one of the proposed aspects of catabolite
repression. However, this assumption fails to consider the well-described fact that glucose
is not able to shut down LacZ expression in bacteria when the operon has been pre-induced
experimentally [24]. Furthermore, the whole concept of glucose repression mediated
by a drop in cAMP and subsequent lack of the CRP-cAMP activator complex has been
under critical revision [25–28] based on the following compelling challenges: experimental
data indicate that intracellular cAMP concentrations are similar when lactose, glucose,
or a mixture of both substrates is present at concentrations lower than 300 µM and that
cAMP abundance is only reduced by a factor of 5–8 when external glucose concentrations
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are above 300 µM [29,30], which is higher than the bistability window explored in [7].
Exogenous addition of cAMP did not abolish glucose-mediated inhibition of lac gene
expression, even though the metabolite was shown to enter the cells [31]. On the other
hand, when the repressor protein LacI is inactivated by deletion of the lacI gene, no
catabolite repression of LacZ is observed, indicating that this process relies solely on the
activity of the repressor protein, shutting down transcriptional activity by means of inducer
exclusion [32]. Finally, the CRP-cAMP activator complex is also required for the expression
of the PtsG glucose uptake transporter [33], which would imply that, if this pathway of
catabolite repression were valid, glucose would eventually inhibit its own transport, which
has never been observed. This inconsistency with experimental data and the relevant
objections discussed above justify our choice of the models without catabolite repression
of [20], where fC = 1, to account for the current view of glucose-induced lac repression.

4. Results: Dynamical Robustness of the Original and Reduced Models

Our goal is to study the dynamics of the original and reduced models not only for
the parallel update schedule but for the whole family of deterministic update schedules
defined in Section 2. As evidenced in [21], this set grows exponentially with the network
size. In particular, its sizes are |S3| = 13 and |S10| = 102,247,563 for the reduced and
original models, respectively.

Observe that it is easy to deduce that the steady states OFF and ON obtained in
the dynamics of the original, and reduced models will also continue to appear with any
other deterministic update schedule because their are known to be invariant under update
schemes; however, limit cycles could also appear making the desired modeling less robust.
We will analyze this aspect below.

4.1. Dynamical Robustness of the Original Model

We begin by giving a short known Lemma that allows us to prove that the dynamics
of the first three cases mentioned in Section 3.2 are highly robust for any deterministic
update schedule.

Lemma 1. Let N = (G, F) be a Boolean network updated by the update schedule s. If G is acyclic
and it has no loop [i.e., an edge of the form (i,i)], then the attractors are only fixed points.

Proof. It is known that the nodes of an acyclic digraph can be ordered in m layers, being
the first and last those that have the root and leaves nodes, respectively, such that the arcs
belongs between the i-layer and the j-layer, for 1 ≤ i ≤ m− 1 and i < j. Since there are no
loops, the dynamic evolves fixing the states of the nodes, in the worst case, from the first to
the last layer. Therefore, the only possible attractor is a fixed point.

4.1.1. Cases 1, 2 and 3 for the Original Model

Proposition 1. The dynamics associated with the cases 1, 2 and 3 of the original model of
Section 3.2 have no limit cycle, whatever the update schedule considered.

Proof. Let s be an arbitrary update schedule and (M, P, B, C, R, Rm, A, Am, L, Lm) ∈ {0, 1}10

an initial configuration at time t = 0. We will show that in every case, we can obtain one of
the acyclic digraphs without loops showed in Figure 6:

Cases 1 and 2. It is easy to check that C = 1 and L = Lm = 0, ∀t ≥ 1. This implies that,
A = Am = 0, ∀t ≥ 2. Therefore, we have the left digraph of Figure 6.

Case 3. Notice that C = Lm = 1, ∀t ≥ 1. Therefore, we have the following sequence
of implications; Am = 1, ∀t ≥ 2 ⇒ R = 0, ∀t ≥ 3 ⇒ Rm = 0, ∀t ≥ 4.
Therefore, we have the right digraph of Figure 6.
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Figure 6. Acyclic digraphs without loops obtained when considering the parameters of the cases 1
(left), 2 (left also) and 3 (right) of Section 3.2.

Thus, in every case, Lemma 1 assures that the attractors are only fixed points, i.e.,
there is no limit cycle.

Proposition 1 implies that for the first 3 cases, and whatever be the update schedule,
the attraction basin of its dynamics will be the whole space of configurations {0, 1}10, as
summarized in Table 2.

Table 2. Size of the attraction basin associated with the dynamics of cases 1, 2 and 3 for the original
model (Section 3.2), and considering any of the |S10| = 102, 247, 563 possible update schedules.

Case
Attractor OFF ON

1: Ge = 1 1024 0
2: Ge = Le = Lem = 0 1024 0
3: Ge = 0∧ Le = Lem = 1 0 1024

4.1.2. Case 4 for the Original Model

It is easy to see that for an arbitrary update schedule and a initial configuration
(M, P, B, C, R, Rm, A, Am, L, Lm) ∈ {0, 1}10 at t = 0, we will have that C = 1 and L = 0,
∀t ≥ 1. This implies that A = 0, ∀t ≥ 2, and we obtain the digraph of Figure 7 that has
three cycles; one of length 6 and two of length 5. Therefore, we cannot apply the previous
Lemma.

M

PB

LmAm

R

Rm

FM = ¬R ∧ ¬Rm
FP = M
FB = M
FR = ¬Am

FRm = ¬Am ∨ R
FAm = Lm
FLm = P

Figure 7. Digraph obtained when considering the parameters of case 4 (left) of Section 3.2 and its
local functions after considering Ge = Le = L = A = 0 and Lem = C = 1 (right).

We will analyze its dynamical behavior through a detailed study of all its different
dynamics by using the algorithms developed in [22] that, roughly speaking, list all the sets
of schemes that generate exactly the same dynamics, significantly reducing the number of
dynamics to analyze. These algorithms have been shown to be effective in obtaining new
and relevant information for the study of concrete biological networks [34,35] as well as in
the field of the cellular automata theory [36–41].
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Simply, we generate one dynamic for each of the above representative update sched-
ules and summarize its results in Table 3.

Table 3. Average size of the attraction basin for case 4 of the original model (Section 3.2) and
calculated over the set S10, FP ⊆ S (set of update schedules whose dynamic have only steady states)
and LC ⊆ S (set of update schedules whose dynamic have limit cycles). Its respective sizes are
|S10| = 102,247,563 (100%), |FP| = 71,891,966 (70.3%) and |LC| = 30,355,597 (29.7%).

Case 4: Ge = Le = 0 ∧ Lem = 1 (Bistability)

Attractors S FP LC

OFF 684.7 908.9 153.7
ON 124.4 115.1 146.5

Limit cycles 214.9 0 723.8

Total 1024 1024 1024

We can observe that less than 30% of all the dynamics present limit cycles and with a
balanced proportion between ON/OFF basins, but they are smaller than those associated to
the limit cycles, which are on average 5 times larger than that of ON and OFF, respectively.
On the other hand, more than 70% of all the dynamics did not have any limit cycle, i.e.,
they only had the fixed points OFF and ON (being, on average, about 8 times greater the
OFF basin than the ON basin).

In Figure 8 we exhibit one example of the dynamical behavior that may have the
original model when the update schedule considered is slightly different from the parallel
one. There are, in addition to the fixed points ON an OFF, three limit cycles of length 4 and
one of length 2.

Pajek

Figure 8. State transition graph of the original model under the parameters of case 4 and considering
that the first nodes M, P, B, C, R, A, L, Lm are updated (in parallel) and then the nodes Rm, Am (also in
parallel). The size of the attraction basins are 18 and 98 for the steady states ON and OFF, respectively
(both in red), and 908 considering the four limit cycles (in blue).

4.2. Dynamical Robustness of the Reduced Model

Clearly, the dynamical robustness of the reduced model is quick and straightforward
to analyze, so we only summarize its results.

4.2.1. Cases 1, 2 and 3 for the Reduced Model

Proposition 2. The dynamics associated with the cases 1, 2 and 3 of the reduced model of
Section 3.2 have no limit cycle, whatever the update schedule considered.

The dynamics for the above three cases also are quite robust for any deterministic
update schedule, and this is summarized in Table 4.
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Table 4. Size of the attraction basin associated with the dynamics of cases 1, 2 and 3 for the reduced
model (Section 3.2) and considering any of the |S3| = 13 possible updates schedules.

Case
Attractor OFF ON

1: Ge = 1 8 0
2: Ge = Le = Lem = 0 8 0
3: Ge = 0∧ Le = Lem = 1 0 8

4.2.2. Case 4 for the Reduced Model

Now the exhaustive analysis boils down to just 13 possible update schedules and the
results are summarized in Table 5.

Table 5. Average size of the attraction basin for case 4 of the reduced model (Section 3.2) and calcu-
lated over the set S3, FP and LC (see definitions in Table 3). Its respective sizes are |S3| = 13 (100%),
|FP| = 10 (77%) and |LC| = 3 (23%).

Case 4: Ge = Le = 0 ∧ Lem = 1 (Bistability)

Attractors S FP LC

OFF 2.5 2.8 1.3
ON 4.6 5.2 2.7

Limit cycles 0.9 0 4

Observe that about 77% of the dynamics have only the fixed points OFF and ON, but,
in this case the average size of the ON attractor basin is almost 2 times bigger than that of
OFF. The same occurs in the other 23%. Furthermore, the OFF and ON basins add up, on
average, exactly the same as that of the limit cycles.

Examples of the dynamical behavior of the reduced model exhibiting limit cycles are
those of Figure 5(left).

5. Alternative Improvements for the Studied Models

As mentioned at the end of Section 3.3, of the 6 parameter combinations, (Ge, Le, Lem) =
(1, 1, 1) –meaning glucose and lactose concentrations in high levels (see Table 1)–it is the
only one that does not matches with the experimental data (see Figure 2c in [7]) where
bistability should be observed again, instead of the operon being OFF as obtained from the
models. Therefore, the first improvement naturally consists in solving that in both models.
The second one will consist of increasing the parameters of the original model from 6 to 9,
matching in all these cases with the biological experiments of [7].

5.1. Improvement 1: The Original and Reduced Models Match in All 6 Parameter Combinations
with Ozbudak et al., 2004

Observe that according to what was discussed at the beginning of Section 4, some
local functions of both models must necessarily be modified to make the steady states OFF
and ON appear at the same time (bistability). On the other hand, by considering carefully
the arguments we gave in Section 3.4, the local function fC = 1 is not sufficient to adjust
the Boolean model to represent the actual behavior of the system when both glucose and
lactose are present in the extracellular environment of E. coli. To further refine the response
of the Boolean network to the balance of each different sugar and to highlight the relevance
of the previous history of the cell, a new definition has been proposed for fL and fLm ,
considering the inhibitory effect of glucose on lactose transport will be significant in the
short term as long as a low concentration of lactose was initially present, while the opposite
will be true if a high lactose concentration was already inside the cell. These changes are
shown in Figures 9 and 10.
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fM = C ∧ ¬R ∧ ¬Rm fM = C ∧ ¬R ∧ ¬Rm
fP = M fP = M
fB = M fB = M
fC = 1 fC = 1
fR = ¬A ∧ ¬Am fR = ¬A ∧ ¬Am
fRm = (¬A ∧ ¬Am) ∨ R fRm = (¬A ∧ ¬Am) ∨ R
fA = L ∧ B fA = L ∧ B
fAm = L ∨ Lm fAm = L ∨ Lm
fL = P ∧ Le ∧ ¬Ge fL = P ∧

[
(Lem ∧ ¬Ge) ∨ Le

]
fLm =

[
(Lem ∧ P) ∨ Le

]
∧ ¬Ge fLm =

[
(Lem ∧ P) ∨ Le

]
∧
[
¬Ge ∨ L

]
Figure 9. The original model (left) and the improved original model (right), where changes are
marked in red.

fM = L ∨ Lm fM = L ∨ Lm
fL = M ∧ Le ∧ ¬Ge fL = M ∧

[
(Lem ∧ ¬Ge) ∨ Le

]
fLm =

[
(Lem ∧M) ∨ Le

]
∧ ¬Ge fLm =

[
(Lem ∧M) ∨ Le

]
∧
[
¬Ge ∨ L

]
Figure 10. The reduced model (left) and the improved reduced model (right), where changes are
marked in red.

Besides, we show in Figures 11 and 12 the interaction digraph and the dynamics of
the improved original and reduced models, respectively.

M

PB

A L

LmAm

R

Rm

C

L em

L eGe

Figure 11. Interaction digraph associated to the improved original model.
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Figure 12. Dynamic of the improved reduced model associated with; low glucose and low lactose
(top left), low glucose and medium lactose (top center), low glucose and high lactose (top right),
high glucose and low lactose (bottom left), high glucose and medium lactose (bottom center) and
high glucose and high lactose (bottom right).

Thus, the improved original and reduced models predicts:

1. Bistability: when (Ge, Le, Lem) ∈ {(0, 0, 1), (1, 1, 1)}.
2. OFF: when (Ge, Le, Lem) ∈ {(0, 0, 0), (1, 0, 0), (1, 0, 1)}.
3. ON: when (Ge, Le, Lem) = (0, 1, 1).

The above is summarized in Table 6, which match for all the 6 combinations of
parameters with the biological experiments of [7].

Table 6. The possible cases in the improved original and reduced models for each of the six combina-
tions of parameters.

Lactose
Glucose Low

Ge = 0
High

Ge = 1
Low: (Le, Lem) = (0, 0) OFF OFF

Medium: (Le, Lem) = (0, 1) Bistability OFF

High: (Le, Lem) = (1, 1) ON Bistability

5.2. Improvement 2: (Improved) Original Model Extended to 9 Parameters

As explained in the introduction, there is a window of bistability (see Figure 2c in [7])
which justifies that three parameters can also be considered for the glucose (low, medium
and high). Taking into account again the arguments given in Section 3.4 as well as those
discussed for the first improvement, the following changes are proposed over the improved
original model (see Figures 13 and 14).

At this point, we repeat the stochastic experiment described in Section 3.3, but for
different glucose values. Its results are shown in Figure 15 and summarized in Table 7.

Observe how the results of this extended model match the entire window of bistability
(see Figure 2c in [7]) in each of its 9 combinations of parameters.
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fM = C ∧ ¬R ∧ ¬Rm
fP = M
fB = M
fC = 1
fR = ¬A ∧ ¬Am
fRm = (¬A ∧ ¬Am) ∨ R
fA = L ∧ B
fAm = L ∨ Lm

fL =
(

P ∧
[
(Lem ∧ ¬Ge) ∨ Le

])
∨
(

P ∧
[
(Lem ∧ ¬Gem) ∨ Le

])
fLm =

([
(Lem ∧ P) ∨ Le

]
∧
[
¬Ge ∨ L

])
∨
([

(Lem ∧ P) ∨ Le
]
∧
[
¬Gem ∨ L

])
Figure 13. The improved model shown in Figure 9 (right) but with the additional parameter Gem.
Modified local functions appear in red.

M

PB

A

LmAm

R

Rm

C

L em

L eGe

Gem

L

Figure 14. Interaction digraph of the improved original model with additional parameter Gem and
the local functions of Figure 13.

Table 7. The possible cases in the 4-parameter model of Figures 13 and 14 for each of the nine
combinations of parameters.

Lactose
Glucose Low

(Ge, Gem) = (0, 0)
Medium

(Ge, Gem) = (0, 1)
High

(Ge, Gem) = (1, 1)
Low

(Le, Lem) = (0, 0) OFF OFF OFF

Medium
(Le, Lem) = (0, 0) Bistability Bistability OFF

High
(Le, Lem) = (0, 0) ON ON Bistability
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Figure 15. Bifurcation diagram for the stochastic experiment performed over the improved original
model of Figures 13 and 14. Blue, red and green marks represent dynamics with steady states ON,
bistability (OFF and ON at the same time) and OFF, respectively.

6. Conclusions

The lac Operon Boolean model without catabolite repression and its respective reduced
version proposed in [20] were analyzed. These models have the particularity of being
simple but capable of reproducing the operon being OFF, ON and bistable for different
levels of lactose and glucose, matching very well with biological experiments such as those
published in [7]. Unlike the models of [20], the Boolean networks proposed here predict
bistability even at high glucose concentrations. This feature has been observed experi-
mentally when inducer (a non-metabolizable lactose analogue) concentrations are also
high [7]. Furthermore, our models take into account intermediate glucose concentrations,
thus increasing sensibility to changes within the “window of bistability” of the lac system
(see more details in the second part below).

In a first part of this paper, we have studied the dynamical robustness of these models
where we made the following contributions:

• For the first 3 cases described in Section 3.2 and that included 5 of the 6 combinations of
parameters allowed in the original and reduced models, we establish two Propositions
proving the non-existence of any limit cycle, whatever the update schedule used.

• For the case 4, where bistability appears, we made an exhaustive analysis of all its
possible dynamics generated with any update schedule. Here we detail for both
models the average sizes of their attraction basins, the number of dynamics without
limit cycles (i.e., only with fixed points) and the number of dynamics with limit cycles
(being less than 30% in both models).

• Again in the case 4, its predominant attractor (those that have the bigger attraction
basin), changes dramatically; OFF attraction basin being, in average, 8 times bigger
than that of ON for the original model while that in the reduced one, the ON basin is
almost 2 times bigger than that of OFF.

The above findings allow us to conclude that the effect of the glucose and lactose
parameters in the interaction digraph associated to each network breaks its cycles for
cases 1, 2 and 3, transformed into an acyclic network that will have only fixed points as
attractors and, consequently, being completely robust in these situations. However, in the
case of bistability, the role of the update schedule can change this property significantly
because limit cycles with large attraction basins can appear. Moreover, this work supports
the hypothesis of [20] that network topology is a key factor for qualitative dynamical
properties but not for quantitative ones.

As a second part, we have proposed two alternative improvements for the Boolean
models studied, with biological support and that involve small modifications in their local
functions. In the first improvement, the prediction is corrected for the case in which the
parameters of the models represent high glucose and lactose levels, achieving the bistability
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observed in the biological experiments of [7]. In this way, with such an improvement, the
original and reduced models match perfectly with the above experiments of [7] for all the 6
combinations of parameters. The second improvement increases the possible combinations
of parameters for the original model, going from 6 to 9, enriching the dynamics of the
models and matching the bistability window observed in [7] with each of the 9 possible
combinations of parameters. By keeping in mind that in our models, inducer exclusion
can effectively explain operon regulation, which takes into account the current challenges
against the glucose-mediated repression model, our results can also be compared with some
continuous models such as those of [42], based on differential equations, where bistability
windows are displayed in a wide range of glucose concentrations. It is worth mentioning
that the main softwares used in this manuscript were Matlab (for the exhaustive analysis
of all the different dynamics of each model and which allowed us to build Tables 3 and 5)
and RStudio (for the visualization of most of the state transition graphs presented in this
work as well as for the stochastic experiment; Figure 15).

Although the lac operon is a classical model and many of its key molecular players
were identified a long time ago, our understanding of how these players interact with
each other has evolved continuously through the years [43]. Full comprehension of the
system requires robust and thorough knowledge of key regulatory features, like catabolite
repression, where the view of a direct inhibitory effect of glucose on the cAMP-CRP regula-
tory system has been challenged during the last decades [25–30]. Furthermore, lac operon
bistability is a feature that is hard to reproduce by models in general, and the applicability
of a Boolean network including glucose-mediated regulatory systems has only been tried
previously in [20]. Our present work shows how the translation of updated mechanistic in-
formation about the actual role of glucose into the network allows taking better advantage
of a Boolean model to test and reproduce bistability in a way that is faithfully representative
of experimental data. This has multiple implications as, in general, bistability has been
considered a ubiquitous feature in bacteria, involving several processes [44], and under-
standing the dynamics of global gene regulatory systems revealed by high throughput
technologies has become increasingly complex, thus demanding simpler, robust modelling
algorithms, such as Boolean networks. Future models could include additional molecular
features of the operon for the lac system, like repressor oligomerization, inducer (lactose)
degradation by LacZ activity, and consideration of additional binding sites within the lac
promoter region to provide a more detailed description of biological outcomes. Another
natural future extension consists of giving a more quantitative approach to the models here
studied, similar to what has been done in works such as [45–47].
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