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Abstract: This paper uses the median-of-means (MOM) method to estimate the parameters of the
nonlinear regression models and proves the consistency and asymptotic normality of the MOM
estimator. Especially when there are outliers, the MOM estimator is more robust than nonlinear
least squares (NLS) estimator and empirical likelihood (EL) estimator. On this basis, we propose
hypothesis testing Statistics for the parameters of the nonlinear regression models using empirical
likelihood method, and the simulation performance shows the superiority of MOM estimator. We
apply the MOM method to analyze the top 50 data of GDP of China in 2019. The result shows that
MOM method is more feasible than NLS estimator and EL estimator.

Keywords: median-of-means (MOM); nonlinear regression (NR); empirical likelihood (EL);
hypothesis testing (HT)

1. Introduction

A nonlinear regression model refers to a regression model in which the relationship
between variables is not linear. Nonlinear regression model has been widely used in various
disciplines. For instance, Hong [1] applied a nonlinear regression model to the economic
system prediction; Wang et al. [2] studied the application of nonlinear regression model
in the detection of protein layer thickness; Chen et al. [3] utilized a nonlinear regression
model in the price estimation of surface-to-air missiles; Archontoulis and Miguez [4] used
a nonlinear regression model in agricultural research.

The principle of median-of-means (MOM) was firstly introduced by Alon, Matias,
and Szegedy [5] in order to approximate the frequency moment with space complexity.
Lecué and Lerasle [6] proposed new estimators for robust machine learning based on
MOM estimators of the mean of real-valued random variables. These estimators achieved
optimal rates of convergence under minimal assumptions on the dataset. Lecué et al. [7]
proposed MOM minimizers estimator based on MOM method. The MOM minimizers
estimator is very effective when the instantaneous hypothesis may have been corrupted
by some outliers. Zhang and Liu [8] applied MOM method to estimate the parameters in
multiple linear regression models and AR error models of repeated measurement data.

For unknown parameters of a nonlinear regression model, Radchenko [9] proposed an
estimator named nonlinear least square to approximate the unknown parameters. Ding [10]
introduced the empirical likelihood (EL) estimator of the parameter of the nonlinear
regression model based on the empirical likelihood method. However, when there are
outliers, the general methods are more sensitive and easily affected by the outliers based
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on Gao and Li [11]. On the basis of the study of Zhang and Liu [8], this paper applies the
MOM method to estimate the parameters of the nonlinear regression models and receives
more robust results.

The paper is organized as follows: In Section 2, we review the definition of the
nonlinear regression model and introduce the MOM method specifically. We prove the
consistency and asymptotic properties of the MOM estimator. In Section 3, we introduce
a new test method based on the empirical likelihood method for the median. Section 4
illustrates the superiority of the MOM method with simulation studies. A real application
to GDP data is given in Section 5, and the conclusion is discussed in the last section.

2. Median-of-Means Method Applies to Nonlinear Regression Model

We consider the following nonlinear regression model introduced by Wu [12]

yi = g(θ, xi) + εi i = 1, ..., T. (1)

where θ = (θ1, ..., θk)
T is a fixed k× 1 unknown parameter column vector. xi is the i-th

“fixed” input vector with observation yi. g(θ, xi) is a known functional form (usually
nonlinear). εi are i.i.d errors with 0 mean and σ2 unknown variance.

According to Zhang and Liu [8], MOM estimator of θ is produced by the following steps:
Step I: We seperate (yi, xi), i = 1, ..., T into g groups. The number of observations in

each group is n = T/g (Usually for the convenience of calculation, we assume that T is
always divisible by g). We discuss the choice of grouping number g. According to the
suggestion by Emilien et al. [13], g = d8× log( 1

ζ )e for any ζ ∈ (0, 1), where dηe is the
ceiling function. In fact, the structure of observations is always unknown, and the diagnosis
of outliers is complicated. Therefore, we usually set ζ = C√

T
for some constant C regardless

of outliers.
Step II: We estimate the parameter θ in each group j, 1 ≤ j ≤ g by the nonlinear least

square estimator θ̂(j) = (θ̂
(j)
1 , ..., θ̂

(j)
k )T .

Step III: The MOM estimator of θ̂MOM = (θ̂MOM
1 , ..., θ̂MOM

k )T is defined, where

θ̂MOM
q = median(θ̂(1)q , ..., θ̂

(g)
q ), q = 1, ..., k.

The asymptotic properties of θ̂MOM are summarized in the following theorems. Their
proofs are postponed to Appendix A.

Theorem 1. For some constant C and any positive integer g, we suppose the following:
(I) For certain 0 < a < b < ∞ and any θ1, θ2 ∈ Θ, Θ is is an open interval (finite or infinite)

of the real axis E1. ϕn(θ1, θ2) = ∞ for θ1 6= θ2 if at least one of the points θ1, θ2 is −∞ or ∞ ).
i = 1, ..., n.

a(θ1 − θ2)
2 ≤ ϕn(θ1, θ2) =

1
n

n

∑
i=1

[g(θ1, xi)− g(θ2, xi)]
2 ≤ b(θ1 − θ2)

2

Suppose E|ε1|s < ∞ for some s ≥ 2. For n ≥ N0 and sufficiently large positive ρ, c does not
depend on n and ρ.

(II) g
′
(θ0, xi), g

′′
(θ0, xi) exist for all θ0 near θq, q = 1, ..., k, the true value θq is in the interior

of θ0, and

lim sup
n→∞

1
n

n

∑
i=1

[(g
′
(θq, xi))

2] = S 0 < S < ∞

(III) There exits θυ ∈ Θ as n→ ∞ and |θυ − θq| → 0.

lim
n→∞

∑n
i=1{(g

′
(θν, xi))

2}
∑n

i=1{(g′(θq, xi))2}
= 1
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(IV) There exits a δ > 0 such that

lim
n→∞

1
n

n

∑
i=1

sup
|θ0−θq |≤δ

{∂2g(θ0, xi)

∂θ2
0

}2 < ∞

for all i = 1,...,n, where s = {θq ∈ Θ, |θ0 − θq| ≤ δ}.
According to conditions I ∼ IV, for any fixed x > 0, we can get

P(|θ̂MOM
q − θq| ≥ x) ≤ C

(T/g)g/5 . (2)

Theorem 2. (1) Suppose g is fixed and σ 6= 0. Let Θ1, Θ2, ..., Θg be i.i.d standard normal random
variables. When T → ∞,

√
n

σ̂nS−
1
2

d−→ median{Θ1, ..., Θg}. (3)

(2) Suppose T/g2 → ∞ as g → ∞ and σ 6= 0. Afterwards the following asymptotic
normal holds

√
T

σ̂nS−
1
2

d−→
√

2/πN(0, 1). (4)

3. Empirical Likelihood Test Based on MOM Method

In Section 2, this paper uses the MOM method to estimate the parameters of the
nonlinear regression model. In this section, we consider the hypothesis test that θ equals a
given value parameter based on the empirical likelihood method.

Because different groups are disjoint, θ̂
(1)
q , θ̂

(2)
q , ..., θ̂

(j)
q , j = 1, ..., g, q = 1, ..., k are

i.i.d. We treat them as a sample and apply empirical likelihood. For each j, we say
Tn,j = I(θ̂(j)

q ≤ θq). Obviously, ETn,j ≈ 0.5. In fact, ETn,j − 0.5 = O(n−1/2) ( by the
process of proof of Theorem in the Appendix A. Given restrictive conditions, the empirical
likelihood ratio of θ is

R(θ) = max{
g

∏
j=1

gωj|
g

∑
j=1

ωjTn,j = 0.5, ωj ≥ 0,
g

∑
j=1

ωj = 1}. (5)

Using the Lagrange multiplier to find the maximum point we obtained the
following equation.

ωj =
1
g

1
1 + λ(Tn,j − 0.5)

where λ = λ(θ) satisfies the equation

0 =
1
g

g

∑
j=1

Tn,j − 0.5
1 + λ(Tn,j − 0.5)

. (6)

Theorem 3. According to Theorem 2 and Owen [14], as g, n→ ∞, we have

−2logR(θ) d−→ χ2
1. (7)

Using the Theorem 3, the rejection region for the hypothesis with significance level α
(0 < α < 1)

H0 : θ = θ0 vs. H1 : θ 6= θ0

can be constructed as
R := {−2logR(θ) > χ2

1(α)}
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where χ2
1(α) is the upper α-th quantile of χ2

1.

4. Simulation Study

In this section, we use R software for simulation. Simulation experiments are carried
out to compare the performance of the MOM estimator with the nonlinear least squares
(NLS) estimator and the EL estimator under “no outliers” and “with outliers” cases in
Examples 1–3. The definition of Mean Square Error (MSE) of θ̂EL, θ̂MOM and θ̂NLS are
as follows.

MSE =
1

D− 1

D

∑
i=1

(θ̂q − θq)
2, q = 1, ..., k. (8)

θ̂q, θq represent the estimated value of the parameter and the true value of the parame-
ter Respectively in formula (8). D represents the total number of simulations, and in this
article, D = 1000. The MSE results calculated in Tables 1–3 are all multiplied by 100. The
results are accurate to three decimal places. In Examples 4–6, we compare our proposed
method with empirical likelihood inference proposed by Jiang [15].

We report the empirical sizes and powers of the two methods, where size represents
the probability of rejecting the null hypothesis provided it is true. In this paper, we set
that the nominal significance level is 0.05. If the value is close to 0.05 it is good. Power
represents the probability of rejecting the null hypothesis provided it is false. If the value of
power is close to 1 it is good. Empirical size or power represents n1

D , where n1 refers to the
number of times the null hypothesis is rejected in D simulations. In Tables 4–6 of this article,
the size value refers to the empirical likelihood, and power refers to the empirical power.
In fact, the empirical size is the estimated value of size, and the empirical power is the
estimated value of power. We consider the following three forms of nonlinear regression
models, which were also considered by Hong [16].

model1 : yi = 0.8xi + εi, i = 1, ..., T.

model2 : yi = x0.6
i + εi, i = 1, ..., T.

model3 : yi = e(0.5xi) + εi, i = 1, ..., T.

In this paper, for convenience, we fix the number of groups in simulation. We find that
the result is consistent with the calculation result according to the formula g = d8× log( 1

ζ )e
which suggested by Emilien et al. [13]. Throughout the paper, the distribution abbreviations
B, U, N, P represent binomial distribution, uniform distribution, normal distribution
respectively and Poisson distribution. N(0,1) represents the standard normal distribution.
We set the number of repeated observations T to 100, 200 , . . . , 1000.

Example 1. We consider model yi = 0.8xi + εi, For the observation data, the grouping is carried
out according to the grouping principle. Taking the effect of the measures of dispersion in data sets
into consideration (accuracy of the estimator may be affected by the dispersion in the data set). xi are
generated from the P(0.7), εi are generated from N(0, 1). The output variable yi has outliers. There
are three cases of outliers. We choose 1%T outliers from B(20, 1/2), 2%T outliers from U(7, 8)
and 2%T outliers from N(6, 2), respectively. The results are shown in Table 1.

Example 2. We consider model yi = x0.6
i + εi, xi are generated from the U(2, 3), εi are generated

from N(0, 1). The output variable yi have outliers. There are three cases of outliers. We choose 1%T
outliers from B(22,1/2), 2%T outliers from U(7, 8) and 2%T outliers from N(7, 3), respectively.
The results are shown in the Table 2.
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Table 1. Mean Square Error (MSE) for θ̂NLS, θ̂MOM and θ̂EL in Example 1.

No Outliers 1% from B(20, 1
2) 2% from U(7, 8) 2% from N(6, 2)

T EL MOM NLS EL MOM NLS EL MOM NLS EL MOM NLS

100 1.617 1.375 1.329 2.208 2.020 2.081 2.321 1.969 2.023 2.065 1.790 1.792
200 0.650 0.669 0.649 1.230 1.071 1.229 2.000 1.727 1.753 1.610 1.486 1.611
300 0.415 0.421 0.414 1.011 0.867 1.012 1.798 1.714 1.799 1.157 1.058 1.158
400 0.322 0.328 0.321 0.830 0.717 0.831 1.351 1.178 1.351 1.134 1.035 1.135
500 0.268 0.274 0.267 0.779 0.628 0.780 1.256 1.104 1.256 1.129 1.002 1.128
600 0.212 0.214 0.212 0.729 0.578 0.729 1.145 0.989 1.146 1.036 0.874 1.036
700 0.173 0.174 0.173 0.697 0.554 0.698 1.195 0.979 1.196 1.015 0.848 1.014
800 0.162 0.163 0.161 0.667 0.486 0.668 1.119 0.976 1.120 1.016 0.828 1.017
900 0.141 0.142 0.141 0.637 0.448 0.638 1.113 0.891 1.113 1.007 0.832 1.008

1000 0.128 0.129 0.127 0.622 0.441 0.623 1.083 0.865 1.083 0.996 0.809 0.997

Table 2. MSE for θ̂NLS, θ̂MOM, θ̂EL in Example 2.

No Outliers 1% from B(22, 1
2) 2% from N(7, 3) 2% from U(7, 8)

T EL MOM NLS EL MOM NLS EL MOM NLS EL MOM NLS

100 0.380 0.384 0.381 0.626 0.598 0.627 0.822 0.809 0.823 0.606 0.587 0.607
200 0.189 0.193 0.190 0.481 0.455 0.480 0.569 0.554 0.570 0.596 0.590 0.597
300 0.126 0.127 0.126 0.414 0.399 0.415 0.525 0.522 0.526 0.578 0.563 0.577
400 0.100 0.100 0.099 0.379 0.344 0.380 0.472 0.465 0.472 0.547 0.544 0.546
500 0.078 0.079 0.077 0.370 0.328 0.369 0.447 0.428 0.447 0.533 0.515 0.533
600 0.061 0.065 0.063 0.346 0.301 0.347 0.458 0.415 0.459 0.501 0.494 0.501
700 0.055 0.056 0.055 0.337 0.296 0.336 0.424 0.401 0.425 0.498 0.492 0.498
800 0.049 0.049 0.048 0.336 0.278 0.336 0.436 0.403 0.437 0.496 0.472 0.495
900 0.042 0.044 0.042 0.342 0.276 0.341 0.410 0.369 0.410 0.490 0.464 0.489

1000 0.038 0.042 0.038 0.332 0.278 0.333 0.420 0.387 0.420 0.487 0.455 0.487

Example 3. We consider model yi = e(0.5xi) + εi, xi are generated from U(−1, 0). εi are generated
from N(0, 1). The output variable yi have outliers. There are three cases of outliers. We choose 1%T
outliers from B(20, 1/2), 2%T outliers from N(6, 2) and 2%T outliers from U(6, 7), respectively.
The results are shown in the Table 3.

Table 3. MSE for θ̂NLS, θ̂MOM and θ̂EL in Example 3.

No Outliers 1% from B(20, 1
2) 2% from N(6, 2) 2% from U(6, 7)

T EL MOM NLS EL MOM NLS EL MOM NLS EL MOM NLS

100 6.700 6.890 6.701 8.559 8.197 8.666 10.502 9.496 10.546 8.876 8.687 8.928
200 3.341 3.351 3.342 5.970 5.446 5.971 8.096 7.911 8.178 7.500 7.438 7.501
300 2.200 2.239 2.201 5.482 5.067 5.483 7.055 6.742 7.088 6.824 6.652 6.825
400 1.565 1.624 1.566 5.102 4.555 5.103 6.673 6.209 6.785 6.528 6.305 6.529
500 1.263 1.295 1.264 4.645 4.188 4.646 6.574 6.045 6.575 6.244 6.111 6.245
600 1.158 1.175 1.159 4.497 3.675 4.498 6.399 5.909 6.400 6.219 6.077 6.220
700 0.831 0.844 0.831 4.248 3.492 4.249 6.290 5.817 6.292 6.101 5.970 6.102
800 0.802 0.815 0.803 4.336 3.486 4.337 6.356 5.664 6.357 6.067 5.691 6.068
900 0.731 0.736 0.732 4.138 3.162 4.139 6.206 5.411 6.207 5.858 5.486 5.859

1000 0.663 0.669 0.664 3.628 2.764 3.629 6.336 5.312 6.336 5.385 4.998 5.386

Form Tables 1–3, we have the following comments.

(1) The MSE decrease for all estimators as T becomes large whether there are outliers.
(2) When there are no outliers, the MSE of θ̂MOM, θ̂NLS and θ̂EL are the same basically.
(3) When there are outliers, the MSE of θ̂MOM estimator is smaller than the MSE of θ̂NLS

estimator and θ̂EL estimator. From Tables 1 and 3, the results show that they are no
significant differences between the MSE of θ̂NLS estimator and θ̂EL estimator as T
is large.
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Example 4. We consider model yi = 0.8xi + εi, xi are generated from P(0.7), εi are generated
from N(0, 1), For the power, we use θ + θ0 with θ0 ∈ {0.1, 0.2} as the alternative hypothesis. The
results are shown in Table 4. MOMEL repersents empirical likelihood test based on MOM method,
and EL represents hypothesis test based on the EL estimator.

Table 4. Size and power in Example 4.

Size Power
θ0 = 0.1 θ0 = 0.2

T MOMEL EL MOMEL EL MOMEL EL

100 0.054 0.060 0.629 0.161 0.852 0.584
200 0.051 0.045 0.713 0.237 0.946 0.847
300 0.059 0.062 0.764 0.368 0.987 0.966
400 0.047 0.060 0.828 0.498 0.996 0.987
500 0.050 0.040 0.869 0.578 1.000 0.996
600 0.055 0.047 0.900 0.670 1.000 0.999
700 0.052 0.048 0.920 0.728 1.000 0.999
800 0.050 0.045 0.936 0.779 1.000 1.000
900 0.050 0.046 0.953 0.833 1.000 1.000
1000 0.046 0.040 0.961 0.882 1.000 1.000

Example 5. We consider model yi = x0.6
i + εi, suppose xi are generated from U(2, 3), εi are

generated from N(0, 1). For power, we use θ + θ0 with θ0 ∈ {0.1, 0.15} as the alternative
hypothesis. The results are shown in Table 5.

Table 5. Size and power in Example 5.

Size Power
θ0 = 0.1 θ0 = 0.15

T MOMEL EL MOMEL EL MOMEL EL

100 0.057 0.065 0.762 0.322 0.896 0.524
200 0.050 0.046 0.888 0.556 0.974 0.827
300 0.054 0.043 0.939 0.729 0.995 0.970
400 0.051 0.044 0.972 0.835 0.997 0.991
500 0.055 0.047 0.988 0.919 0.999 0.998
600 0.056 0.047 0.995 0.949 1.000 0.999
700 0.047 0.044 0.998 0.966 1.000 1.000
800 0.056 0.043 1.000 0.985 1.000 1.000
900 0.050 0.048 1.000 0.991 1.000 1.000
1000 0.051 0.046 1.000 0.996 1.000 1.000

Example 6. We consider model yi = e(0.5xi) + εi, xi are generated by U(−1, 0), εi are generated
by N(0, 1). For power, we use θ + θ0 with θ0 ∈ {0.2, 0.3} as the alternative hypothesis. The results
are shown in Table 6.

From simulation results that are displayed in Tables 4–6, we can see that the size of
the proposed test is close to 0.05 and the power is close to 1 as T increases. Especially when
N is small, the results of MOM are significantly better than EL’s. When T increases, the
MOM also performs better in terms of size and power although the power of both methods
tends to one. In summary, our method is better.



Mathematics 2021, 9, 599 7 of 16

Table 6. Size and power in Example 6.

Size Power
θ0 = 0.2 θ0 = 0.3

T MOMEL EL MOMEL EL MOMEL EL

100 0.063 0.072 0.577 0.144 0.663 0.190
200 0.058 0.045 0.640 0.183 0.754 0.290
300 0.047 0.040 0.698 0.215 0.834 0.398
400 0.051 0.049 0.768 0.291 0.885 0.501
500 0.055 0.047 0.799 0.335 0.892 0.577
600 0.057 0.042 0.824 0.373 0.946 0.667
700 0.056 0.043 0.851 0.470 0.957 0.725
800 0.048 0.049 0.859 0.472 0.969 0.801
900 0.055 0.042 0.893 0.540 0.983 0.852
1000 0.051 0.057 0.920 0.607 1.000 0.880

5. The Real Data Analysis

In this section, we apply the MOM method to analyze the top 50 data of GDP of
China in 2019. Basing on the presentation of Zhu et al. [17], there are many methods to
test whether there are outliers in the data, such as the 4d test, 3σ principle, the Chauvenet
method, the t-test and the Grubbs test. Sun [18] also introduced the box plot method.
Different test methods will get different outliers. So we use the box plot as shown in
Figure 1 to confirm the existence of outliers in the actual data based on the suggestion of
Sun et al. [18]. The outliers are 381.55, 353.71, 269.27, and 236.28 (unit: ten billion RMB).

We also use a 3-σ principle to test whether there are outliers, and the result shows
that the outliers are 381.55 and 353.71. Through the test of the above two methods, we can
judge that there are outliers in this real data.

Yin and Du [19] introduced a power-law distribution. For the purpose of predicting
the GDP development trend of major cities accurately in China. We use the EL method, the
MOM method and the NLS method to fit the curve respectively. Where xi represents the
sorting order of GDP of 50 cities in descending order. The dataset is from www.askci.com
(accessed on 15 February 2021).

The EL gives the nonlinear regression equation

GDPEL = 444.0250× x−0.5176290
i . (9)

The MOM gives the nonlinear regression equation

GDPMOM = 594.1439× x−0.6111023
i . (10)

The NLS gives the nonlinear regression equation

GDPNLS = 443.0247× x−0.5167945
i . (11)

In Figure 2, the red line represents the fitting result of NLS method, and the blue line
represents the fitting result of MOM method. the black line represents the fitting result of
EL method, and the yellow points represent the true value of GDP.

www.askci.com
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Figure 1. Box plot of the top 50 data of GDP of China in 2019.

Figure 2. Fitting result figure of the top 50 data of GDP of China in 2019.
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In actual data, the true values of parameters are really unknown, so we cannot calculate
MSE of the parameter. MAE refers to the average value of the absolute error. The definition
of Mean Absolute Error (MAE) is given below.

MAE =
1
G

G

∑
i=1
|yi − ŷi|, i = 1, ..., G.

In the actual data, yi refers to the true value of GDP, and ŷi refers to the GDP value
obtained from the fitted nonlinear regression model, so we calculated the MAE. MAE of
the MOM method is 11.984. MAE of the NLS method is 12.024, MAE of the MOM method
is 11.982. Cross-validations are taken to examine the accuracy of forecasting. Specifically,
we take 40 data as experimental data and the other 10 as forecasting data randomly and
the number of independent replications is 1000. The MAE of EL, ELS and MOM are
14.206, 14.271 and 12.242 respectively. These suggest that MOM is more plausible than NLS
and EL.

6. Conclusions

It is shown that the NLS method is not robust to outliers based on the research of
Gao and Li [11]. So in this paper, firstly, we apply the MOM method to the nonlinear
regression model and introduce its theory. We give the theoretical results of asymptotic
normality and consistency of the MOM estimator. Secondly, we propose a new test method
based on the empirical likelihood method. Thirdly, we use the MOM method to estimate the
parameters of three forms of nonlinear regression models, and compare the MSE of θ̂NLS,
θ̂MOM and θ̂EL. The results show that the MSE of θ̂MOM is the smallest from Tables 1–3 and
the size and power prove the superiority of the MOM method from Tables 4–6. Finally, the
MOM method is applied to predict the GDP development of cities of China, the value of
MAE shows that the prediction of the MOM method is better than the NLS method. All in
all, the MOM method does not need to eliminate outliers. Regardless of whether there are
outliers in the data, we will use the MOM method to get a robust estimation.
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Appendix A

In this Appendix A, we give the technical proofs of Theorems 1–3.
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Lemma A1 (Chernoff’s inequality, cf. Vershynin [20] Theorem 2.3.1). Let Xi(i = 1, ..., n) is
an independent Bernoulli random variable with the parameter pi. Consider sum Mn = ∑n

i=1 Xi
and their mean µ = E(Mn), for any t > µ, we have

P(Mn ≥ t) ≤ e−µ(
eµ

t
)t. (A1)

Proof of Theorem 1. In accordance with the condition (I) of Theorem 1 and the Lemma 1
of Ivanov [21], for n ≥ N0 and sufficiently large positive ρ, c does not depend on n and ρ.
We have

P(
√

n|θ̂(j)
k − θk| > ρ) ≤ c

ρs , j = 1, ..., g. (A2)

According to Wu [22], we can get that the least square estimate of σ2 is (j = 1, ..., g)

σ̂2
n =

1
n

n

∑
i=1

(yi − θ̂
(j)
q )2, q = 1, ..., k

According to Formula (2) and the conditions (II)(III)(IV). From the Theorem 5 of
Wu [12], we can know

√
n(θ̂(j)

q − θq)
d−→ N(0, σ̂2

nS−1), q = 1, ..., k. (A3)

According to Pinelis [23], C1 is a constant, we can know

sup
x∈R
|P
√

n

σ̂nS
−1
2
(θ̂

(j)
q − θq) ≤ x)−Φ(x)| ≤ C1√

n
, q = 1, ..., k. (A4)

where Φ represent the cumulative distribution function of Standard normal distribution.
Define random variables

αn,j =

√
n

σ̂nS
−1
2
(θ̂

(j)
1 − θ1), j = 1, ..., g. (A5)

According to formula (A4), we have

sup
x∈R
|P(

√
n

σ̂nS
−1
2
(θ̂

(j)
1 − θ1) ≤ x)−Φ(x)| ≤ C1√

n

So we can get

sup
x∈R
|P(αn,j ≤ x)−Φ(x)| ≤ C1√

n

For each j = 1, ..., g, suppose x =
√

nH

σ̂nS−
1
2

, we have

P
(

θ̂
(j)
1 − θ1 ≥ H

)
≤ C1√

n
+ 1−Φ(

√
nH

σ̂nS−
1
2
)

for all H > 0, according to the elementary inequality

1−Φ(
√

nH/σ̂nS−
1
2 ) ≤ e−nH2/2(σ̂2

nS−1)

where o(n−
1
2 ) for large n and fixed H > 0, hence

P
(

θ̂
(j)
1 − θ1 ≥ H

)
≤ C2

2
√

n
. (A6)
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Similarly, we can get

P
(

θ̂
(j)
1 − θ1 ≤ −H

)
≤ C2

2
√

n

where C2 is a constant that depends on H but not n, so we have

P
(
|θ̂(j)

1 − θ1| ≥ H
)
≤ C2√

n
. (A7)

It is easy to verify that

|θ̂MOM
1 − θ1| ≤ Median

{
|θ̂(j)

1 − θ1|, j = 1, ..., g
}

so we have the conclusion

P(|θ̂MOM
1 − θ1| ≥ H) ≤ P(Median

{
|θ̂(j)

1 − θ1|, j = 1, ..., g
}
≥ H) := P(E). (A8)

Definite Bernoulli random variable

ηj = I(|θ̂(j)
1 − θ1| ≥ H), j = 1, ..., g

we have Eηj ≤ C2n
−1
2 by Formula (A9). It can be seen that event E occurs if and only if

∑
g
j=1 ηj is larger than g

2 , hence

P(E) = P
(

g

∑
j=1

ηj ≥
g
2

)
≤ e−gEη1

(
2eC2n

−1
2

) g
2 ≤ C

n
g
5

. (A9)

We have used Lemma 1 in the last step. This ends the proof of Theorem 1.
For any fixed x, we define i.i.d random variables

πn,j(x) = I(αn,j ≤ x), j = 1, ..., g

and suppose

pn(x) = P
(
αn,j ≤ x

)
according to Formula (A4)

|pn(x)−Φ(x)| = O(n−
1
2 )

for all real x. The following lemma gives the central limit theorem for the partial sums of
πn,j(x).

Lemma A2. Suppose n/g→ ∞ as g→ ∞. We have

√
g

(
1
g

g

∑
j=1

πn,j(x)−Φ(x)

)
d−→ N(0, Φ(x)[1−Φ(x)]). (A10)

for the fixed x, as g→ ∞,

√
g

(
1
g

g

∑
j=1

πn,j(xg−
1
2 )− 1

2
− x√

2πg

)
d−→ N(0,

1
4
). (A11)
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Proof of Lemma 2. For convenience, we write πn,j(x) as πn,j. By independence, for any
real t and i =

√
−1, we have

Eexp

{
it
√

g

(
1
g

g

∑
j=1

πn,j −Φ(x)

)}
=

(
Eeit 1√

g [πn,1−Φ(x)]
)g

. (A12)

through the Taylor’s expansion, we have

Eeit 1√
g [πn,1−Φ(x)]

= pneitg−
1
2 (1−Φ(x)) + (1− pn)e−itg−1/2Φ(x)

= pn(1 + itg−1/2(1−Φ(x)) +
(itg−1/2(1−Φ(x)))2

2!
)

+ (1− pn)(1− itg−1/2Φ(x) +
(−itg−1/2Φ(x))2

2!
)

= 1 + pnitg−1/2(1−Φ(x))− (1− pn)itg−1/2Φ(x)

− pn
2g

[t(1−Φ(x))]2 − 1− pn

2g
[tΦ(x)]2 + o(g−1)

= 1− t2

2g
Φ(x)[1−Φ(x)] + o(g−1). (A13)

where we used the formula |pn −Φ(x)| = O(n−
1
2 ), when n/g→ ∞ and g→ ∞,

|png−1/2(1−Φ(x))− (1− pn)g−1/2Φ(x)| = g−1/2|pn −Φ(x)| = o(g−1). (A14)

so the first conclusion of the Lemma 2 can get by formula (A13).
For the second conclusion, we find that the above calculations still hold if we replace

x with xg−
1
2 and note the fact that

Φ(xg−
1
2 ) =

1
2
+

1√
2π

∫ xg−1/2

0
e−

u2
2 du =

1
2
+

x√
2πg

+ o(g−
1
2 ). (A15)

We can proof the formula (A15) by the virtue of Slutsky’s theorem.

Proof of Theorem 2. (1) This follows immediately by formula (A4) and the continuous
mapping theorem since the Median function is continuous.

(2) We can observe that
√

N

σ̂nS−
1
2

(
θ̂MOM

1 − θ1

)
=
√

g
√

n

σ̂nS−
1
2

(
θ̂MOM

1 − θ1

)
=
√

gMedian{αn,j, j = 1, ..., g}

We first assume g is odd and for any real x, and we have

P
(√

gMedian{αn,j, j = 1, ..., g} ≤ x
)

= P
(

g

∑
j=1

I(αn,j ≤ xg−
1
2 ) ≥ (g + 1)/2

)

= P
(
√

g{ 1
g

g

∑
j=1

πn,j(xg−
1
2 )− 1/2− x√

2πg
} ≥ − x

2
√

π
+ O(g−

1
2 )

)
. (A16)

under the above lemma, it tends to Φ(
√

2
π x).

If g is even, we can know

P
(√

gMedian
{

αn,j, j = 1, ..., g
}
≤ x

)
≥ P

(
g

∑
j=1

I
(

αn,j ≤ xg−
1
2

)
≥ g

2
+ 1

)
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and

P
(√

gMedian{αn,j, j = 1, ..., g} ≤ x
)
≤ P

(
g

∑
j=1

I
(

αn,j ≤ xg−
1
2

)
≥ g

2

)

The right hand sides of the above two inequalities tend to Φ(
√

2
π x) as g→ ∞.

Proof of Theorem 3. Recall that

Tn,j = I(θ̂(j)
q ≤ θq), q = 1, ..., k. (A17)

where j = 1, ..., g, so formula (6) is

f (λ) =
1
g

g

∑
j=1

Tn,j − 0.5
1 + λ(Tn,j − 0.5)

= 0. (A18)

set that Ln,j = λ(Tn,j − 0.5), and we have

λR̃ =
1
g

g

∑
j=1

λ(Tn,j − 0.5)2

1 + Ln,j

=
1
g

g

∑
j=1

Ln,j(Tn,j − 0.5)
1 + Ln,j

. (A19)

Tn,j − 0.5 =
1
g

g

∑
j=1

1 + Ln,j

1 + Ln,j
(Tn,j − 0.5)

=
1
g

g

∑
j=1

(Tn,j − 0.5)− 1
g

g

∑
j=1

Tn,j − 0.5
1 + Ln,j

=
1
g

g

∑
j=1

Ln,j(Tn,j − 0.5)
1 + Ln,j

. (A20)

So
(Tn,j − 0.5) = λR̃. (A21)

where

R̃ =
1
g

g

∑
j=1

(Tn,j − 0.5)2

1 + Ln,j

Tn,j =
1
g

g

∑
j=1

Tn,j

R =
1
g

g

∑
j=1

(Tn,j − 0.5)2 = 0.25. (A22)

Tg = max
1≤j≤g

|Tn,j − 0.5| = 0.5
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Combining the constraint condition ωi > 0, we can get that 1 + Ln,j > 0, and

λR ≤ λR̃(1 + max
1≤j≤g

Ln,j)

≤ λR̃(1 + λTg)

= (Tn,j − 0.5)(1 + λTg)

The last equality follows by formual (A20). So,

λ[R− (Tn,j − 0.5)Tg] ≤ Tn,j − 0.5. (A23)

and according to Lemma 2, Tn,j − 0.5 = Op(g−1/2), we can get

λ[0.25−Op(g−1/2)] = Op(g−1/2)

so

λ = Op(g−1/2). (A24)

In addition, we know

max
1≤j≤g

|Ln,j| = Op(g−1/2). (A25)

Expanding formula (6),

0 =
1
g

g

∑
j=1

Tn,j − 0.5
1 + Ln,j

= (Tn,j − 0.5)− λR +
1
g

g

∑
j=1

(Tn,j − 0.5)L2
n,j

1 + Ln,j

= (Tn,j − 0.5)− 0.25λ +
1
g

g

∑
j=1

(Tn,j − 0.5)L2
n,j

1 + Ln,j
. (A26)

The final term in formula (A26) above has a norm bounded by

1
g

g

∑
j=1
|Tn,j − 0.5|3λ2|1 + Ln,j|−1 = O(1)(Op(g−1/2))2Op(1) = op(g−1/2)

Therefore

λ = R−1(Tn,j − 0.5) + β = 4(Tn,j − 0.5) + β

where β = op(g−1/2).
Through formula (A26) and using Taylor expansion, we can find that

log(1 + Ln,j) = Ln,j −
1
2

L2
n,j + ηj. (A27)

holds for some finite B > 0, 1 ≤ j ≤ g,

P(|ηj| ≤ B|Ln,j|3)→ 1. (A28)

as g→ ∞ and n→ ∞.
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Now, we calculate that

−2logR(θ) = 2
g

∑
j=1

log(1 + Ln,j)

= 2
g

∑
j=1

(Ln,j −
1
2

L2
n,j + ηj)

=
g

∑
j=1

(2(4(Tn,j − 0.5) + β)Tn,j

− (4Tn,j − 2 + β)− (4Tn,j − 2 + β)2T2
n,j

+ (4Tn,j − 2 + β)2Tn,j − 0.25(4Tn,j − 2 + β)2 + 2
g

∑
j=1

ηj

= 4g(Tn,j − 0.5)2 − 1
4

gβ2 + 2
g

∑
j=1

ηj

By Lemma 2, we have

4g(Tn,j − 0.5)2 → χ2
1. (A29)

Noticed that

1
4

gβ2 =
1
4

gop(g−1) = op(1). (A30)

|
g

∑
j=1

ηj| ≤ B|λ|3
g

∑
j=1
|Tn,j − 0.5|3 = Op(g−

3
2 )O(1) = op(1)

This completes the proof.
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