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Abstract: In this paper, we propose a new weak order 2.0 numerical scheme for solving stochastic
differential equations with Markovian switching (SDEwMS). Using the Malliavin stochastic analysis,
we theoretically prove that the new scheme has local weak order 3.0 convergence rate. Combin-
ing the special property of Markov chain, we study the effects from the changes of state space
on the convergence rate of the new scheme. Two numerical experiments are given to verify the
theoretical results.
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1. Introduction

In recent years, stochastic differential equations with Markovian switching (SDEwMS)
has attracted the attention of many scholars. Comparing with stochastic differential equa-
tions with jumps (SDEwJ), SDEwMS are not only applied in finance, but they also have
many applications in other fields, which include control system, biomathematics, chemistry,
and mechanics. Zhou and Mamon [1] proposed an accessible implementation of interest
rate models with Markov-switching. Siu [2] proposed a high-order Markov-switching
model for risk measurement. He, Qi, and Kao [3] studied the HMM-based adaptive
attack-resilient control for Markov jump system and application to an aircraft model. In
this paper, we consider the following q-dimensional stochastic differential equations with
Markovian switching:

dXs = a(s, rs, Xs)ds + b(s, rs, Xs)dWs, 0 ≤ s ≤ T, (1)

where rs ∈ S, the Brownian motion Ws = (W1
s , W2

s , . . . , Wm
s )T

s≥0, is independent of the
Markov chain rt(t ≥ 0), a : [0, T] × S × Rq −→ Rq and b : [0, T] × S × Rq −→ Rq×m.
Qualitative theory of the existence and uniqueness of the solution for SDEwMS has been
studied for the past years (see [4,5]). Many scholars have studied the stability of SDEwMS,
for example, stability of linear or semi-linear type of Equation (1) has been studied by Basak
[6] and Ji [7]. Mao [4] discussed the exponential stability for general nonlinear stochastic
differential equations with Markovian switching. Yang, Yin and Li [8] focused on stability
analysis of numerical solutions to jump diffusion and jump diffusion with Markovian
switching. Ma and Jia [9] considered the stability analysis of linear Itô stochastic differential
equations with countably infinite Markovian switchings.

Generally, most of SDEwMS do not have explicit solutions and hence require nu-
merical solutions. Yuan and Mao [10] firstly developed a Euler–Maruyama scheme for
solving SDEwMS and estimated the errors between the numerical and exact solutions
under Lipschitz conditions. Yuan and Mao [11] proved that the strong rate of convergence
of the Euler–Maruyama scheme is equal to 0.5 under non-Lipschitz conditions. Then, many
scholars extended to the semi-implicit Euler scheme [12–14]. Furthermore, Li [15] and
Chen [16] developed an Euler scheme for solving stochastic differential equations with
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Markovian switching and jumps. For a higher convergence rate, many scholars aimed to
design a numerical Milstein-type scheme. Fan [17] and Nguyen [18] proposed the Milstein
scheme for solving SDEwMS and proved its strong rate of convergence is equal to 1.0.
Based on the work of Author1 [18], Kumar [19] provided many improved conditions to
prove the convergence theorem of Milstein scheme. Lately, Zhao [20] proposed a two-step
Euler scheme for solving highly nonlinear SDEwMS.

Since Markov chain is a special Poisson jump process, the numerical scheme for
solving SDEwJ can be applied to solve SDEwMS. There are some scholars studying in
higher order weak numerical schemes for solving SDEwJ. For example, Buckwar [21]
proposed the implicit order 2.0 Runge–Kutta scheme for solving jump-diffusion differential
equations. Liu and Li [22] studied an effective higher order weak scheme to solve stochastic
differential equations with jumps but involved computing multiple stochastic integral.
Lately, Author1 [23] proposed a new simplified weak order 2.0 scheme for solving stochastic
differential equations with Poisson jumps.

Inspired by high-order numerical methods [21–23] and based on classical weak order
2.0 Taylor scheme [24] for solving stochastic differential equations, we develop a new weak
order 2.0 numerical approximation scheme for solving SDEwMS and rigorously prove
the new scheme has order 2.0 convergence rate by using Malliavin stochastic analysis.
Meanwhile, we simply utilize the Runge–Kutta scheme for solving SDEwMS in order
to make a comparison with the new scheme on the accuracy and convergence rate. In
addition, in view of the special property of Markov chain, we fully investigate the effects
from the state space of Markov chain on the convergence rate of the new scheme.

The important contributions of this paper can now be highlighted as follows:

• We propose a new weak order 2.0 scheme and approximate multiple stochastic integral
by utilizing the compound Poisson process.

• By integration-by-parts formula of Malliavin calculus theory [25], we rigorously prove
that the new scheme has local weak order 3.0 convergence rate. We also prove that
the convergence rate is related to the maximum state difference and upper bounds of
state values.

• We give two numerical experiments to confirm our theoretical convergence results
and the convergence rate effects from Markov chain space.

• In the experiments, we make comparisons with other schemes such as Euler scheme
and Runge–Kutta scheme and verify the new scheme is effective and accurate.

Some notations to be used later are listed as follows:

• | · | is the norm for vector or matrix defined by |A|2 = trace(AT A).
• Ck

p(Rq,R) is the set of k times continuously differentiable functions which, together
with their partial derivatives of order up to k, have at most polynomial growth.

• Fs (t ≤ s ≤ T) is the σ-field generated by the diffusion process {Xs, t ≤ s ≤ T}.
• C is a generic constant depending only on the upper bounds of derivatives of a, b and

g, and C can be different from line to line.

The paper is organized as follows. In Section 2, we introduce some basic concepts. In
Section 3, we propose a new scheme and obtain its local order 3.0 convergence results. In
Section 4, two numerical examples are given to verify the theoretical results.

2. Preliminaries
2.1. Markov Chain

In this paper, let (Ω, F , {Ft}t≥0, P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions. Let xT denote the transpose of a vector or matrix x.
Let {rt, t ≥ 0} be a right-continuous Markov chain on the probability space taking values
in a finite state space S = {1, 2, ..., M} with generator Q = (qij)M×M given by

P(rt+δ = j|rt = i) =

{
qijδ + o(δ), if i 6= j,
1 + qiiδ + o(δ), if i = j,

(2)
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where δ > 0, qij ≥ 0 and, for i 6= j, qii = − ∑
i 6=j

qij. For the above Markov chain,

N(de, dt) is a Poisson random measure with intensity λ(de)dt on E × [0, T], in which
λ is the Lebesgue measure on E , where E = R \ {0} is equipped with its Borel field E.
drt =

∫
E l(rt−, e)N(de, dt) with l(i, e) = j− i f or e ∈ ∆ij and l(i, e) = 0 f or e /∈ ∆ij, where

∆ij are the intervals having length qij satisfying

∆12 = [0, q12), ∆13 = [q12, q12 + q13), ..., ∆1M = [
M−1

∑
j=2

q1j,
M

∑
j=2

q1j),

∆21 = [
M

∑
j=2

q1j,
M

∑
j=2

q1j + q21), ∆23 = [
M

∑
j=2

q1j + q21,
M

∑
j=2

q1j + q21 + q23), ...,

∆2M = [
M

∑
j=2

q1j +
M−1

∑
j=1,
j 6=2

q2j,
M

∑
j=2

q1j +
M

∑
j=1
j 6=2

q2j), ...,

and so on.
In [17], the discrete Markov chain {rnh, n = 0, 1, ...} given a step size h > 0 is simulated

as follows: compute the one-step transition probability matrix

P(h) = (Pi,j(h))M×M = ehQ.

Let r0 = i0 and generate a random number ξ1 which is uniformly distributed in
[0, 1]. Define

rh =


i1, if i1 ∈ S− {M} such that

i1−1
∑

j=1
Pi0,j(h) ≤ ξ1 ≤

i1
∑

j=1
Pi0,j(h),

M, if
M−1
∑

j=1
Pi0,j(h) ≤ ξ1,

(3)

where we set
0
∑

j=1
Pi0,j(h) = 0 as usual. Generate independently a new random number ξ2,

which is again uniformly distributed in [0, 1], and then define

r2h =


i2, if i2 ∈ S− {M} such that

i2−1
∑

j=1
Pr(h),j(h) ≤ ξ1 ≤

i2
∑

j=1
Pr(h),j(h),

M, if
N−1
∑

j=1
Pr(h),j(h) ≤ ξ2.

(4)

2.2. Itô Formula

Given a multi-index α ∈ M = {(j1, j2, . . . , jl) : ji ∈ {−1, 0, 1, . . . , m}, i ∈ {1, . . . , l}, for
l = 1, 2, 3, . . .} with the length l := l(α) ∈ {1, 2, . . .}, we denote the hierarchical set of
multi-indices by Γm =

{
α ∈ M : l(α) = m

}
and B2 =

{
α = (j1, j2) ∈ M : 1 ≤ j1, j2 ≤ m

}
.

We write −α and α− for the multi-index inM by deleting the first and last component of α,
respectively. Denote by Iα[hk,α(·, r·, X·)]ρ,τ the multiple Itô integral recursively defined by

Iα[hk,α(·, r·, X·)]ρ,τ =


∫ τ

ρ Iα−[hk,α(·, r·, X·)]ρ,sds, l ≥ 1, jl = 0,∫ τ
ρ Iα−[hk,α(·, r·, X·)]ρ,sdW jl

s , l ≥ 1, jl ≥ 1,∫ τ
ρ Iα−[hk,α(·, r·, X·)]ρ,sdÑs, l ≥ 1, jl = −1,

(5)



Mathematics 2021, 9, 588 4 of 15

where the Itô coefficient functions hk,α(t, i, x) are defined by

hk,α(t, i, x) =


x, l = 0,
hk,(0) = ak(t, i, x), hk,(j) = bk,j(t, i, x), l = 1,
Ljh−α, l > 1,

for all (t, i, x) ∈ [0, T]× S×Rq and 1 ≤ j ≤ m. For α = (1, 1, 1), we define

I(0,0,0)[hk,α(·, r·, X·)] =
∫ tn+1

tn

∫ s3

tn

∫ s2

tn
hk,α(ts1 , rs1 , Xs1)ds1ds2ds3.

Applied to Equation (1), for x ∈ Rq, ϕ ∈ C2,1(Rq × S;R), we define operators
L0 ϕ, Lj ϕ, L−1 ϕ from Rq × S to R,

L0 ϕ(x, i) =
q

∑
j=1

∂ϕ

∂xj (x, i)aj(t, i, x) +
1
2

m

∑
j=1

q

∑
l,k=1

∂2 ϕ

∂xk∂xl (x, i)bl,j(t, i, x)bk,j(t, i, x) + ∑
j∈S

qij ϕ(x, j),

Lj ϕ(x, i) =
m

∑
k=1

∂ϕ(x, i)
∂xk bk,j(t, i, x), L−1

e ϕ(x, i) = ϕ(x, i + l(i, e))− ϕ(x, i)

(6)

for i ∈ S and 1 ≤ j ≤ m. Then, the Itô formula can be presented as:

ϕ(Xt, rt) = ϕ(X0, r0) +
∫ t

0
L0 ϕ(Xs, rs)ds +

m

∑
j=1

∫ t

0
Lj ϕ(Xs, rs)dW j

s +
∫ t

0

∫
E

L−1
e ϕ(Xs, rs)Ñ(de, ds), (7)

where Ñ(de, ds) = N(de, ds)− λ(de)ds is a compensated Poisson random measure.

Assumption 1. Assume that there exist two positive constants L and K such that

• (Lipschitz condition) for all x, y ∈ Rq, t ∈ [0, T] and i ∈ S

|a(t, i, x)− a(t, i, y)|2 ∨ |b(t, i, x)− b(t, i, y)|2 ≤ L|x− y|2. (8)

• (Linear growth condition) for all (t, i, x) ∈ [0, T]× S×Rq

|a(t, i, x)|2 ∨ |b(t, i, x)|2 ≤ K(1 + |x|2). (9)

2.3. Malliavin Calculus

Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H .
The norm of an element h ∈ H is denoted by ‖h‖H . Let B = {W(h), h ∈ H} denote an
isonormal Gaussian process associated with the Hilbert space H on (Ω, F , {Ft}t≥0, P).

We call a row vector α = (j1, j2, ...jl) with ji ∈ {−1, 0, 1, ..., m} for i ∈ {1, 2, ..., l} a
multi-index of length l : l(α) ∈ {1, 2, ..., m} and denote by v the multi-index of length zero
(l(v) := 0). LetM be the set of all multi-indices, i.e.,

M = {(j1, j2, ..., jl) : ji ∈ {−1, 0, 1, ..., m}, i ∈ {0, 1, ..., l} f or l = 1, 2, ...} ∪ {v}.

Assume Γl =
{

α|α = (j1, j2, ..., jl), ji ∈ {−1, 0, 1, 2, ..., m}
}

. We have the following
definition

Dα
s1...sl

= D(j1,...,jl)
s1...sl = Dj1

sl · · · D
jt
sl ,

where

Dji
si =


D−1

si
ji < 0,

Dji
si ji > 0,

1, ji = 0.

(10)



Mathematics 2021, 9, 588 5 of 15

A random variable F is Malliavin differentiable if and only if F ∈ D1,2, where the
space D1,2 ⊂ L2(P) is defined by completion with respect to the norm ‖ · ‖1,2. The details
about the Malliavin derivative of Poisson process can be found in [25]. For any integer
p ≥ 1, Dk,p is the domain of Dk(k ∈ N) in Lp(Ω), i.e., Dk,p is the closure of the class of
smooth random variables F with respect to the norm

||F||pk,p = E[|F|p] +
k

∑
j=1

∑
|α|=l

∫ T

0
...
∫ T

0
E[|Dα

s1...sl
F|p]ds1...dsl .

Lemma 1 (Product rule). Let F, G ∈ D1,2, then FG ∈ D1,2, and we have

D−1
t (FG) = FD−1

t G + GD−1
t F + D−1

t FD−1
t G,

D1
t (FG) = FD1

t G + GD1
t F.

Lemma 2 (Chain rule and Duality formula). Let F ∈ D1,2 and u(t) ∈ D1,2, 0 ≤ t ≤ T and let
ϕ be a real continuous function on R. Then,

D1
t ϕ(F) =

q

∑
i=1

∂ϕ

∂xi
(F)D1

t Fi, D−1
t ϕ(F) = ϕ(F + D−1

t F)− ϕ(F),

E
[
F
∫ T

0
u(t)dWt

]
= E

[ ∫ T

0
u(t)D1

t Fdt
]
, E

[
F
∫ T

0

∫
E

u(t−)Ñ(de, dt)
]
= E

[ ∫ T

0

∫
E

u(t−)D−1
t F λ(de)dt

]
.

3. Main Results

First, we give the equi-step time division; assume ∆t = T/N, tn = n∆t for n = 0, 1, 2, . . . , N.
For simple representation, we assume Xn,i

k,tn+1
= Xtn ,i,Xn

k,tn+1
, which is the kth component of ex-

plicit solution Xtn ,i,Xn

tn+1
. Assume ∆B−1

n = Ñtn+1 − Ñtn , ∆B0
n = tn+1 − tn, ∆B1

n = Wtn+1 −Wtn ,

Jα[hk,α(·, r·, Xn,i
· )]tn ,tn+1 =

∫ tn+1

tn

∫ tn+1

tn
hk,α(s1, rs1 , Xn,i

s1
)dBj1

s1 dBj2
s2 ,

where multi-index α = (j1, j2) ∈ Γ2. Then, it follows from the Itô–Taylor formula and
trapezoidal rule that

Xn,i
k,tn+1

= Xn
k +

∫ tn+1

tn
ak(s, rs, Xn,i

s )ds +
∫ tn+1

tn
bk(s, rs, Xn,i

s ) dWs = Xn+1,i
k + Rn+1,i

k (11)

with the truncation error

Rn+1,i
k = ∑

α∈A2

(
Iα

[
hk,α(tn, i, Xn)

]
tn ,tn+1

− 1
2

Jα[hk,α(tn, i, Xn)]tn ,tn+1

)
+ ∑

α∈A3

Iα

[
hk,α(·, r·, Xn,i

· )
]

tn ,tn+1
, (12)

where Al = {α|α = (j1, j2, ..., jl), ji ∈ {−1, 0, 1}, jl 6= −1}. Then, we propose the following
weak order 2.0 numerical scheme for solving SDEsMS.

Scheme 1. Assume the initial condition X0, r0, applied to Equation (1). For 0 ≤ n ≤ N − 1,
we have

Xn+1,i
k = Xn

k + ai
k∆t + bi

k∆Wn +
1
2

L0ai
k(∆t)2 +

1
2
(

L1ai
k + L0bi

k
)
∆t∆Wn

+
1
2

∆t
∫ tn+1

tn

∫
E

L−1
e ai

k Ñ(de, dt) +
1
2

L1bi
k((∆Wn)

2 − ∆t)

+
∫ tn+1

tn

∫ t

tn
L−1

e bi
kdNsdWt −

1
2 ∑

j∈S
(bk(tn, j, Xn)− bk(tn, i, Xn))qij∆t∆Wn,

(13)
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where i = rtn , ∆t = tn+1 − tn, ∆Wn = Wtn+1 −Wtn , L−1
e ai

k = ak(tn, i + l(i, e), Xn) −
ak(tn, i, Xn), L−1

e bi
k = bk(tn, i + l(i, e), Xn) − bk(tn, i, Xn) with l(i, e) = j − i f or e ∈ ∆ij

and l(i, e) = 0 f or e /∈ ∆ij.

Remark 1. For the multiple stochastic integral in Scheme 1, we simulate
∫ tn+1

tn

∫
E L−1

e ai
k Ñ(de, dt)

and
∫ tn+1

tn

∫ t
tn

∫
E L−1

e bi
k N(de, ds)dWt. by the following steps.

Step 1. Mark a discrete Markov chain i ∈ S from the definition of Markov process.
Step 2. Generate ∆Nn and τm, where ∆Nn is the number of jumps and τm is the switching time.
Step 3. If ξm ∈ ∆ij, l(i, ξm) = j− i, else let l(i, ξm) = 0.
Step 4. Solve those multiple stochastic integrals by the following equations.

∫ tn+1

tn

∫
E

L−1
e ai

k Ñ(de, dt) =
∆Nn

∑
m=1

(
ak(τm, i + l(i, ξm), Xn)− ak(tn, i, Xn)

)
−∑

j∈S
(ak(tn, j, Xn)− ak(tn, i, Xn))qij∆t

and

∫ tn+1

tn

∫ t

tn

∫
E

L−1
e bi

k N(de, ds)dWt =
∆Nn

∑
m=1

(
bk(τm, i + l(i, ξm), Xn)− bk(tn, i, Xn)

)
(Wtn+1 −Wτm).

Convergence Theorem

In this section, we prove our new weak order 2.0 scheme in the condition of local
weak convergence. We should firstly define weak convergence before proving the theorem.

Definition 1. (Weak convergence) Let β ∈ {1, 2, ...}, assume ∆t = T/N, tn = n∆t for n =
0, 1, 2, . . . , N, and suppose that the drift and diffusion functions a and b belong to the space
C2(β+1)

p (Rq,R) and satisfy Lipschitz conditions and linear growth bounds. For each smooth

function g ∈ C2(β+1)
p (Rq,R), there exists positive constant C such that

|E
[
g(XT)− g(XN)]| ≤ C

(
1 +E

[
|X0|d

])
(∆t)β

with d ∈ N+, that is XN converges weakly with order β to XT as ∆t→ 0.

Theorem 1. (Local weak convergence) Suppose Xn,i
tn+1

and Xn+1,i (1 ≤ n ≤ N) satisfy Equations

(11) and (17), respectively. If Assumption 1 holds and Xn,i
tn+1

, Xn+1,i ∈ D2,4, g ∈ C4
p(Rq,R) is a

smooth function, we have

max
i∈S

∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn|d)(∆t)3,

where C is a generic constant depending only on K, the maximum state difference max
i,j∈S
|j− i|, and

upper bounds of derivatives of functions a, b and d.

Proof. For ease of proof, using multi-dimensional Taylor formula, we have

Jn,i = E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
= Jn,i

1 + Jn,i
2 ,

where

Jn,i
1 =

q

∑
k=1

E
[ ∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
, (14)
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Jn,i
2 =

1
2

∫ 1

0
E
[( q

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g(Xn+1,i + µ(Xn,i
tn+1
− Xn+1,i))|Ftn

]
dµ. (15)

Assume Xn,i
k,tn+1

is the kth component of explicit solution Xn,i
tn+1

. To simplify the notions,

we assume rtn = i, ai
k = ak(tn, i, Xn), bi

k = bk(tn, i, Xn), hn,i
k,α = hk,α(tn, i, Xn). By Itô–Taylor

expansion, we can get the explicit solution

Xn,i
k,tn+1

= Xn
k + ai

k∆t + bi
k∆Wn +

1
2

L0ai
k(∆t)2 + L1ai

k

∫ tn+1

tn

∫ t

tn
dWsdt

+
∫ tn+1

tn

∫ t

tn
L−1

e ai
kdÑsdt + L0bi

k

∫ tn+1

tn

∫ t

tn
dsdWt + L1bi

k

∫ tn+1

tn

∫ t

tn
dWsdWt

+
∫ tn+1

tn

∫ t

tn
L−1

e bi
kdÑsdWt + ∑

α∈A3

Iα

[
hk,α(·, r·, Xn,i

· )
]

tn ,tn+1
,

(16)

and we have the numerical solution Xn+1,i
k

Xn+1,i
k = Xn

k + ai
k∆t + bi

k∆Wn +
1
2

L0ai
k(∆t)2 +

1
2

∆Wn∆t
(

L1ai
k + L0bi

k −
∫
E

L−1
e bi

kλ(de)
)

+
1
2

∆t
∫ tn+1

tn

∫
E

L−1
e ai

k Ñ(de, dt) +
1
2

L1bi
k
(
(∆Wn)

2 − ∆t
)
+
∫ tn+1

tn

∫ t

tn
L−1

e bi
kdNsdWt,

(17)

where
∫
E L−1

e bi
kλ(de) = ∑

j∈S
(bk(tn, j, Xn)− bk(tn, i, Xn))qij. Note that the fact

∫ tn+1
tn

∫ t
tn

dsdt =

1
2 (∆t)2,

∫ tn+1
tn

∫ t
tn

dWsdWt =
1
2
(
(∆Wn)2 − ∆t

)
, and

∫ tn+1

tn

∫ t

tn
L−1

e bi
kdÑsdWt −

∫ tn+1

tn

∫ t

tn
L−1

e bi
kdNsdWt

= −
∫ tn+1

tn

∫ t

tn

∫
E

L−1
e bi

kλ(de)dsdWt = −
∫
E

L−1
e bi

kλ(de)
∫ tn+1

tn

∫ t

tn
dsdWt,

subtracting (17) from (16), we deduce

Xn,i
k,tn+1

− Xn+1,i
k

=
(

L0bi
k − L1ai

k −
∫
E

L−1
e bi

kλ(de)
)( ∫ tn+1

tn

∫ t

tn
dsdWt −

1
2

∆t∆Wn
)

+
( ∫ tn+1

tn

∫ t

tn
L−1

e ai
kdÑsdt− 1

2
∆t
∫ tn+1

tn

∫
E

L−1
e ai

k Ñ(de, dt)
)
+ ∑

α∈A3

Iα

[
hk,α(·, i·, Xn,i

· )
]

tn ,tn+1
.

(18)

Using the duality formula and Equation (18), we have

Jn,i
1 =

q

∑
k=1

E
[ ∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
= Jn,i

11 + Jn,i
12 + Jn,i

13 , (19)

where

Jn,i
11 =

q

∑
k=1

(
L0bi

k − L1ai
k −

∫
E

L−1
e bi

kλ(de)
)
E
[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
dsdWt −

1
2

∆t∆Wn
)
|Ftn

]
, (20)

Jn,i
12 =

q

∑
k=1

E
[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
L−1

e ai
kdÑsdt− 1

2
∆t
∫ tn+1

tn

∫
E

L−1
e ai

k Ñ(de, dt)
)
|Ftn

]
, (21)

Jn,i
13 =

q

∑
k=1

∑
α∈A3

E
[ ∂

∂xk
g(Xn+1,i)Iα

[
hk,α(·, r·, Xn,i

· )
]

tn ,tn+1
|Ftn

]
. (22)
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By taking Malliavin derivative with respect to Xn+1,i
k , we obtain

D1
t Xn+1,i

k = bi
k +

1
2

∆t
(

L1ai
k + L0bi

k −
∫
E

L−1
e bi

kλ(de)
)
+ L1bi

k∆Wn +
∫ t

tn

∫
E

L−1
e bi

k N(de, dt) (23)

for tn < t ≤ tn+1, which by combining chain rule yields

D1
t (

∂

∂xk
g(Xn+1,i)) =

q

∑
j=1

∂2

∂xk∂xj
g(Xn+1,i)D1

t Xn+1,i
j = Φ1(tn, Xn, i, ∆t, ∆Wn, ∆Ñn) (24)

for tn < t ≤ tn+1, where Φ1(tn, Xn, i, ∆t, ∆Wn, ∆Ñn) is a function not depending only on
time t.

Since
∫ tn+1

tn

∫ t
tn

dsdt− 1
2

∫ tn+1
tn

∫ tn+1
tn

dsdt = 0, we have

E
[
(
∫ tn+1

tn

∫ t

tn
D1

t
( ∂g

∂xk
(Xn+1,i)

)
dsdt− 1

2

∫ tn+1

tn

∫ tn+1

tn
D1

t
( ∂g

∂xk
(Xn+1,i)

)
dsdt)|Ftn

]
= E

[
Φ1(tn, Xn, i, ∆t, ∆Wn, ∆Ñn)|Ftn

]
(
∫ tn+1

tn

∫ t

tn
dsdt− 1

2

∫ tn+1

tn

∫ tn+1

tn
dsdt) = 0,

(25)

which gives Jn,i
11 = 0. Taking Malliavin calculus, we have a similar fact

D−1
t Xn+1,i

k =
1
2

∆t
∫
E

L−1
e ai

kλ(de) +
1
2

L−1
e bi

k∆Wn + L−1
e bi

k(Wtn+1 −Wt) (26)

for tn < t ≤ tn+1. Similarly, for tn < t ≤ tn+1, by chain rule we can obtain that∣∣∣E[D−1
t

∂2

∂xk∂xm
g(Xn+1,i)

∣∣∣Ftn

]∣∣∣
=
∣∣∣E[ ∂2

∂xk∂xm
g(Xn+1,i + D−1

t Xn+1,i)− ∂2

∂xk∂xm
g(Xn+1,i)

∣∣∣Ftn

]∣∣∣
=
∣∣∣E[Φ2(tn, Xn, i, ∆t, ∆Wn, Wtn+1 −Wt, ∆Ñn)

]∣∣∣ ≤ C(1 + |Xn|d)∆t,

(27)

Then, by Lemma 2 and Inequality (27), we have

|Jn,i
12 | =

∣∣∣ q

∑
k=1

E
[( ∫ tn+1

tn

∫ t

tn

∫
E

hn,i
k,αD−1

t
( ∂g

∂xk
(Xn+1,i)

)
λ(de)dsdt

− 1
2

∫ tn+1

tn

∫ tn+1

tn

∫
E

hn,i
k,αD−1

t
( ∂g

∂xk
(Xn+1,i)

)
λ(de)dsdt

)∣∣∣Ftn

]∣∣∣
≤ C(1 + |Xn|d)(∆t)3.

(28)

Using Lemma 2 (chain rule and duality formula), we have

∣∣∣Jn,i
13 | = |

q

∑
k=1

∑
α∈A3

E
[ ∂

∂xk
g(Xn+1,i)Iα

[
hk,α(·, r·, Xn,i

· )
]

tn ,tn+1
|Ftn

]∣∣∣
=
∣∣∣ q

∑
k=1

∑
α∈A3

I(0,0,0)

[
E
[
Dα

s1s2s3

( ∂

∂xk
g(Xn+1,i)

)
hk,α(·, r·, Xn,i

· )|Ftn

]]
tn ,tn+1

∣∣∣
≤ C(1 + |Xn|d)(∆t)3.

(29)
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Combining Equation (19), Jn,i
11 = 0, and Inequalities (28) and (29), we obtain that

|Jn,i
1 | = |

q

∑
k=1

E
[ ∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
≤

3

∑
j=1
|Jn,i

1j | ≤ C′(1 + |Xn|d)(∆t)3, (30)

where C′ is a constant depending on K, the maximum state difference max
i,j∈S
|j − i|, and

upper bounds of derivatives of functions a, b. For α = (1, 1, 1), applying the Itô isometry
formula, we have

E
[( ∫ tn+1

tn

∫ s3

tn

∫ s2

tn
hk,α(s1, rs1 , Xn,i

s1
)dWs1 dWs2 dWs3

)2∣∣Ftn

]
= E

[ ∫ tn+1

tn

∫ s3

tn

∫ s2

tn

(
hk,α(s1, rs1 , Xn,i

s1
)
)2ds1ds2ds3

∣∣Ftn

]
= I(0,0,0)E

[
(hk,α(·, r·, Xn,i

· ))2|Ftn

]
.

(31)

For α 6= (1, 1, 1), we similarly obtain

∑
α∈A3

α 6=(1,1,1)

E
[(

Iα

[
hk,α(s1, rs1 , Xn,i

s1
)
])2
∣∣∣Ftn

]
≤ C(1 + |Xn|d)(∆t)3.

(32)

Combining Inequalities (31) and (32), we have

Jn,i
2 =

1
2

∫ 1

0
E
[( q

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + µ(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
dµ ≤ C(1 + |Xn|d)(∆t)3. (33)

From Inequalities (30) and (33), we finally obtain

max
i∈S

∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn|d)(∆t)3.

The proof is completed.

Remark 2. If Assumption 1 holds, under the conditions Xn,i
tn+1

, Xn+1,i ∈ D2,4 and g ∈ C4
p(Rq,R)

we can obtain order 3.0 local weak convergence rate of Scheme 1. However, under a weaker regularity
condition on the coefficients of a, b, we can only obtain lower order of local weak convergence of
Scheme 1. For example, if Xn,i

tn+1
, Xn+1,i ∈ D1,2 and g ∈ C2

p(Rq,R), in Theorem 1, we can deduce

max
i∈S

∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn|d)(∆t)2.

4. Numerical Experiments

In this section, before studying numerical examples, we simply simulate the generation
of Markov chains and Brownian motions. Let the state space Markov chain rt be in
S = {1, 2, 3} with a transition probability matrix as

P =

0.4 0.4 0.2
0.3 0.1 0.6
0.1 0.5 0.4


3×3

and, from (3) and (4), we have the following emulational pictures in Figure 1.
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Figure 1. (Left) Setting the number of steps equal 64, we have a three states Markov chain stair figure. (Right) Setting the
number of steps equal 300, we have a Brownian motion figure.

In our numerical experiments, we consider two one-dimensional SDEwMS. We choose
the sample number Nsp = 5000, where Nsp is the number of sample paths. The errors of
global weak convergence can be measured by:

eglobal
∆t := | 1

Nsp

Nsp

∑
i=1

(ϕ(XN
i )− ϕ(Xi,tN ))|,

and the average errors of local weak convergence can be measured by:

elocal
∆t := | 1

Nsp

1
N

Nsp

∑
i=1

N

∑
j=1

(ϕ(X j
i )− ϕ(Xi,tj))|,

where N = 1/∆t, ∆t are 2−3, 2−4, 2−5, 2−6, 2−7. We let ϕ(X j
i ) = sin(X j

i ). Assume X j
i and

Xi,tj are the numerical solution and explicit solutions at the time tj, respectively, where
j ∈ {1, 2, ..., N}.

Example 1. We consider the Ornstein–Uhlenbeck (O-U) process for SDEwMS:{
dXt = −Xt f (rt)dt + g(rt)dWt,
X0 = 1.5, r0 = 1,

(34)

where Wt is a one-dimensional Brownian motion. The Markov chain rt is in S = {1, 2, 3}
and Wt and rt are assumed to be independent. The group coefficients f and g are given by

f (1) = 1.9, g(1) = 0.04, f (2) = 1.8, g(2) = −0.03, f (3) = 1.7, g(3) = 0.02.

It is well known that Equation (34) has the explicit solution

Xt = X0e
∫ t

0 − f (rs)ds +
∫ t

0
e− f (rs)(t−s)g(rs)dWs.
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In Table 1, we set the time t ∈ [0, 1], where the terminal time is T = 1. CR stands for
the convergence rate with respect to time step ∆t. We compute global errors and average
local errors (Avg.local errors) of the new scheme. We can get that global convergence rate
(Glo.CR) and average local convergence rate (Avg.local CR) have the order 2.0 and order
3.0, respectively. For more intuitive display, we show the numerical results of the local
and global errors in Figure 2 (left). In Table 2, we simply utilize the Euler scheme and
Runge–Kutta scheme to make a comparative experiment with the new scheme. It is easily
to know that the new scheme has the most precision, but it also takes longer CPU time
than Runge–Kutta scheme. For more intuitive display, the CPU Time and result of errors
of all schemes are shown in Figure 2 (right). In addition, Figure 3 shows the mean-square
stability of the new scheme with three kinds of time steps.

Table 1. Errors and convergence rate of Scheme 1 with the parameters of f (1) = 1.9, g(1) = 0.04,
f (2) = 1.8, g(2) = −0.03, f (3) = 1.7, g(3) = 0.02 in Example 1.

N Global Errors CR Avg.local Errors CR

8 5.069 × 10−3 1.895 × 10−3

16 1.288 × 10−3 1.9768 2.455 × 10−4 2.9484
32 2.891 × 10−4 2.0659 2.979 × 10−5 2.9955
64 6.942 × 10−5 2.0726 4.207 × 10−6 2.9487
128 1.789 × 10−5 2.0491 6.006 × 10−7 2.9113

Table 2. Errors and convergence rates of all schemes with the parameters of X0 = 5, f (1) = 1.65, g(1) = 0.05, f (2) = 1.8,
g(2) = 0.02.

N 8 16 32 64 128 CR CPU Time(s)

Euler Scheme 1.128 × 10−1 5.250 × 10−2 2.534 × 10−2 1.249 × 10−2 6.201 × 10−3 1.0174 1.078436
New Scheme 7.221 × 10−3 1.656 × 10−3 4.207 × 10−4 1.022 × 10−4 2.471 × 10−5 2.0428 1.525335
Runge–Kutta

Scheme 7.789 × 10−3 1.858 × 10−3 4.503 × 10−4 1.186 × 10−4 2.799 × 10−5 2.0241 1.011832

Figure 2. (Left) The global error and Avg.local error of Scheme 1 for Example 1. (Right) The correlations for global errors
and CPU Time of all schemes.
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Figure 3. Mean−square stability of three kinds of time steps of global errors with New Scheme.

Example 2. We consider the following geometrical model for SDEwMS:{
dXt = Xt f (rt)dt + Xtg(rt)dWt,
X0 = 0.1, r0 = 1,

(35)

where Wt is a one-dimensional Brownian motion. The Markov chain rt is in S = {1, 2}
and Wt and rt are assumed to be independent. The coefficients f and g are given by
f (1) = 1.72, g(1) = 0.35, f (2) = 1.6, g(2) = 0.2. It is well known that Equation (35) has the
explicit solution

Xt = X0 exp(
∫ t

0
[ f (rs)−

1
2

g2(rs)]ds +
∫ t

0
g(rs)dWs).

In Table 3, we find that Example 2 can also obtain that Glo.CR and Avg.local CR
have the order 2.0 and order 3.0 of the new scheme. In Figure 4 (left), we clearly show
that the global errors are different between a single state and switching states. In Table 4,
for all three schemes, we fix a rational upper bounds of state values and find that the
convergence rate of the new scheme will tend to order 1.0 when all state values become
bigger. Meanwhile, the convergence rates of Milstein scheme and Euler scheme stay stable
at order 1.0. In Table 5, for all three schemes, we fix the state difference and find that
the convergence rate of the new scheme decline rapidly when all state values become
bigger. The convergence rate of the new scheme is even negative when the state values are
extremely big. Meanwhile, the convergence rates of Milstein scheme and Euler scheme are
very low when the state values are extremely big. For more intuitive display, Figure 4 (right)
shows the change process of convergence rate with the change times of state values (CTSV).
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Table 3. Errors and convergence rate of Scheme 1 with the parameters of X0 = 0.1, f (1) = 1.72,
g(1) = 0.35, f (2) = 1.6, g(2) = 0.2 in Example 2.

N Global Errors CR Avg. Local Errors CR

8 4.688×10−3 2.153×10−4

16 1.173×10−3 1.9981 2.600×10−5 3.0496
32 3.006×10−4 1.9813 3.314×10−6 3.0108
64 7.413×10−5 1.9913 3.904×10−7 3.0293
128 1.811×10−5 2.0016 5.099×10−8 3.0145

Table 4. Multiple groups of state values and convergence rates of three schemes with X0 = 0.25.

[ f (1), f (2)] [3, 2.8] [3, 2.4] [3, 1.8] [3, 1] [3, 0.1] [3, 0.02] [3, 0.01]
[g(1), g(2)] [0.35, 0.3] [0.35, 0.25] [0.35, 0.2] [0.35, 0.15] [0.35, 0.1] [0.35, 0.05] [0.35, 0.01]

New Scheme CR1 1.9545 1.8527 1.6883 1.3866 1.0283 1.0126 0.9912

Milstein Scheme CR1 0.9052 0.9125 0.9456 1.0253 1.0523 0.9726 1.0626

Euler Scheme CR1 0.9125 0.9254 0.9522 1.0565 1.0583 0.9626 1.0596

Table 5. Multiple groups of state values and convergence rates of three schemes with X0 = 0.25.

[ f (1), f (2)] [2, 1.5] [3.5, 3] [5.5, 5] [8, 7.5] [12.5, 12] [15, 14.5] [17.5, 17]
[g(1), g(2)] [0.3, 0.2] [0.4, 0.3] [0.6, 0.5] [1, 0.9] [1.8, 1.7] [2.8, 2.7] [3.5, 3.4]

New Scheme CR2 1.9265 1.8109 1.2638 0.4379 −0.1687 −0.0187 0.0149

Milstein Scheme CR2 0.9771 0.8952 0.7312 0.6779 0.3401 0.1749 0.1549

Euler Scheme CR2 0.9644 0.9012 0.7251 0.6879 0.3182 0.1736 0.1675

Figure 4. (Left) The convergence rates of different states. (Right) The variations in two methods of state values and the
variations in the convergence rates of three schemes.

5. Conclusions

In this paper, we propose a new weak order 2.0 scheme for solving SDEwMS. By
using trapezoidal rule and the integration-by-parts formula, we theoretically prove the new
scheme has order 3.0 convergence under local weak condition. Two numerical experiments
are given to confirm theoretical results. In addition, the first numerical experiment is also
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given to compare the New Scheme with other schemes, such as Euler scheme and Runge–
Kutta scheme on convergence rate and accuracy, and the second numerical experiment is
also given to explain that the change of Markov chain has some effects on convergence
rate of all schemes. According to above experiments, we can obtain that the new scheme
has the most precision of all schemes but costs longer time. Moreover, we also find that
the maximum state difference and the upper bounds of state values have some effects on
all schemes.
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