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Abstract: The analysis of population-wide datasets can provide insight on the health status of large
populations so that public health officials can make data-driven decisions. The analysis of such
datasets often requires highly parameterized models with different types of fixed and random
effects to account for risk factors, spatial and temporal variations, multilevel effects and other
sources on uncertainty. To illustrate the potential of Bayesian hierarchical models, a dataset of
about 500,000 inhabitants released by the Polish National Health Fund containing information about
ischemic stroke incidence for a 2-year period is analyzed using different types of models. Spatial
logistic regression and survival models are considered for analyzing the individual probabilities of
stroke and the times to the occurrence of an ischemic stroke event. Demographic and socioeconomic
variables as well as drug prescription information are available at an individual level. Spatial
variation is considered by means of region-level random effects.

Keywords: bayesian inference; disease mapping; integrated nested Laplace approximation; spatial
models; survival models

1. Introduction

Population and Public Health officials often require the addressing of complex issues
in important health problems with high levels of uncertainty that can affect millions of
people. Providing scientific evidence to help decision-making processes in that area is a
key issue and statistical analysis becomes an essential tool.

Data on large populations are often difficult to obtain due to confidentiality issues
and the technical difficulties and financial resources involved in their design, maintenance
and updating as well as its day-to-day management. The existence and availability of
population databases for scientific exploitation is a treasure. Having a strong knowledge
of the population makes it possible to accurately estimate the parameters of interest in
the study, to identify potential risk factors, to detect patterns, outcomes or groups of
individuals with special characteristics, and minimize the uncertainty associated with the
prediction process. These studies are of great help to Public Health as far as they contribute
to the development of efficient and effective strategies and policies aimed at improving the
health of the target population.

This paper deals with population health from a statistical point of view, and concen-
trates on the prevalence of stroke in Poland. In particular, we aim to identify different
patterns that may increase the probabilities of suffering from a stroke. Stroke is one of the
most serious diseases that can affect a person. It is the second most common cause of death
globally, responsible for approximately 11% of the world’s total deaths [1]. Stroke often
leads to permanent disability, which means partial or complete dependence on others and,
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consequently, to social withdrawal. It causes huge social costs related not only to the costs
of hospital treatment, but most of all to long-term care and rehabilitation expenses as well
as the inability to work with the necessity to pay a disability pension [2]. Therefore, to
improve prevention, various factors that may be associated with the occurrence of a stroke
must be analyzed, which is what we do in this paper.

Prevention strategies primarily focus on eliminating or reducing the impact of modi-
fiable risk factors and educating the entire society, in particular those predisposed to the
disease. It is recommended to lead a healthy lifestyle based on a regular physical activity, a
balanced diet, and to stop smoking and drinking alcohol. Moreover, such actions also have
a positive effect on the prevention of diseases such as diabetes and cancer [3]. Unfortunately,
the risk of recurrent stroke increases every year, and it is estimated at over 11% at one year
and at around 39% at 10 years after initial stroke [4]. Therefore, secondary prevention,
including pharmacotherapy and rehabilitation, especially at long-term, is very important.

In Poland, knowledge about stroke is still insufficient, but there are educational ac-
tivities and social campaigns that will hopefully be effective in the future [5]. In 2019, the
Polish National Health Fund released an anonymized dataset about 500,000 inhabitants
that included information about ischemic stroke and other important covariates such as
gender, age, administrative region and drug prescriptions. For almost every patient, the
administrative code of the area of registration is available. Regional variation is based on a
second-level local administrative unit known as powiat, which is often referred to as ’county’,
and it is a part of a larger unit-voivodeship. Data from this paper come from that study and
they were made available for the Digital Health Hackathon-Forum eHealth in 2019 [6].

Spatial logistic regression is an appropriate statistical procedure for estimating the
probability of suffering from a stroke regarding demographic and socioeconomic character-
istics of the individuals as well as their pharmacological treatment administered [7]. This
model also includes spatial random effects that account for the regional (powiat) variation
of the incidence of stroke. As in our case, when the database includes not only whether
or not each individual has had a stroke, but also the exact date of the event for those who
have had experienced it, the problem can be recast as a time-to-event analysis for which
survival models can be used [8]. Similarly, spatial frailties can subsequently be employed
to account for regional variations.

In addition to comparing these two approaches, the main contribution of this paper is
twofold. First, a survival model with spatial frailties based on the spatial model proposed
by Leroux et al. [9] is used; this has seldom been employed within the context of survival
spatial models [10,11]. Second, models are defined following a multilevel structure (that
combines individual and area level information) and they are fitted to a very large popu-
lation dataset. We believe that other commonly used approaches for Bayesian inference
based on MCMC would struggle to deal with such a large dataset. Statistical softwares
such as Stan, WinBUGS or JAGS could probably be used to fit these models but model may
take longer to define (as the models need to be explicitly defined) and computing time is
likely to be very large due to the large dataset.

Bayesian statistics provides a suitable inference on the different unknown elements of
the model and their uncertainty. Given the dimension of the dataset, typical computational
methods for model fitting based on Markov chain Monte Carlo (MCMC) procedures [12]
may not be adequate. For this reason, the integrated nested Laplace approximation
(INLA) [13] will be used to estimate the marginal posterior distribution of the model
parameters and other quantities of interest.

This paper is organized as follows. Section 2 introduces the statistical models used
in this paper. Logistic and survival regression are presented in Sections 2.1 and 2.2,
respectively, and a short introduction to the integrated nested Laplace approximation
(INLA) is included in Section 2.3 within the framework of Bayesian inference. Section 3
is devoted to the study on the stroke and associated risk factors in Poland, where the
Polish stroke dataset is explored. Finally, Section 4 includes a summary of the results and a
final discussion.
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2. Statistical Models

Regression and survival methods are usually relevant procedures in population stud-
ies concerning diseases and associated risk factors. In these cases, the outcomes of interest
tend to focus on the study of the prevalence of the disease in a given time period and the
length of time until its occurrence. The estimation of the probability associated with the
disease in terms of a set of explanatory covariates and random effects is often modeled
using mixed logistic regression models [14]. Reference [15] describes the logistic regression
in the context of spatial modeling for a large dataset and provides a summary of other
relevant papers. Survival models are statistical models especially designed to learn about
time-to-event outcomes and their relationships regarding relevant risk factors [8]. They
also include as a particular issue the assessment of prevalence probabilities by means of
particular cases of the survival function. Both approaches and how they are related to
each other are described below in a first sub-section devoted to logistic regression and
a second one for survival models. This section concludes with an introduction to the
integrated nested Laplace approximation (INLA) [13] within the framework of Bayesian
inferential methods.

2.1. Logistic Regression

Binomial regression connects probabilities associated with Bernoulli trials with co-
variates. The outcome of interest is an observable binary response which describes the
presence (value 1) or absence (value zero) of a certain individual feature of the population
under study. In the case of individual i it is defined as follows

Oi ∼ Ber(pi),

being pi the probability of success in the subsequent Bernoulli trial. Probabilities and
covariates are not usually in the same scale. For this reason, a link function g is defined to
accommodate the probabilities and the linear predictor ηi in the same scale as follows

g(pi) = ηi = β0 + β1xi1 + . . . + βqxiq, (1)

where pi is again the probability of success, β = (β0, β1, . . . , βq)′ is the regression coefficient
vector associated with covariates xi = (xi0 = 1, xi1, . . . , xiq)

′. The most common link func-
tions when dealing with binary variables are the logit and the probit functions. The logit
function is the canonical link function for the Bernoulli distribution in generalized linear
models and a binomial regression endowed with the logit link function is called logistic
regression. It offers an intuitive interpretation of the relationship between the probability
of interest and the linear predictor in terms of odds in logarithmic scale as follows

ηi = logit(pi) = log
( pi

1− pi

)
.

Random effects allow to assess variability associated to the outcome of interest that
is not accounted by the covariates. The random effects can be modeled in different ways.
In our case, we will only include the presence of groups of individuals (people in the
same powiat) in the model as an explanatory element of this variability. We will work
with two different modelling approaches. The simplest one considers random effects as
conditionally independent and identically distributed random variables with Gaussian
distribution of zero mean and precision (i.e., the reciprocal of the variance) τ. This assumes
that given τ there is no prior correlation among the different groups and that differences
among them are only due to intrinsic factors. Note that conditional independence is a
characteristic feature of Bayesian inference that assigns probability distributions to all
elements of uncertainty in the model, such as the hyperparameters associated with the
distributions of the random effects.
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The inclusion of those groups in the regression model forces its reformulation with the
addition of a new index to indicate the random effect associated with group j, j = 1, . . . , J,
as follows:

Oij ∼ Ber(pij),

logit(pij) = ηij = x′ijβ + γj, (2)

where γj | τ ∼ N(0, τ). It is worth noting that the model can include covariates associated
with groups. In such scenarios, the value of the corresponding covariate would be the same
for all individuals belonging to the same group j.

The second modeling for the random effects γ = (γ1, . . . , γJ)
′ assumes that the risk

varies smoothly along the study region and introduces spatial correlation for them. A
typical approach considers the Intrinsic Conditional Auto-Regressive (ICAR) model [16]
that incorporates information from the neighboring regions. This model specifies a Gaus-
sian distribution for the conditional distribution of the random effect γj associated with
the region j, j = 1 . . . , J given the set of the random effects at its neighbors (denoted by
l ∼ j) with mean ∑l∼j γl/nj and precision τ/nj, where nj is the number of neighbors of
region j. This model is often used in disease mapping models to account for spatial and
spatio-temporal risk variation. The joint distribution for γ = (γ1, . . . , γJ)

′ is a multivariate
normal random vector

γ ∼ N(0, Q), (3)

where Q is a J × J precision matrix with entries nj, j = 1 . . . , J in the diagonal and entries
Qjl equal to −1 if regions j and l are neighbours and 0 otherwise. Given that this is an
improper distribution, a sum-to-zero constraint is often added on the values of the random
effects, i.e., ∑J

j=1 γj = 0 [17].
Leroux et al. (1999) [9] propose an alternative specification for the precision ma-

trix of the spatially distributed random effects that better distinguishes between spatial
dependence and overdispersion effects as follows:

(1− φ)I + φQ,

where I is the identity matrix and parameter φ ∈ [0, 1] determines how matrices I and Q
are combined. Values of φ close to 0 indicate that there is a weak spatial pattern, while
values close to 1 mean a strong spatial pattern.

2.2. Accelerated Failure Time Survival Models

Survival analysis is the branch of Statistics dedicated to the study of the length of
time between two events, the event that initiates the observation process and the final
event, also called the event of interest or final point, which determines the end of the
monitoring procedure. From a statistical point of view, the topic focuses on the analysis
of samples from random variables with support in the positive real numbers, generally
skewed and usually partially observed. In most cases the observation period ends before
the event of interest occurs and the actual observation period does not always coincide
with its theoretical start. In the first case, the data will be right censored and left truncated
in the second one. Both mechanisms, especially censoring, introduce complexity into the
statistical analysis due to their important role in the likelihood function.

The key concepts for assessing survival times are the survival and the hazard function.
The survival function for the survival random variable Ti at t ≥ 0 corresponding to
individual i is the probability that this individual survives beyond time t as defined below

Si(t) = P(Ti ≥ t). (4)

The hazard function of Ti at time t is a non-negative function that describes the instan-
taneous rate of occurrence of the event among individuals who have not yet experienced
the event of interest at t. It is defined in terms of a conditional probability as follows:
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hi(t) = lim
∆t→0

P(t ≤ Ti < t + ∆t | Ti ≥ t)
∆t

. (5)

The hazard function is very popular in epidemiological contexts where it is known as
the incidence function.

Survival regression models assess the variability of the survival times of the different
individuals of the target population regarding relevant covariates. Accelerated failure
time (AFT) models are, together with Cox proportional hazards models, the most popular
in survival analysis [8]. We start assuming a basic AFT model for the survival time of
individual i as follows

log (Ti) = x′iβ + σ εi, (6)

being xi and β the same as in (1), σ a scale parameter and εi i.i.d random variables with a
standard Gumbel distribution (standard type I Fisher–Tippett extreme value distribution).
This is a non-negative continuous distribution with probability density function fi(t) =
et exp{−et}, survival function Si(t) = exp{−et}, and hazard function hi(t) = et, t > 0.
As a result, the distribution of Ti is a Weibull distribution with shape parameter 1/σ and
scale parameter exp{−x′iβ/σ}, i.e., it has hazard function

hi(t) = exp{−x′iβ/σ} 1
σ

t
1
σ−1. (7)

The AFT model in (6) is very flexible because it can also be expressed as a Cox
proportional hazards model [18,19].

As in the binomial regression model, the inclusion of random effects associated with
groups of individuals in the survival model also needs a new definition format. Assuming
the same type of random effects γj that we have considered in the logistic regression model,
our accelerated model will be as follows:

log (Tij) = x′ijβ + γj + σ εij, (8)

with the γj’s modeled according to each of the two proposals, conditionally i.i.d. and
spatially correlated, formulated as in the previous sub-section. Similar models have been
considered by other authors [10] but the spatial frailty based on the model by Leroux
et al. [9] has seldom been used [11], and certainly not for such a large dataset as the one
described in the examples in Section 3.

2.3. Bayesian Inference and the Integrated Nested Laplace Approximation

Bayesian inference accounts for uncertainty in terms of probability distributions. The
main element of a Bayesian learning process is the likelihood function, which is constructed
from the sampling model and the observed data that we represent by D, and the prior
distribution for all unknown elements in the sampling model. The subsequent posterior
distribution combines two pieces of information and is computed via Bayes’ theorem.

Inference for hierarchical and highly parameterized models is often conducted using
several tools available. Markov chain Monte Carlo (MCMC) methods can estimate a wide
range of models, but they are too slow when dealing with large datasets such as those
arising from population studies [20].

Alternatively, approximate inference could be carried out so that posterior sampling
is not required. In particular, the integrated nested Laplace approximation (INLA) [13]
provides accurate approximations of the posterior marginal distribution for the latent
effects, parameters and hyperparameters of the model. INLA considers random samples
from a common probabilistic population as conditionally independent given a latent
Gaussian Markov random field (GMRF) [21] θ with zero mean and precision matrix H
that depends on some hyperparameters φ which can include effects of different type
(regression coefficients, random effects, seasonal effects, etc.). This feature ensures that the
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structure of H is sparse so that computationally efficient algorithms can be employed for
the estimation procedure. It is important to highlight the importance of the nature of θ as a
GMRF conditional on the hyperparameters φ as a necessary hypothesis in the theoretical
framework of INLA.

The hierarchical Bayesian model stated by INLA can be generally formulated as

π(θ, φ | D) ∝ L(θ, φ)π(θ | φ)π(φ),

where π(θ, φ | D) is the posterior distribution of (θ, φ), L(θ, φ) represents the likelihood
function of (θ, φ) for data D, π(θ | φ) is the conditional GMRF discussed above and π(φ)
is the prior distribution for hyperparameters φ.

INLA starts the estimation procedure by obtaining a good approximation to the
joint posterior distribution of the hyperparameters, i.e., π(φ | D). Then it uses this
approximation to compute the posterior marginal of each univariate hyperparameter φl
and the marginal posterior distribution of each latent term θm in θ as follows

π(φl | D) =
∫

π(φ | D) dφ−l ,

π(θm | D) ∝
∫

π(θm | φ,D)π(φ | D) dφ.

These integrals are approximated using numerical integration methods and the
Laplace approximation [13,22].

Please note that once the posterior marginals are available it is possible to compute
quantities of interest about the parameters and hyperparameters such as posterior means
or credible intervals.

The INLA procedure is implemented in the R-INLA package [23] for the R statistical
software [24]. This package can also be used to compute several features for model
selection, which include information-based criteria such as the deviance information
criterion [DIC, [25]] and the Watanabe-Akaike information criterion [WAIC, [26]].

3. Analysis of Ischemic Stroke and Risk Factors in Poland

In Poland, the incidence of stroke is similar to that in other European countries:
approximately 112 strokes per 100,000 inhabitants, which gives about 65,000 new cases of
stroke registered annually [27]. The number of strokes in Poland is expected to increase
in the coming years, what is mostly related to the aging of the population. This means an
increased demand for medical and palliative care, which require both adequate resources
and the development of a strategy for the future [5].

As presented in the introduction, the data for the study consist of an anonymized
dataset of about 500,000 inhabitants from the Polish National Health Fund that includes
individual information about ischemic stroke and other important covariates such as
gender, age, administrative region and drug prescriptions. The period of observation is
two years, but the actual dates have not been released and they remain unknown. We
do not know the reasons for this decision; we can only assume that it is a recent period
of two years. The patient’s age is given in 5-years-old groups and the gender is a binary
variable without clearly indication of which value stands for which gender. However, it
is commonly known that women live longer than men and thus we can distinguish the
two genders in the data. We decided to analyze only patients older than 38 years old, as in
younger age groups stroke had a very low prevalence. As a result, the three age groups
finally considered in the analysis are (38–58] years (group Age1), (58, 68] (group Age2),
and (68, 108] (group Age3). As we are interested in studying spatial dependencies, we take
only patients with known territorial code (no missing values). The final dataset consists of
332,799 patients, among them 2889 had ischemic stroke (0.9%). This percentage is low, but
due to the fact that the sample is probably randomly selected (they are not people with
a specific disease or medical history), and the observation period lasted only two years,
it seems reasonable. Consequently, strokes are rare events for this sample. It is known
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that the classical (frequentist) logistic regression can underestimate the probability of rare
events and some corrections can be done to fix this problem [28]. To study the sensitivity of
Bayesian logistic inference in front of rare events would be an interesting topic of interest
out of the scope of this paper.

In the dataset, there are 379 powiat-level entities, which can be divided according to
the administrative divisions of Poland into 66 city counties (formally ’Cities with powiat
rights’) and 313 regular counties, which we will be called land counties. Presently there
are 380 powiats, which have changed in 2013 and therefore we assume that the dataset
comes from two consecutive years between 2003 and 2013 [29,30]. Poland is divided in 16
voivodeships, which could also be used instead of county divisions.

The dataset also contains information on prescriptions for reimbursed drugs. For
each prescription, the three-digits code of the Anatomical Therapeutic Chemical (ATC)
Classification System is provided. Based on this code, the drug can be identified on
which organ or system it acts. In this classification, there are five different levels to
identify the active substances of any drug. In the dataset, the three-digits codes allow the
classification of the prescription in a pharmacological or therapeutic subgroup. Hence,
we decided to also include the information of the prescriptions dispensed by patient. The
risk factors for stroke are, among others, high blood pressure, atrial fibrillation (AF) and
diabetes [31]. Therefore, we choose to include in the analyses the use of prescriptions for
the cardiovascular system (based on the ATC classification—type ‘C’), any antithrombotic
agents (used in the prevention or treatment of AF, ATC B01) and drugs used in diabetes
(ATC A10), because they appear to be the most relevant when analyzing the occurrence of
strokes [32]. In our analysis, it is not possible to detect any association between the stroke
and the prescription drug, and its associated disease. This should be borne in mind when
interpreting the results, i.e., the coefficients associated with these covariates will assess the
relation of suffering from the condition and taking the associated prescription drugs.

The impact of socioeconomic factors cannot be overlooked when talking about such
a complex disease as stroke. People with a lower status have limited access to medical
care, which may result in the lack of quick diagnosis, which in the event of a stroke may
lead to severe disability. Low level of public awareness can be related with the increase
of risk factors for stroke and can affect recovery during rehabilitation. This is consistent
with studies showing that low socioeconomic status may result in an increased incidence
of stroke and mortality [33]. Accordingly, we included in the study the powiat index of
deprivation (PID). This index is computed from five components using data from 2013
from another database independent of the one used in our study [34]: income, employment,
living conditions, education and access to goods and services. The values of the index are
in the range of −1.8 to +1.1, with a negatively skewed distribution (with zero mean and
standard deviation 0.58). A higher value of the index means a higher risk of deprivation to
which the population of a given powiat is exposed.

In the final dataset there were less than 1% patients who suffered a stroke. Almost half
of the population is over 38 and under 58, and more than half are women and people living
in land counties. Most patients take drugs for the cardiovascular system, while drugs for
diabetes and atrial fibrillation (and others) represent only around 12%. Table 1 shows a
short description of the percentage of people who have and have not suffered a stroke
regarding age, gender, county type and group of medicines.

Table 1. Summary statistics of the dataset (%).

Age Group Stroke Gender County Type ATC C ATC A10 ATC B01

No Yes Men Women Land City No Yes No Yes No Yes

Age1 (38–58] 46.76 0.13 22.07 24.81 31.67 15.22 31.94 14.95 44.53 2.36 43.89 3.00
Age2 (58–68] 26.69 0.22 12.11 14.81 17.21 9.71 8.72 18.20 22.39 4.52 23.75 3.16
Age3 (68–108] 25.68 0.51 9.62 16.58 16.31 9.89 3.74 22.45 19.66 6.54 20.82 5.37

TOTAL 99.13 0.86 43.80 56.20 65.19 34.82 44.40 55.6 86.58 13.42 88.46 11.53
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3.1. Bayesian Logistic and Survival Modeling

Let pij be the probability that the individual i living in powiat j will suffer an ischemic
stroke, and Tij be the time when that individual suffers a stroke since entering the study.
The statistical analysis begins with a basic logistic regression and a basic accelerated failure
time survival model for analyzing the probability pij and the survival time Tij, respectively,
in terms of covariates gender, age, prescriptions for reimbursed drugs, and PID as follows:

logit(pij) = x′ij β

log(Tij) = x′ij β + σεij

x′ij β = β0 + β1 IWoman(ij) + β2 IAge2(ij) + β3 IAge3(ij) + β4 ICity(ij)+
+β5 IT.A10(ij) + β6 IT.B01(ij) + β7 IT.C(ij)(ij) + β8Depr(j),

(9)

where IA(ij) is an indicator variable for A that takes the value 1 if the individual i from
powiat j has the characteristic A and zero if she or he does not, and consequently IWoman(ij),
IAge2(ij), IAge3(ij), ICity(ij), IT.A10(ij), IT.B01(ij) and IT.C(ij) are the indicator random vari-
ables for being a woman, being in age group Age2, Age3, living in city county and having
received diabetes, antithrombotic and cardiovascular treatment in powiat j, respectively.
The Depr covariate stands for the deprivation index which is the numerical variable defined
for each powiat. To complete the specification of the Bayesian model it is necessary to
elicit a prior distribution for the parameters and hyperparameters of the model. In the
case of the logistic regression model the set of parameters θ = (β0, β1, . . . , β8)

′ is a GMRF
with diagonal precision matrix 0.001 for all the coefficients except for β0 whose marginal
prior distribution is selected as an improper Gaussian distribution with zero mean and
zero precision.

The discussion of the marginal prior distribution for the scale parameter σ in the
survival model needs a previous comment about INLA and the Weibull distribution. INLA
offers two different parameterizations of the Weibull distribution for survival models. We
have opted for the so-called first variant, which corresponds to shape parameter α = 1/σ
and scale parameter λ = exp{x′ijζ}, so that the hazard function of Tij is

hij(t) = λαtα−1 = exp{x′ijζ}αtα−1.

This parameterization implies that positive coefficients ζ’s of the covariates increase
hazard, while negative values reduce it. Note that this parameterization is slightly differ-
ent from the typical parameterization of this AFT model shown in Equation (7). Coeffi-
cients ζ’s estimated with INLA are equal to coefficients −β/σ’s in the accelerated survival
model [35].

The shape parameter α of the Weibull distribution has a penalized complexity prior
(PC-prior) [36]. In fact, INLA considers α = exp{0.1α′} to avoid numerical instabilities and
the prior is set on α′. PC-priors are defined using the Kullback–Leibler distance between
the proposed model and a natural base model, which in this case corresponds to α = 1,
that is the exponential distribution. In our model, we have used the default PC-prior for α;
see [37] for details.

Random effects associated with the powiats are introduced in the logistic and the
survival model in (3.1) according to the two proposals presented in the previous section: in
terms of conditionally i.i.d. random variables and spatially correlated random variables.
The marginal prior distribution of the precision τ in the case of both conditionally indepen-
dent and spatially correlated random effects is an improper uniform distribution in the
interval 0 to infinity. The weight parameter φ in the precision of the spatial effect has a
prior distribution so that the logit of φ follows a Gaussian distribution with zero mean and
precision 0.1.

Table 2 presents the posterior mean and posterior credible intervals for the parameters
and hyperparameters of the logistic regression model and the accelerated survival model
without random effects, and with random effects in terms of conditionally i.i.d random
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variables and spatially correlated random variables. Moreover, all models have been
evaluated through the DIC and WAIC criteria. For both types of modeling (i.e., logistic and
survival), the model with spatially correlated random effects has the lowest values of DIC
and WAIC.

Times required to complete model fitting have been less that 20 min, with survival
models taking a slightly shorter times than logit models. Models have been fit on a cluster
running Linux with 64-bit 64 Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz cpus, of which
only 16 have been used to fit each model. R version 3.6.3 [24] and INLA 20.12.10 [13] have
been used for model fitting.

All models have similar estimates of the regression coefficients associated with the
covariates, providing evidence of statistical robustness. As expected, a lower risk of stroke
is associated with being a woman and age increases the risk of stroke. Naively, this can be
regarded as if the results pointed to that being male increases the stroke rate by about 25%
and being in the older age group multiplies the stroke rate by about 5–6 times. The estimates
of the model indicate that men older than 68 who live in a city county have the highest
risk of stroke. It is worth noting the positive relationship between the pharmacological
prescriptions dispensed to patients and the risk of stroke, especially those related to the
cardiovascular system. The analysis of the credible intervals suggests that all the covariates,
except the county, are relevant both for the risk of stroke and for time to stroke. The risk
of stroke grows in proportion to the deprivation index although the importance of this
variable is questionable. The posterior mean of the parameter 1/σ of the survival models
is always close to 1. It could suggest that the risk of stroke does increase with time, but not
rapidly. This latter may be because the data was collected only for a period of two years
and relates to people without specific diseases.

Table 2. Posterior summaries for the parameters and hyperparameter of the logistic regression model and survival model
without random effects (LOGIT and SURVIVAL ), with random effects in terms of conditionally i.i.d random variables
(LOGIT IID and SURVIVAL IID ), and spatially correlated random variables (LOGIT SPATIAL and SURVIVAL SPATIAL).

Covariable Logit Survival Logit IID Survival IID Logit Spatial Survival Spatial

Intercept mean
CI

−5.901
(−6.013, −5.791)

−5.902
(−6.014, −5.793)

−5.925
(−6.042, −5.811)

−5.925
(−6.041, −5.811)

−5.912
(−6.061, −5.764)

−5.914
(−6.072, −5.757)

Woman mean
CI

−0.217
(−0.291, −0.142)

−0.214
(−0.288, −0.14)

−0.217
(−0.291, −0.142)

−0.214
(−0.288, −0.14)

−0.216
(−0.291, −0.142)

−0.214
(−0.288, −0.14)

Group Age2
(58−68]

mean
CI

0.935
(0.812, 1.058)

0.933
(0.81, 1.056)

0.933
(0.81, 1.057)

0.931
(0.809, 1.055)

0.933
(0.81, 1.057)

0.932
(0.809, 1.055)

Group Age3
(68−108]

mean
CI

1.729
(1.613, 1.847)

1.722
(1.606, 1.84)

1.729
(1.612, 1.847)

1.722
(1.605, 1.839)

1.728
(1.611, 1.846)

1.72
(1.604, 1.838)

City county mean
CI

0.122
(−0.015, 0.258)

0.121
(−0.015, 0.256)

0.07
(−0.104, 0.242)

0.07
(−0.1, 0.24)

0.007
(−0.17, 0.184)

0.007
(−0.173, 0.183)

T.A10 mean
CI

0.238
(0.149, 0.326)

0.235
(0.147, 0.322)

0.238
(0.149, 0.326)

0.235
(0.147, 0.322)

0.239
(0.15, 0.327)

0.236
(0.148, 0.324)

T.B01 mean
CI

0.235
(0.141, 0.328)

0.234
(0.14, 0.326)

0.236
(0.141, 0.329)

0.234
(0.14, 0.326)

0.236
(0.141, 0.329)

0.234
(0.14, 0.326)

T.C mean
CI

0.324
(0.224, 0.425)

0.322
(0.222, 0.423)

0.325
(0.224, 0.426)

0.323
(0.223, 0.424)

0.324
(0.224, 0.425)

0.322
(0.222, 0.423)

Deprivation
index

mean
CI

0.179
(0.092, 0.265)

0.178
(0.091, 0.263)

0.128
(0.012, 0.243)

0.129
(0.015, 0.242)

0.096
(−0.022, 0.214)

0.095
(−0.025, 0.213)

Precision τ mean
CI

16.833
(11.063, 22.566)

18.562
(13.66, 25.462)

11.306
(8.472, 15.486)

9.365
(4.78, 14.554)

Shape
parameter 1/σ

mean
CI

1.114
(1.075, 1.155)

1.112
(1.08, 1.149)

1.112
(1.079, 1.147)

Parameter φ mean
CI

0.866
(0.746, 0.925)

0.889
(0.747, 0.978)

DIC mean
CI

31,296.11 31,263.72 31,258.58 31,225.10 31,231.96 31,200.00

WAIC mean
CI

31,296.14 31,263.49 31,256.18 31,222.83 31,230.30 31,198.86
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The posterior mean of the hyperparameter φ which assesses the strength of the spatial
effect in the spatial models is equal to 0.866 and 0.889 for the logistic regression and for the
survival model, respectively, with 95% credible intervals that clearly state the relevance of
the spatial effect. The posterior mean of the precision τ estimated for counties indicates
that there is variation between powiats. It is lower for the spatial models, but still this is
evidence of the dispersion in the data.

Figure 1 illustrates the posterior mean of the random effects for both the logistic
regression and the survival modeling. As expected, the outcomes associated with the
different powiats in the conditional i.i.d models are very similar to well as those for the
two spatial effects models. There are, however, differences between the conditional i.i.d
and spatial models. The latter show strong spatial patterns, with a southwest–northeast
alignment of the smallest values, which can be interpreted as regions with lower probability
of stroke. On the contrary, a high-value cluster in the southeast, means that the risk of
stroke is higher than in the other parts of the country.

Figure 1. Posterior mean for the conditional i.i.d random variables in LOGIT IID and SURVIVAL IID models, and for
spatially correlated random variables in LOGIT SPATIAL and SURVIVAL models.

The potential of the models analyzed is enormous because they allow us to study and
visualize the outcomes of interest in relation to the population subgroups defined by the
different values of the covariates. This information is too long to be included in this article.
By way of illustration, we present in Figure 2 the posterior expectation of the probability of
stroke, by gender and age group, for people who did not take any medication, obtained
from the spatial logistic regression model. It is clearly visible that the probability of stroke
increases with age and in general women have lower probability than men. The largest
difference between the estimated values is in the oldest age group. The spatial pattern
is very relevant. In the southeast of Poland (Podkarpackie and Lubelskie Voivodeship)
there is a visible spatial cluster with the highest risk of stroke. Among the ten powiats
with the lowest estimated probabilities of stroke, nine of them are cities including Wroclaw,
Cracow and the capital Warsaw. Similarly, and in accordance with the illustrative objective,
Figure 3 shows the posterior probabilities of stroke by gender and age group for people
who takes drugs for the cardiovascular system (ATC C). The overall pattern shows higher
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probabilities of stroke than in Figure 2 due to the effect associated with these drugs (and
the underlying condition, i.e., cardiovascular diseases).

Figure 2. Estimated probability of stroke by gender and age group based on the LOGIT SPATIAL model.

Figure 3. Estimated probability of stroke by gender and age group based on the LOGIT SPATIAL model assuming that
drugs for the cardiovascular system (ATC C) have been prescribed.
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4. Discussion

As previously stated in this paper, health care decisions often involve the collection
and analysis of datasets from different sources. Typical health data include mortality and
morbidity of certain diseases as well as other information about risk factors, environmen-
tal exposure and others [38]. In addition, statistical developments in recent years allow
researchers to handle, both methodologically and computationally, large datasets of indi-
vidual data for population level analyses that involve highly parameterized hierarchical
models [39].

Interesting analysis for health care decisions include the estimation of prevalence,
assessment of risk factors, estimation of spatial and temporal risk variation, to mention
a few. The assessment of risk factors is particularly important because the identification
(and prevention) of relevant risk factors may help to reduce morbidity, which in turn may
reduce mortality and public health care expenditure.

Public health authorities can benefit from these population level analyses in different
ways. First, insight on a given condition can be gained by conducting a population-wide
analysis. Secondly, potential risk factors can be assessed which can help to develop best
health policies and practices. In the study developed in this paper, a better understanding of
the incidence of stroke in Poland is gained as well as knowledge about potential risk factors,
with a particular interest on different conditions and associated prescription drugs. Given
that health care decisions by government agencies have an immediate and long-lasting
effects on the populations it is important that these decisions are data-driven.

In particular, this paper considers the analysis of population data about stroke disease
in Poland in a 2-year period. This is a large dataset that comprises information about
500,000 people on several topics, including age, gender, other conditions and drugs pre-
scribed, region and others. In addition to the individual-level data, information at the
powiat level (such as deprivation index and city/land county indicator) are available to
complete the analysis. Given the high burden of stroke, identifying risk factors which can
lead to a reduction in the prevalence of stroke will have a significant impact on the overall
quality of life of the population and the cost of public health care.

The available data can be approached in several different ways. First of all, the
probability of suffering from a stroke has been considered, for which a logit analysis has
been conducted. However, given that the time-to-stroke is available, survival models can
be used as well to tackle an alternative inferential outcome. As individual and area level
data are available, multilevel models have been fitted. In addition to the individual and
area level covariates, mixed-effect models that include random effects at the area level
have been studied in two different ways: conditional independent and spatially correlated
random effects.

All these models have been estimated using a Bayesian framework, for which novel
computational methods have been used to fit the required models. In particular, the
integrated nested Laplace approximation [13] has been used to obtain approximations of
the posterior marginals of the parameters, random effects and hyperparameters of the
model. In addition, the implementation of INLA in the R-INLA package can handle the
hundreds of thousands of records in the dataset and fit the models in a few minutes. One of
the main aspects of this work is to show the importance of spatial modelling and Bayesian
inference as useful tools to identify spatial, demographic and socio-economic patterns in
the distribution of health data in a given population, in this case stroke in Poland.

Relevant risk factors identified by the analysis include age, gender and certain con-
ditions and associated drug prescriptions. In particular, women showed a lower risk,
which increased with age. Regarding the prescription drugs, three different types of drugs
(associated with relevant health risk factors of stroke) were included in the models and they
showed an increase in risk of suffering from a stroke. However, our analysis is not able to
disentangle whether this increased risk is due to the condition or the associated treatment.
Furthermore, the estimates of both types of random effects showed differences among
powiats. Model selection using the DIC and WAIC pointed to the model with fixed effects
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and spatially correlated random effects as the best one among all the models proposed for
both the logit and survival families of models.

These models can be exploited for inference in several ways. The spatial logit model
can provide estimates of the probability of suffering a stroke for age, gender and area.
Similarly, survival models can provide estimates of time-to-stroke for any individual or
the median time-to-stroke according to age, gender and area, and include the effect of
prescription drugs in the estimates.

Other similar models can be used in the analysis of this dataset but the proposed
models provide additional opportunities for inference. As an example, the output from the
fitted models can be used for personalized medicine provided that relevant individual-level
information (e.g., genetic markers) is available.
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