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Abstract: This paper reconsiders a powerful man-in-the-middle attack against Random-HB# and
HB# authentication protocols, two prominent representatives of the HB family of protocols, which are
built based on the Learning Parity in Noise (LPN) problem. A recent empirical report pointed out that
the attack does not meet the claimed precision and complexity. Performing a thorough theoretical and
numerical re-evaluation of the attack, in this paper we identify the root cause of the detected problem,
which lies in reasoning based on approximate probability distributions of the central attack events,
that can not provide the required precision due to the inherent limitations in the use of the Central
Limit Theorem for this particular application. We rectify the attack by employing adequate Bayesian
reasoning, after establishing the exact distributions of these events, and overcome the mentioned
limitations. We further experimentally confirm the correctness of the rectified attack and show that it
satisfies the required, targeted accuracy and efficiency, unlike the original attack.

Keywords: lightweight cryptography; authentication; HB-family; man-in-the-middle attack;
cryptanalysis; Poisson-binomial distribution; LPN problem

1. Introduction

The construction of lightweight and secure authentication protocols for RFID
(Radio Frequency IDentification) devices is an important task of contemporary cryptogra-
phy. These devices are employed in supply-chain management, payment and transporta-
tion systems, for the tracking of goods and other applications, and are rapidly becoming
one of the most pervasive technologies. An RFID system usually consists of two entities—a
resource-constrained Tag attached to a physical object and a more computationally pow-
erful Reader, which communicate using authentication protocol in order to validate Tag
by the Reader. Reaching high security requirements for such validation while minimizing
its resources cost is a very active research area [1–3]. One of the important families of
authentication protocols for RFID systems is the HB family.

The HB family originates from a lightweight protocol called HB that was proposed by
Hopper and Blum [4] and is built over the hardness of the Learning Parity in Noise (LPN)
problem. Informally, the LPN problem could be considered as a problem of solving an
overdefined system of consistent linear equations over GF(2), the field with two elements,
where certain equations are available only in a corrupted form. While the HB protocol
resists passive (eavesdropping) attacks, it is shown to be vulnerable against an active
adversary who can impersonate a reader and interact with legitimate tags. A modified
protocol named HB+ [5,6] was proposed with the aim of addressing this weakness. Soon
after, it was shown that the HB+ protocol is defenseless against a stronger adversary who
can modify the messages sent by the reader [7]. This attack is known as the GRS man-in-
the-middle (MIM) attack. In order to avoid the GRS-MIM attack, different protocol variants
were proposed (see, for example, HB++ [8] and HB-MP [9]). However, they were shown to
be vulnerable [10], until the HB# and Random-HB# protocols were introduced in [11] and
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proven to be secure against GRS-MIM. Shortly thereafter, Ouafi, Overback and Vaudenay
proposed a more general MIM attack (OOV, by authors’ initials) [12] against HB# and
Random-HB#. The attack implies an adversary that can modify the messages exchanged
in both directions between the tag and the reader. Moreover, OOV can be regarded as a
generic attack against the HB-family. The OOV attack remains one of the keystones in the
analysis of HB-like authentication schemes and it is recognized as essential in the security
evaluation of any novel HB-like protocol [1].

Some other HB-protocol variants are: HB-MP+ [13], HB-MP++ [14], HB-MP* [15],
Trusted-HB [16], NLHB [17], HBN [18], GHB# [19], HB+PUF [20], PUF-HB [21], and Tree-
LSHB [22,23]. However, many of these HB-family protocols have been shown to be
vulnerable against several cryptanalysis techniques and MIM attacks [1,7,10,12]. For a
detailed overview of the HB-protocols and analysis based on their efficiency and resistance
against attacks, see, for example, [24].

Motivation for the work. Recent results presented in [25] showed that the OOV
attack is significantly less successful than it was claimed in [12] and pointed out malfunc-
tioning in the core component of the attack. The estimated complexity of the attack is 18%
higher for HB# and 55% for Random-HB# than the claimed, in the case of the standard
parameter set II. This is a significant increase having in mind the overall complexity and
time consumption of the attack, which is claimed to be 229.4 for Random-HB#, and 221 for
HB#. In this paper, we continue on this investigation path and revise the theoretical and
numerical analysis behind the attack provided in [12], in order to determine the cause of
the mentioned problem and try to solve it, if possible.

Summary of the results. This paper revises the cryptanalysis from [12] providing
proof and explaining why the approximations of the probability distributions employed
in the core component of the attack are inappropriate in the considered context, which re-
sults in lower precision and higher complexity of the OOV attack [12]. Further, this paper
provides a derivation of the correct probability distributions on the number of successful au-
thentications that leaks secret information, which can be used to recover secret keys. Finally,
a correction of the OOV attack is proposed, which uses the derived, correct probability
distributions, satisfying the targeted performances/complexity.

Organization of the work. Section 2 provides background on the HB# and Random-
HB# protocols and the OOV attack. Section 3 brings a thorough revision of theoretical
analysis behind the OOV attack and points to the critical omissions in it. Section 4 in-
troduces the corrected attack and analyze its performance. Section 5 provides results of
experimental analysis. In Section 6, the findings and results presented in the paper are
briefly summarized.

2. Preliminaries

A list containing notation used throughout the remainder of the paper is given below.

• Variables are denoted with normal, bold or capital bold letters (e.g., x, x and X) if they
represent single elements, vectors, or matrices, respectively

• Zm
2 : set of all m-dimensional binary vectors

• Zk×m
2 : set of all k×m-dimensional binary matrices

• xi: i-th element of binary vector x
• 1i: binary vector with all zeros, except on the position i
• x⊕ y: bitwise XOR operation of two binary vectors x and y
• ‖x‖: the Hamming weight of binary vector x (sum of its elements)

• x $←− X: sampling a value x which follows uniform distribution over a finite set X
• Pr[A]: probability of an event A
• Berτ : Bernoulli distribution with parameter τ. x ← Berτ is sampling of value x such

that P(x = 1) = τ, P(x = 0) = 1− τ
• Bin(n, p): Binomial distribution of n experiments with success probability p of

each experiment
• e← Berm

τ : sampling binary vector e ∈ Zm
2 such that ei ← Berτ , i = 1, . . . , m
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• N (µ, σ2): Normal distribution with mean µ and variance σ2

• Φ(x): standard normal cumulative distribution function
• er f c(x) = 2Φ(−x

√
2): complementary error function

• Xn
D−→ X : sequence of random variables X1, X2, . . . Xn converges weakly (in distribu-

tion) to a distribution X as n→ ∞
• P(w̄): probability of acceptance during the OOV attack when the Adversary adds

noise vector ē, ‖ē‖ = w̄ to a regular noise vector e in a protocol session, that is,
P(w̄) = Pr[‖e⊕ ē‖ ≤ thr]

• POOV(w̄) := Φ( thr−(m−‖ē‖)τ−‖ē‖(1−τ)√
mτ(1−τ)

): approximation of P(w̄) used in the OOV at-

tack [12].

The HB family of authentication protocols has attracted a lot of attention because
of their simple implementations and the provable security based on the well-known
hard problem—Learning Parity with Noise (LPN). Random-HB# and HB# are prominent
representatives of this family. Their authentication procedure consists of the following
steps [11]—first, the Tag sends a random blinding vector b to the Reader to initiate the
authentication and the Reader responds with a random challenge vector a to the Tag.
Then Tag sends z = aX⊕ bY⊕ e to the Reader, where e is a noise vector whose bits
independently follow Bernoulli distribution with coefficient τ, and X ∈ ZkX×m

2 , Y ∈ ZkY×m
2

are their shared secret keys (random matrices for Random-HB# and so-called Toeplitz
matrices for HB#). The Reader validates the Tag, that is, accepts its response, if and only if
the Hamming weight ‖aX⊕ bY⊕ z|| falls under a certain threshold value (see Figure 1).
Standard parameters’ values for these protocols are given in Table 1.

Figure 1. Random-HB# and HB# authentication protocols.

Table 1. Standard parameter sets I and II for HB# and Random-HB# proposed in [11]. Number l of
secret bits is (kx + ky)m for Random-HB#, while it is kx + ky + 2m− 2 for HB#.

Parameter Set kx ky m τ thr

I 80 512 1164 0.25 405

II 80 512 441 0.125 113

The mechanism of the OOV attack proposed in [12] is shown in Figure 2. The adversary:

1. Collects a triplet (ā, b̄, z̄ = āX⊕ b̄Y⊕ ē) of messages exchanged between the Tag and
the Reader by eavesdropping one of their communication sessions

2. Replaces each triplet (a, b, z) of messages between the Tag and the Reader during n
following communication sessions with a triplet (a⊕ ā, b⊕ b̄, z⊕ z̄)

3. Counts the number c of “ACCEPT” decisions of the Reader at the end of those
n sessions.
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Figure 2. The OOV attack against Random-HB# and HB#.

The acceptance rate c
n , as it turns out, leaks the critical information which reveals the

secret values. More precisely, the theoretical analysis from [12] shows that:

c
n
≈ Φ(

thr− (m− ‖ē‖)τ − ‖ē‖(1− τ)√
mτ(1− τ)

),

where Φ is the standard normal cumulative distribution function. This formula allows the
adversary to estimate the Hamming weight ‖ē‖ using solely the empirical value c

n , for n
large enough (Algorithm 1 from [12]).

After the adversary discovers the Hamming weight of the noise vector ē, he can
reconstruct the vector by flipping its bits (more precisely, he flips z̄ = āX⊕ b̄Y⊕ ē which
secretly contains ē) and measures weight of ē after the flipping. If the weight has in-
creased, the flipped bit was 0, otherwise, it was 1. This way, he reconstructs the noise
vector ē and obtains the linear combination āX⊕ b̄Y since āX⊕ b̄Y = z̄⊕ ē (Algorithm 2
from [12]). The whole previous procedure is repeated also for other modification triplets
(āi, b̄i, z̄i = āiX⊕ b̄iY⊕ ēi) obtained by eavesdropping, until the adversary collects enough
of these linear combinations āiX⊕ b̄iY = z̄i ⊕ ēi to form a full system of linear equations.
The secret keys X and Y are then recovered as the solution to this system.

As illustrated above, in each corrupted communication session, the Reader computes:

‖aX⊕ b̂Y⊕ ẑ‖ = ‖aX⊕ (b⊕ b̄)Y⊕ (z⊕ z̄)‖
= ‖(aX⊕ bY⊕ z)⊕ (āX⊕ b̄Y⊕ z̄)‖
= ‖e⊕ ē‖

and the Tag successfully authenticates iff ‖e⊕ ē‖ ≤ thr, whereas in a regular session,
the Tag successfully authenticates iff ‖e‖ ≤ thr. This way, by creating the cumulative noise
e⊕ ē, the adversary manipulates the verification criterion of the Reader and changes
its theoretical acceptance rate from Pr[‖e‖ ≤ thr] to P(w̄) := Pr[‖e⊕ ē‖ ≤ thr] ≈
Φ( thr−(m−‖ē‖)τ−‖ē‖(1−τ)√

mτ(1−τ)
).

Let us provide a simple and useful characterization of the OOV attack Algorithm 1 [12]
output by introducing the notion of “decision zones.”

Definition 1. (“OOV decision zones”). OOV w̄-decision zone is an interval IOOV
w̄ such that OOV

Algorithm 1 estimates ‖ē‖ as w̄ iff c
n ∈ IOOV

w̄ .

After eavesdropping a triplet, the adversary considers all weights of the noise vector
ē possible. He decides that ‖ē‖ is w̄ ⇐⇒ w̄− 1

2 ≤ P−1
OOV(

c
n ) < w̄ + 1

2 ⇐⇒
c
n ∈ IOOV

w̄ =

(POOV(w̄ + 1
2 ), POOV(w̄− 1

2 )], since P is a monotone decreasing function (see Figure 3a).
After flipping a bit in the noise vector, whose weight is previously estimated as w̄,

the adversary considers only two weights possible: w̄ − 1 and w̄ + 1, so there are two
decision zones — IOOV

w̄−1 = (POOV(w̄), ∞) and IOOV
w̄+1 = (−∞, POOV(w̄)] (see Figure 3b).
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(a) After eavesdropping

(b) After flipping a bit

Figure 3. Decision making of the OOV attack Algorithm 1.

In [12], the complexity of the OOV attack is estimated as an overall number of modified
authentication sessions, which is minimized if the expected noise vector weight wexp
coincides with the so-called optimal weight when it is polynomial (for weights not near
enough the optimal one, it becomes exponential). To achieve this, different strategies are
introduced in [12], such as flipping the adequate number of last bits when wexp ≤ wopt
before weight measurement, or removing the already recovered 1-bits when wexp ≥ wopt.

Also, ref [12] provides an optimized version of the attack which uses flipping block-
by-block in the noise vector recovery process instead of bit-by-bit. However, it is observed
empirically in [25] that the actual benefit that this optimized version brings is somewhat
overestimated. An explanation was offered that it uses insufficient sample sizes for decision
making when measuring the weights, which are further away from the optimal one.

3. Revision of the OOV Attack

The previous work [25] has shown that the OOV attack predominantly incorrectly
estimates weights of noise vectors. The probability of key recovery, that is, efficiency of the
attack, is shown to be significantly lower compared to the values claimed in [12]. For the
standard parameter set II, the probability of correct key recovery is shown to be 0.158 in the
case of HB# and 10−7 in the case of Random-HB#. The analysis presented in [25] reveals
that, in order to achieve the precision of key recovery claimed in [12], it is necessary to
increase the number of intercepted authentications by 18% in the case of HB# and by 55% in
the case of Random-HB#. Since the number of intercepted authentication sessions is the unit
of the attack complexity, the complexity increases accordingly. Furthermore, the analysis
from [25] shows that the weight estimation error cannot be corrected by taking a larger
“sample” n, i.e., larger number of intercepted authentication sessions. On the contrary,
by increasing the sample, the quality of the weight estimate worsens. So, for example,
experimental evaluation on the standard parameter set II shows that the percentage of
correctly estimated weights is only 5%, even if a very large number of modifications is
used (for more details, see Section 4.4 in [25]).

This has led us to conduct a thorough revision of cryptanalysis from [12], which we
provide in this Section. We shall prove that the attack’s erroneous output is caused by
inadequate, non-Bayesian inference over improper, approximate probability distributions
of acceptance rates, which cannot be improved due to Central limit theorem application
limitations for these protocols. We identify the exact distributions and the exact error of the
approximations from [12]. Then we employ Bayesian reasoning over the exact distributions
to construct proper decision zones, and show how OOV weight decision making proposed
in [12] deviates significantly from the proper, Bayesian one.
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3.1. Revision of the Theoretical Analysis behind the OOV Weight Estimate

Here, we revise the derivation of approximations of acceptance rates used in the OOV
weight estimate process and report their significant imprecision. Specifically, this derivation
is given in the “Correctness” paragraph, Section 2.1 in [12].

3.1.1. Incorrect Claim that Cumulative Noise Vector e⊕ ē Follows Binomial Distribution

The mentioned paragraph begins with calculation of the probability that i-th bit of
cumulative noise vector e⊕ ē is 1:

Pr[(e⊕ ē)i = 1] =
{

τ, ēi = 0
1− τ, ēi = 1

Then it says (exact quotation): “Hence, m− w̄ bits of e⊕ ē follow a Bernoulli distribu-
tion of parameter τ and the other w̄ bits follow a Bernoulli distribution of parameter 1− τ,
thus ‖e⊕ ē‖ follows a binomial distribution.” [12].

However, that is not correct: ‖e⊕ ē‖ does not follow binomial distribution, because
that is by definition a distribution of sum of independent and identically distributed Bernoulli
trials i.e., of the same parameter (probability of success). Here, the Hamming weight of
cumulative noise ‖e⊕ ē‖ = ∑m

i=1 (e⊕ ē)i, as we can see, is a sum of Bernoulli trials of
mixed parameter values τ or 1− τ and actually corresponds to a more general so-called
Poisson-Binomial Distribution. We elaborate more on this distribution in the upcoming
Section 3.2.

3.1.2. Approximation of Acceptance Rates P(w̄) ≈ POOV(w̄) without Error Estimation

The “Correctness” paragraph [12] continues with the calculations of the expected
weight of the vector e⊕ ē as µ = E(‖e⊕ ē‖) = w̄(1− τ) + (m− w̄)τ and its variance σ2 =
Var(‖e⊕ ē‖) = mτ(1− τ), which are correct, and derives approximation of acceptance
rate during the attack:

P(w̄) = Pr[‖e⊕ ē‖ ≤ thr] ≈ Φ

(
thr− (m− w̄)τ − w̄(1− τ)√

mτ(1− τ)

)
, (1)

where Φ is the standard normal cumulative distribution function, by referring to the
Central Limit Theorem (CLT)—Formula (1) in [12].

Here, ref [12] applies CLT to sum ‖e⊕ ē‖ without discussing the magnitude of error
of this approximation—the theorem itself only points to its convergence when m→ ∞.

3.1.3. Unknown Error Bound of the Weight Estimate Process

In the rest of the “Correctness” paragraph [12], the authors merge previous approxi-
mation (1) with the second one (which is a consequence of the Law of large numbers):

c
n
≈ P(w̄) (2)

to conclude that:

c
n
≈ Φ(

thr− (m− w̄)τ − w̄(1− τ)√
mτ(1− τ)

) =: POOV(w̄). (3)

The idea behind the merging of the two approximations can be explained in the
following way: c/n converges to P(w̄) when n → ∞ (by the Law of large numbers),
while |POOV(w̄) − P(w̄)| converges to 0 when m → ∞ (by the Central Limit Theorem).
Thus, c/n gets arbitrarily close to POOV(w̄), if both n and m are large enough. This can be
represented as:

c
n

Law of large numbers
−−−−−−−−−−−−−−−−→

n→∞
P(w̄)

CLT←−−−
m→∞

POOV(w̄) =⇒ c
n
≈ POOV(w̄).
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Unlike P(w̄) ≈ POOV(w̄), ref [12] actually does derive error for c
n ≈ P(w̄) approxima-

tion, and how large n should be in order to make the error negligible:
c
n ∈ (P(w̄) − |rP′(w̄)|, P(w̄) + |rP′(w̄)|) with probability 1− er f c(θ) for n(r, w̄) =

θ2

r2 R(w̄) (Formula (2) in [12]) where er f c(θ) gets exponentially small as θ (i.e., n) increases
asymptotically. Therefore, c

n is used to estimate P(w̄) for n large enough.
However, as the final approximation (3) contains estimate P(w̄) ≈ POOV(w̄) whose

error was not assessed in [12], its error is also unknown. The bound of the error for (3) is
essential, because if these approximate values POOV(w̄) deviate too much from the actual
P(w̄) values, it could lead to the wrong decision of w̄. Let us remember that in the OOV
attack the weight of noise vector ē is w̄, if POOV−1( c

n ) is closest to w̄, for all possible values
of w̄.

3.1.4. Main Conclusions

We summarize the mistakes in the theoretical analysis behind the OOV attack from [12],
found in the analysis given above, which will turn out as crucial for high error rate of the
OOV weight estimate:

• The distribution of the Hamming weight of cumulative noise vector is wrongly
assessed as Binomial,

• Approximation P(w̄) ≈ POOV(w̄) lacks error estimation,
• The error of the weight estimate procedure is unknown. Since error bound of P(w̄) ≈

POOV(w̄) is unknown, this consequently also stands for the final approximation c
n ≈

POOV(w̄) which produces the output of weight estimate procedure.

In the following sections, we introduce our research process to overcome the
listed omissions.

3.2. Error Estimation of Acceptance Rates Approximation P(w̄) ≈ POOV(w̄)

First, we infer the standard upper error bound of P(w̄) ≈ POOV(w̄) by applying Berry-
Esseen inequality for CLT approximations. The obtained result indicates that distance
between P(w̄) and POOV(w̄) could be too high and thus prevent a correct weight estimation.
Then, we proceed to infer the exact distribution of the acceptance rates and the exact error
of this approximation.

3.2.1. Standard Upper Error Bound for CLT Approximations

Approximation P(w̄) = Pr[‖e⊕ ē‖ ≤ thr] ≈ POOV(w̄) = Φ( thr−(m−w̄)τ−w̄(1−τ)√
mτ(1−τ)

) was

derived in [12] using the CLT, which only implies its convergence when m → ∞. The
Berry-Eseen inequality further refines this result by providing bound on its maximal error.
Here, we show that the sum ‖e⊕ ē‖ follows Poisson-Binomial distribution, not the plain
Binomial distribution as claimed in [12]. Then we apply a general CLT for non-identical
random variables to this distribution in order to obtain P(w̄) ≈ POOV(w̄), and we estimate
its precision using the Berry-Eseen inequality.

Definition 2. Poisson-Binomial distribution is a probability distribution of a sum ∑n
i=0 Xi of

independent Bernoulli random variables X1, . . . , Xn with possibly different probabilities of success
p1, . . . , pn, and we denote it by PB(p1, . . . , pn). Binomial distribution is a special case of the
Poisson-Binomial distribution where X1, . . . , Xn share the same probability of success.

Lemma 1. The Hamming weight of cumulative noise vector ‖e⊕ ē‖, where ‖ē‖ = w̄, which
the Reader computes in the verification phase after MIM modification (ā, b̄, z̄ = āX⊕ b̄Y⊕ ē) of
Random HB# or HB# protocol session, follows Poisson-Binomial distribution
PB(1− τ, . . . , 1− τ︸ ︷︷ ︸

w̄

, τ, . . . , τ︸ ︷︷ ︸
m− w̄

).
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Proof. Since a new noise vector e← Berm
τ is being generated in each modification session,

and ē← Berm
τ remains fixed during all modifications, notice that:

‖e⊕ ē‖ =
m

∑
k=1

(ek ⊕ ēk) =
m

∑
k=1

ēk=1

(ek ⊕ 1) +
m

∑
k=1

ēk=0

ek =
w̄

∑
k=1

s̃k +
m−w̄

∑
k=1

sk, (4)

where sk and s̃k are Bernoulli random variables, such that Pr[sk = 1] = τ and Pr[s̃k = 1] =
1− τ (see Figure 4).

Therefore, ‖e⊕ ē‖ ← PB(1− τ, . . . , 1− τ︸ ︷︷ ︸
w̄

, τ, . . . , τ︸ ︷︷ ︸
m− w̄

).

Figure 4. Distribution structure of the cumulative noise vector e⊕ ē.

Theorem 1 (General CLT, Lyapunov condition [26]). Let X1, X2 . . . be a sequence of indepen-
dent (and not necessarily identical) random variables such that EXi = µi, VarXi = σ2

i < ∞ and
D2

n = Var(∑n
i=1 Xi) = ∑n

i=1 σ2
i . If there is δ > 0 such that:

lim
n→∞

1
D2+δ

n

n

∑
i=1

E(|Xi − µi|)2+δ = 0 (Lyapunov condition)

then the distributions of ∑n
i=1 Xi−∑n

i=1 µi
Dn

converge weakly to N (0, 1) as n→ ∞, that is,

∑n
i=1 Xi −∑n

i=1 µi

Dn

D−→ N (0, 1).

Theorem 2 (General CLT for Poisson-Binomial distribution). If random variable X fol-
lows Poisson-Binomial distribution i.e., X = ∑n

i=1 Xi, Xi ← Berpi , where D2
n = Var(X) =

∑n
i=1 pi(1− pi), and Dn → ∞ (n→ ∞), then:

X−∑n
i=1 pi

Dn

D−→ N (0, 1).

Proof of Theorem 2. Let µi = E(Xi) = pi. We prove the Lyapunov condition is satisfied
for δ = 1.

Since Xi :
(

1 0
pi 1− pi

)
, |Xi − µi|3 :

(
(1− µi)

3 µ3
i

pi 1− pi

)
, we have that:

E|Xi − µi|3 = (1− µi)
3 pi + µ3

i (1− pi)

= (1− pi)
3 pi + p3

i (1− pi)

= pi(1− pi)[(1− pi)
2 + p2

i ]

= pi(1− pi)[1− 2pi(1− pi)] ≤ pi(1− pi), i = 1, . . . , n.
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Therefore ∑n
i=1 E(|Xi − µi|)3 ≤ ∑n

i=1 pi(1− pi) = D2
n and

1
D3

n

n

∑
i=1

E(|Xi − µi|)3 ≤ D2
n

D3
n
=

1
Dn
→ 0 (n→ ∞).

Since µ = E(‖e⊕ ē‖) = w̄(1− τ) + (m− w̄)τ and Var(‖e⊕ ē‖) = mτ(1− τ), as a
direct consequence of Theorem 2 and Lemma 1, we have that:

Lemma 2. For the cumulative noise vector e⊕ ē it holds that:

‖e⊕ ē‖ − (m− w̄)τ − w̄(1− τ)√
mτ(1− τ)

D−→ N (0, 1), m→ ∞.

In order to estimate the precision of this approximation, we proceed to use the standard
error measure for general CLT:

Theorem 3 (Berry-Eseen inequality for non-identical random variables [27]). Let X1, . . . , Xn
be independent random variables such that EXi = 0, VarXi = σ2

i , and D2
n = Var(∑n

i=1 Xi) =

∑n
i=1 σ2

i . Then for every n there is an absolute constant C such that:

sup
x∈R

∣∣∣∣Pr
[

X
Dn
≤ x

]
−Φ(x)

∣∣∣∣ ≤ C · ∑n
i=1 E|Xi|3

D3
n

.

It was proven that 0.4097 ≈
√

10+3
6
√

2π
= C0 ≤ C ≤ C1 = 0.5600 ([28]). C0 is the biggest

known lower bound and C1 the smallest known upper bound for C in literature, to the best
of our knowledge.

Theorem 4 (Berry-Eseen inequality for Poisson-Binomial distribution). If random variable X
follows Poisson-Binomial distribution, that is, X = ∑n

i=1 Xi, Xi ← Berpi , where D2
n = Var(X) =

∑n
i=1 pi(1 − pi), and Dn → ∞ (n → ∞), then for every n there is a constant C ∈ [C0, C1]

such that:

sup
x∈R

∣∣∣∣Pr
[

X−∑n
i=1 pi

Dn
≤ x

]
−Φ(x)

∣∣∣∣ ≤ C · ∑n
i=1 pi(1− pi)[(1− pi)

2 + p2
i ]

D3
n

Proof. Let Yi = Xi − µi, µi = EXi = pi. Then EYi = 0, Var(Yi) = pi(1− pi) and E|Yi|3 =
pi(1− pi)[(1− pi)

2 + p2
i ] (see proof of Theorem 2). The claim follows directly by applying

Berry-Eseen inequality to random variables Y1, . . . , Yn.

Lemma 3. For the cumulative noise vector e⊕ ē it holds that:

sup
x∈R

∣∣∣∣∣Pr

[
‖e⊕ ē‖ − (m− w̄)τ − w̄(1− τ)√

mτ(1− τ)
≤ x

]
−Φ(x)

∣∣∣∣∣ ≤ C · [(1− τ)2 + τ2]√
mτ(1− τ)

,

where C ∈ [C0, C1].

Proof. This is a direct consequence of the inequality above, taken in consideration that:

‖e⊕ ē‖ = ∑m
i=1 Xi, Xi ← Berpi , pi =

{
1− τ, i = 1, . . . , w̄
τ, i = w̄ + 1, . . . , m

,

∑m
i=1 pi = (m− w̄)τ + w̄(1− τ),

D2
m = Var(X) = mτ(1− τ),

∑n
i=1 pi(1− pi)[(1− pi)

2 + p2
i ] = mτ(1− τ)[(1− τ)2 + τ2] = D2

m[(1− τ)2 + τ2].



Mathematics 2021, 9, 573 10 of 27

As a consequence of this Lemma, by taking x = thr−µ
σ , µ = (m − w̄)τ + w̄(1− τ)

and σ2 = mτ(1− τ), the standard Berry-Eseen upper bound estimate for the error of the
approximation P(w̄) ≈ POOV(w̄) is:∣∣∣∣Pr[‖e⊕ ē‖ ≤ thr]−Φ

(
thr− µ

σ

)∣∣∣∣ ≤ C̄, (5)

where C̄ ∈ [C0 · [(1−τ)2+τ2]
σ , C1 · [(1−τ)2+τ2]

σ ].
Using Formula (5) we derive that for the standard parameter set I, where τ = 0.25

and m = 1164, the error upper bound lies in the interval [0.017334, 0.023691], while for the
standard parameter set II, where τ = 0.125 and m = 441, the error upper bound is from the
interval [0.046091, 0.062994].

The exact P(w̄) lies somewhere in the interval [(POOV(w̄) − C̄, POOV(w̄) + C̄].
Nevertheless, this interval is wider, i.e., covers the interval in which the adversary has to
decide between adjacent weights w̄ and w̄ + 1 (see Figure 5). It is possible that the adver-
sary is incapable to determine and decide accurately if c

n is closest to P(w̄) or P(w̄ + 1),
which directly jeopardizes his decision making. For example, if c

n is in the position marked
in Figure 6, the adversary will decide that the weight is w̄, because POOV(w̄) is closest to it,
but since c

n is in a possible location of P(w̄ + 1), it could in fact be closest to P(w̄ + 1), and
the actual weight could be w̄ + 1. In order to investigate possibility of such scenarios of
erroneous weight conclusions due to high error of approximation, in the next Section, we
shall determine where precisely are P(w̄) values.

(a) Standard parameter set I (b) Standard parameter set II

Figure 5. The approximation error upper bound is larger than the interval widths used in the attack.
Thus, the adversary may not be capable to accurately estimate noise vectors weights.

Figure 6. Localization of P(w) values using Berry-Eseen upper error bound.

3.2.2. The Exact Distribution of the Acceptance Rates

Here, we calculate the exact acceptance rate of HB# and Random-HB# protocols while
under the OOV attack, by using Lemma 1 from Section 3.2.1.



Mathematics 2021, 9, 573 11 of 27

Theorem 5. Let P(w̄) = P[‖e⊕ ē‖ ≤ thr] denote the probability of successful authentication
after MIM modification using triplet (ā, b̄, z̄ = āX⊕ b̄Y⊕ ē) of exchanged messages caught in a
Random HB# or HB# protocol session, where w̄ = ‖ē‖. Then:

P(w̄) = PB(w̄) :=
thr

∑
j=0

min{w̄,j}

∑
i=max{0,j+w̄−m}

(
w̄
i

)(
m− w̄
j− i

)
τw̄+j−2i(1− τ)m−(w̄+j−2i). (6)

In addition, if c is the number of successful authentications after n MIM modifications, then for
acceptance rate c

n it holds that
c
n
← Bin(n, P(w̄))

n
.

Proof. Since:

‖e⊕ ē‖ =
m

∑
k=1

(ek ⊕ ēk) =
m

∑
k=1

ēk=1

(ek ⊕ 1) +
m

∑
k=1

ēk=0

ek =
w̄

∑
k=1

s̃k +
m−w̄

∑
k=1

sk,

where sk ← Berτ , s̃k ← Ber1−τ (see Proof of Lemma 1) we have that:

P(w̄) = Pr[‖e⊕ ē‖ ≤ thr]

=
thr

∑
j=0

Pr[‖e⊕ ē‖ = j]

=
thr

∑
j=0

Pr[
w̄

∑
k=1

s̃k +
m−w̄

∑
k=1

sk = j]

=
thr

∑
j=0

j

∑
i=0

{
Pr[

w̄

∑
k=1

s̃k = i] · Pr[
m−w̄

∑
k=1

sk = j− i] | i ≤ w̄, j− i ≤ m− w̄

}

=
thr

∑
j=0

j

∑
i≤w̄

j−i≤m−w̄
i=0

[(
w̄
i

)
(1− τ)iτw̄−i

][(
m− w̄
j− i

)
τ j−i(1− τ)m−w̄−j+i

]

=
thr

∑
j=0

min{w̄,j}

∑
i=max{0,j+w̄−m}

(
w̄
i

)(
m− w̄
j− i

)
τw̄+j−2i(1− τ)m−(w̄+j−2i).

(Number of successes in w̄ Bernoulli experiments can not exceed w̄. Similarly for
m− w̄.)

3.2.3. Exact Error of the Approximation P(w̄) ≈ POOV(w̄)

Finally, we are able to derive the exact error of the POOV approximation as:

|P(w̄)− POOV(w̄)| = |
thr

∑
j=0

min{w̄,j}

∑
i=max{0,j+w̄−m}

(
w̄
i

)(
m− w̄
j− i

)
τw̄+j−2i(1− τ)m−(w̄+j−2i) −Φ

(
thr− µ

σ

)
|, (7)

where µ = (m− w̄)τ + w̄(1− τ) and σ2 = mτ(1− τ).
Although, in theory, this error diminishes for m large enough (see Figure 7), in the

OOV attack m is the dimension of secret matrices. Thus, this error is a constant intrinsic to
the protocol and the adversary is unable to manipulate it.
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(a) Standard parameter set I (b) Standard parameter set II

Figure 7. Theoretically, the approximation error decreases as m increases by CLT (note the transition
in color of the error peak). In the OOV attack, m = 1164 or m = 441, for standard parameter sets I or
II, respectively.

The exact error values for standard protocol parameters are shown in Figure 8.

(a) Standard parameter set I (b) Standard parameter set II

Figure 8. The exact error of the POOV approximation.

Note that the error gets higher as w̄ approaches the claimed optimal weight wopt,
where it reaches its maximum. This weight is 228 for the standard parameter set I, while it
is 77 for the other one.

3.3. Proper Decision Zones

The OOV decision zones, which are based on the inverse function P−1
OOV(

c
n ) values,

have the following potential drawbacks, in general case:

• the inverse function might not preserve the ratios of distances, so, for example, it could
be possible that P−1( c

n ) is closer to w̄ than to w̄ + 1, while c
n is actually closer to

P(w̄ + 1) than to P(w̄),
• POOV is used as an approximation of exact acceptance rates P with unknown precision,
• w̄ should be determined by considering which of the possible distributions is c

n most
likely sampled from, i.e., by probabilistic reasoning, instead of simply applying the
inverse function to c

n value.

We employ the Bayesian reasoning over the exact distributions of acceptance rates
to construct proper decision zones. The noise vector weight ‖ē‖ is estimated as w̄ if the
observed empirical acceptance frequency c

n most likely follows the exact distribution
Bin(n,P(w̄))

n , w̄ ∈W, where W is the set of all the weights w̄ the adversary considers possible.
As a general weight decision rule, w̄ = argmax

w∈W
Pr[‖ē‖ = w | c

n observed acceptance rate)]
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= argmax
w∈W

{P(w)
c
n (1− P(w))1− c

n · Poccur(w)
1
n }, where Poccur(w) = Pr[‖ē‖ = w] is the prob-

ability of occurrence of noise vector whose weight is w. By its logarithmic transformation,
we obtain that the adversary decides the noise vector weight as w̄ iff:

w̄ = argmax
w∈W

{F(c, n) = c0(w) + c1(w)
c
n
},

where c0(w) = log(1− P(w)) + log(Poccur(w))
n , c1(w) = log P(w)

1−P(w)
. After the mere eavesdrop-

ping, Poccur(w) = (m
w)τ

w(1− τ)m−w. If the eavesdropped vector was flipped in f positions
to reach optimal weight, Poccur(w) = PB( f , m, τ, w)− PB( f , m, τ, w− 1). When recovering
bits, Poccur(w− 1) = τ and Poccur(w + 1) = 1− τ. The values P(w) and Poccur(w) may be
calculated in advance, so decision making is highly efficient.

However, when considering weights near wopt and standard parameter sets, for n
large enough, the decision making can be further simplified. Namely, after comparing
variances Var(w) = P(w)(1−P(w))

n of the exact distributions for the consecutive weights
w− 1, w and w + 1 in such case, we have found their differences as insufficient to impact
the Bayesian decision. Also, probabilities of occurrence of these weights produce negligible
priors (observe division by n in c0(w)).

Therefore, because these distributions Bin(n,P(w̄))
n

D−→ N (P(w̄), Var(w̄)) are almost sym-

metrical, for all practical purposes, w̄-decision zones will be ( P(w̄)+P(w̄+1)
2 , P(w̄−1)+P(w̄)

2 ), w̄ =

1, . . . , m after eavesdropping, while they will be (−∞, P(w̄−1)+P(w̄+1)
2 ) and ( P(w̄−1)+P(w̄+1)

2 , ∞)
when deciding between w̄ + 1 and w̄− 1 after flipping a bit. We shall also call them “PB-
decision zones", since they use the exact values P(w̄) = PB(w̄). Figure 9 provides a graphical
illustration of the PB-decision zones used in the processes of weight estimate after eaves-
dropping and bit recovery.

Figure 9. PB-decision zones used after eavesdropping (left) and for bit recovery (right).

Expressed more formally—probability that c
n is sampled from N (P(w̄), Var(w̄)) is

g(c, n, w̄) = 1√
2πVar(w̄)

e−
( c

n−P(w̄)2)
2Var(w̄) Poccur(w̄), so according to maximum a posteriori (MAP)

test, we choose hypothesis W = w̄ over W = w̄ + i, i ∈ {1, 2} iff g(c, n, w̄) > g(c, n, w̄ + i)
that is,√

Var(w̄ + i)
Var(w̄)

· Poccur(w̄)

Poccur(w̄ + 1)
≥ e−

( c
n−P(w̄+i))2

2Var(w̄+i) +
( c

n−P(w̄))2

2Var(w̄) = e−
n
2 (

( c
n−P(w̄+i))2

P(w̄+i)(1−P(w̄+i))−
( c

n−P(w̄))2

P(w̄)(1−P(w̄))
),

that is, iff condition ( c
n − P(w̄+ i))2 > δ2( c

n − P(w̄))2 is satisfied, where δ2 = P(w̄+i)(1−P(w̄+i))
P(w̄)(1−P(w̄))

= Var(w̄+i)
Var(w̄)

, i.e., c
n < B or c

n > A when δ < 1, or A < c
n < B when δ > 1, where A = P(w̄ +

i) + δ
δ+1 (P(w̄)− P(w̄ + i)), B = P(w̄) + δ

δ−1 (P(w̄)− P(w̄ + i)). However, since B < 0 for
δ < 1, and B ≥ 1 for δ > 1, for weights near the optimal one, the condition is equivalent
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to c
n > A. Furthermore, Pr

[
c
n ∈ ( P(w̄)+P(w̄+i)

2 , A)

∣∣∣∣ c
n
D−→ N (P(w), σ2), w ∈ {w̄, w̄ + i}

]
is

negligible in such case, so we reduce this decision to condition c
n > P(w̄)+P(w̄+i)

2 , that is,
that the observed frequency c

n is closer to P(w̄) than to P(w̄ + i) (P is monotone decreas-
ing function).

3.4. The Exact and the Approximate Probability Distribution Relation

We now show that the decisions the adversary makes about noise vectors weights can
differ depending on whether he uses the OOV approximation or the exact distribution.

We have noticed that the OOV w-decision zones are substantially shifted to the left
with respect to PB-w decision zones, and that they often largely overlap with the correct
PB-w + 1 decision zone (see Figure 10). As a consequence, there is a high chance that the
OOV adversary decides the weight is w, while the actual weight is w + 1.

Figure 10. Different “decision zones” according to the OOV approximation and the exact Poisson-
Binomial distribution.

This adverse phenomena is especially pronounced in the expected case—when w̄
is near the optimal weight wopt, since there is the biggest distance between P(w̄) and
POOV(w̄)—degrading significantly the precision of the weight estimate.

Furthermore, the shift of the OOV decision zones can not be repaired by employing
larger “sample size” n, that is, number of intercepted authentications, because the approxi-
mation POOV(w̄) ≈ P(w̄) has a high fixed error in this scenario (as shown in the previous
Section). The convergence c

n → POOV(w̄) occurs only when both m→ ∞ and n→ ∞:

c
n
−−−→
n→∞

P(w̄)←−−−
m→∞

POOV(w̄) =⇒ c
n
−−−−−−→
n→∞,m→∞

POOV(w̄).

However, in the context of the OOV attack, m is a constant protocol parameter
and thus:

c
n
−−−→
n→∞

P(w̄)←−−−−−−−−−−
fixed distance

POOV(w̄) =⇒ | c
n
− POOV(w̄)| −−−→

n→∞
|P(w̄)− POOV(w̄)|.

This explains the experimental observations from [25] that the weight estimate does
not improve by increasing the sample size.

4. Correction of the OOV Attack

In this section, we give a correction of the OOV-MIM attack and show that it meets
the targeted precision, unlike the original attack.
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4.1. Correction of the OOV Attack Algorithm

In order to solve the problem of high error of the approximation POOV(w̄) ≈ P(w̄),
we eliminate this approximation altogether, since we have shown that it can not be im-
proved. Instead we employ the acceptance rates obtained from the exact distribution.
That is, instead of:

c
n
−−−→
n→∞

P(w̄)←−−−
m→∞

POOV(w̄) =⇒ c
n
≈ POOV(w̄) = Φ(

thr− (m− w̄)τ − w̄(1− τ)√
mτ(1− τ)

),

we use Poisson-Binomial cumulative distribution function:
c
n
−−−→
n→∞

P(w̄) =⇒ c
n
≈ P(w̄) =

thr

∑
j=0

min{w̄,j}

∑
i=max{0,j+w̄−m}

(
w̄
i

)(
m− w̄
j− i

)
τw̄+j−2i(1− τ)m−(w̄+j−2i).

Then, we incorporate it in proper, Bayesian decision zones described in Section 3.3
with their corresponding optimal weights and modification samples. Noise vector ē
Hamming weight will be estimated as w̄ if and only if c

n is nearest to P(w̄), for all weights
w ∈ {0, . . . , m} considered possible.

Hence, the pseudocode of the proposed correction of the weight estimate procedure is
given in Algorithm 1:

Algorithm 1 PB-OOV weight estimate alg. Approximating w̄ = ‖ē‖
1: Input: ā, b̄, z̄ = āX⊕ b̄Y⊕ ē, n
2: Output: estimate of noise vector weight

w̄ = ‖āX⊕ b̄Y⊕ z̄‖, where

P(w̄) = ∑thr
j=0 ∑

min{w̄,j}
i=max{0,j+w̄−m} (

w̄
i )(

m−w̄
j−i )τ

w̄+j−2i(1− τ)m−(w̄+j−2i)

3: Processing:
4: c = 0
5: for i = 1...n do
6: During i-th session, the adversary modifies and replaces messages:
7: a with â = a⊕ ā, b with b̂ = b⊕ b̄, z with ẑ = z⊕ z̄
8: if Verifier accepts the modified response then
9: c = c + 1

10: end if
11: end for
12: return w̄ = argmin

w
{| cn − P(w)|

∣∣w = 0, . . . , m}.

Since the PB Decision zone for w ⊃ I = [P(w)− r̄, P(w)+ r̄], where r̄ = 1
2 min{P(w)−

P(w + 1), P(w− 1)− P(w)} we have that:

Pr[ c
n ∈ PB Decision zone for w] ≥ Pr

[
c
n ∈ I

∣∣∣∣ c
n
D−→ N (P(w̄), σ2)

]
= 1− er f c(θ), θ =

r̄·
√

n√
2P(w̄)(1−P(w̄))

.

Therefore, after the eavesdropping, PB-OOV adversary chooses sample of size nPB =

4θ2RPB(w), RPB(w) = 2 P(w)(1−P(w))
r̄2 to achieve the required precision 1− er f c(θ), which is

based on exact values PB(w) instead of approximate ones POOV(w) as in Formula (2)
from [12]. Accordingly, he uses optimal weight wPB

opt which minimizes this sample across
all weights and its value is 229 for parameter set I, and 78 for parameter set II. After the
flipping, he will use samples of size θ2RPB(w) to recover bits.

It should be noted that the values P(w), w = 0, . . . , m can be calculated in advance,
as a part of the preprocessing step, and stored in a table to be later used during the attack.
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4.2. Comparison of the OOV and PB-OOV Attack Success

In this section we analyze the probability of success of the OOV and PB-OOV at-
tack. Namely, we derive the probability the OOV adversary will correctly reconstruct a
noise vector (and consequently recover the key) and show that, as a consequence of the
approximation employed, the OOV attack is significantly less efficient than claimed in [12].
Oppositely, the PB-OOV attack proposed in Section 4.1, achieves the desired precision
and efficiency.

4.2.1. Noise Vector Hamming Weight Estimate

OOV adversary. First, let us observe the distribution of acceptance rate c
n during the

attack when ‖ē‖ = w̄:

c =
n

∑
i=1

Xi, Xi ← BerP(w̄) =⇒ c
n
D−→ N (P(w̄), σ2(w̄, n)),

where σ = σ(w̄, n) :=
√

P(w̄)(1−P(w̄))
n .

The probability that the OOV adversary estimates that noise vector ē has weight west,
when its weight is w̄ (which may or may not be equal to west), using n modifications of
authentication sessions is:

p0(west, w̄, n) = Pr
[

c
n
∈ OOV Decision zone for west

∣∣∣∣ ‖ē‖ = w̄
]

= Pr
[

c
n
∈ (POOV(west +

1
2
), POOV(west −

1
2
))

∣∣∣∣ c
n
D−→ N (P(w̄), σ2)

]

= Φ(
POOV(west − 1

2 )− P(w̄)

σ
)−Φ(

POOV(west +
1
2 )− P(w̄)

σ
), (8)

Therefore, the adversary makes correct decision when ‖ē‖ = w̄, using n modifications,
with probability p0(w̄, w̄, n).

After evaluating Formula (8), we have found that the weight will either be estimated
as one lower (when the adversary is wrong, which is the majority of the time for the
weights near the expected ones) or make a correct guess, that is, all other cases will appear
with negligible probability (see Table 2). This supports the experimental findings from [25].
Table 2 shows comparison between the claimed and real precision p0(w̄, w̄, n) of the OOV
weight estimate (see Appendix A Table A1 for details on the parameters’ values). It can be
noticed that, for parameter set II, in the case of Random-HB#, the claimed precision is by
two orders of magnitude smaller than the claimed. In all other cases, the discrepancy is
somewhat smaller but, still, the real precision is by an order of magnitude smaller than
the claimed.

Table 2. Comparison of the claimed and real precision of the OOV weight estimate showing that the
real precision is remarkably smaller than the claimed one.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

claimed precision
= 1− er f c(θ) 0.999315 0.999997 0.998641 0.999992

real precision
= p0(wexp, wexp, 4nwexp )

0.087803 0.031017 0.038852 0.006860

p0(wexp − 1, wexp, 4nwexp ) 0.912197 0.968983 0.961146 0.993139
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PB-OOV adversary. Since ( P(w)+P(w+1)
2 , P(w−1)+P(w)

2 ), w = 1, . . . , m is PB-w decision
zone after the eavesdropping, and PB-OOV adversary uses exact values P(w) instead of the
approximate ones POOV(w), by analogous analysis as above, we obtain that he estimates
the weight as west when its actual value is w̄ with probability:

p′0(west, w̄, n) = Φ(
P(west − 1) + P(west)− 2P(w̄)

2σ
)−Φ(

P(west) + P(west + 1)− 2P(w̄)

2σ
)

Unlike the OOV weight estimate, whose precision is shown to be remarkably lower
than the claimed, precision of the PB-OOV weight estimate is within the given boundaries
(see Table 3). This is also confirmed by the experimental results presented in Section 5.3.

Table 3. Precision of the proposed PB-OOV algorithm meets the targeted precision for weight
estimate.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

targeted precision
= 1− er f c(θ) 0.999315 0.999997 0.998641 0.999992

real precision
= p′0(wexp, wexp, 4nwexp )

0.999506 0.999998 0.998641 0.999992

4.2.2. Noise Vector Bits Recovery

Here, we compare the success rate of the OOV adversary and PB-OOV adversary
when it comes to the reconstruction of noise vectors, that is, bit recovery.

OOV adversary. After the adversary has estimated the weight of the observed vector ē
as west after eavesdropping, he tries to recover its bits by flipping one by one each bit ēi and
estimating new weight as west − 1 or west + 1. If the weight has decreased, he concludes the
flipped bit is 1, otherwise, that the bit is 0. Therefore, he recovers a bit correctly, depending
on its value, with probabilities:

=


Pr
[

c
n ∈ OOV Decision zone for west − 1

]
, ēi = 1

Pr
[

c
n ∈ OOV Decision zone for west + 1

]
, ēi = 0

=


Pr
[

c
n > POOV(west)

∣∣∣∣ c
n
D−→ N (P(w̄− 1), σ2(w̄− 1, n))

]
, ēi = 1

Pr
[

c
n ≤ POOV(west)

∣∣∣∣ c
n
D−→ N (P(w̄ + 1), σ2(w̄ + 1, n))

]
, ēi = 0

=

 pi1(west, w̄, n) = 1−Φ( POOV(west)−P(w̄−1)
σ(w̄−1,n) ), ēi = 1

pi0(west, w̄, n) = Φ( POOV(west)−P(w̄+1)
σ(w̄+1,n) ), ēi = 0.

(9)

The results of evaluation of Formula (9) are shown in Table 4. First, it should be
noted that the probability for bit recovery is very asymmetrical, that is, the precision for
0-bit recovery is very different from the precision for 1-bit, while the claimed precision is
uniform for both bit values. Secondly, when the weight is correctly estimated, the precision
for 0-bit is much lower than the claimed and it would make reconstruction of the noise
vector (and further the key recovery itself) practically impossible. This is in accordance
with the experimental results from [25]. On the other hand, the OOV adversary has more
success in bits recovery when the initial weight estimate is incorrect, since the relative
change remains intact if the measured weights are both one lower than the actual ones.
The two errors made in the weight estimate processes can neutralize each other; however,
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even with this mutual cancellation of the errors, the claimed precision is not achieved.
Namely, the precision for 1-bit recovery is lower than the targeted 1− 1

2 er f c(θ) and that
lowers the probability of the attack success.

Table 4. Comparison of the claimed and real precision of the OOV bit recovery depending on the
initial weight estimate.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

claimed precision
= 1− 1

2 er f c(θ) 0.999658 0.9999986 0.999320 0.999996

pi1 (wexp, wexp, nwexp ) 1− 4.4× 10−9 1− 1.1× 10−15

1− 5.5× 10−9 1− 7.1× 10−16

pi1 (wopt, wopt, nwopt ) 1− 4.6× 10−13 1− 3.9× 10−23

pi0 (wexp, wexp, nwexp ) 0.858089 0.930114
0.764623 0.843169

pi0 (wopt, wopt, nwopt ) 0.365592 0.317990

pi1 (wexp − 1, wexp, nwexp−1) 0.991712 0.999518
0.993508 0.999740

pi1 (wopt − 1, wopt, nwopt−1) 0.999908 1− 1.3× 10−7

pi0 (wexp − 1, wexp, nwexp−1) 0.999997 1− 2.8× 10−10

0.999957 1− 2.1× 10−8

pi0 (wopt − 1, wopt, nwopt−1) 0.998863 0.999987

Let us further consider the probability that the OOV adversary will successfully
recover a complete noise vector. We observe the expected case ‖ē‖ = wexp (= wopt for
parameter set II). As we have already noted: (a) west is either ‖ē‖ or ‖ē‖ − 1, and (b) the
noise vector is practically impossible to recover when west = ‖ē‖ due to too high error
for 0-bit. Thus, for parameter set II, the probability of the OOV Adversary successfully
recovering a complete m-bit noise vector of weight ‖ē‖ = wopt is:

pvr(wexp) = pvr(wopt) = p0 p
m−wopt
i0

p
wopt
i1

, (10)

where p0 = p0(wopt − 1, wopt, 4θ2R(wopt)), pik = pik (wopt − 1, wopt, θ2R(wopt − 1)), k = 0, 1.
Similarly, for parameter set I, the adversary needs to recover and remove ∆ = west −

wopt errors in a noise vector in order to achieve the optimal weight. This is expected to
happen after recovering ∆/τ bits, thus:

pvr(wexp) = p0 p∗w0
i0

p
m−wexp−w0
i0

p∗∆i1 p
wexp−∆
i1

, (11)

where: p0 = p0(wexp − 1, wexp, 4θ2R(wexp)), p∗ik = pik (wexp − 1, wexp, θ2R(wexp − 1)), pik =

pik (wopt, wopt + 1, θ2R(wopt)), k = 0, 1, w0 = ∆(1−τ)
τ =

(wexp−1−wopt)(1−τ)
τ .

Using Formulas (10) and (11) we can evaluate the probability that the OOV adversary
will correctly recover a complete noise vector in the expected case, and compare the
obtained probability with the claimed one, which is calculated based on the claimed
probabilities of correct weight estimate and bit guess as (1 − er f c(θ))(1 − 1

2 er f c(θ))m.
Results of the comparison are given in Table 5. Although the difference between the
claimed and real precision on the noise vector level does not seem remarkable for Random-
HB#, it does make a significant impact on the key recovery probability, having in mind the
number of noise vector that have to be reconstructed, which is 592. More details will be
provided in the next Section 4.2.3.
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Table 5. Comparison of the claimed and real precision of the OOV noise vector recovery showing
that the real precision is smaller than the claimed one.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

claimed precision 0.670720 0.998314 0.739967 0.998306

pvr(wexp) 0.245168 0.932141 0.573019 0.973427

PB-OOV adversary. For the PB-OOV adversary, by replacing POOV with P,
and POOV(west) with P(west−1)+P(west+1)

2 (i.e., by using proper PB w̄-decision zones) in the
derivation above, the probabilities of successful bit recovery, depending on its value are: p′i1(west, w̄, n) = 1−Φ( P(w̄+1)−P(w̄−1)

2σ(w̄−1,n) ), ēi = 1

p′i0(west, w̄, n) = Φ( P(w̄−1)−P(w̄+1)
2σ(w̄+1,n) ), ēi = 0.

(12)

Table 6 shows the precision the PB-OOV adversary achieves in the bit recovery process,
when the standard parameter sets are employed. The results obtained by evaluating
Formula (12) prove that the PB-OOV on the bit level does achieve the targeted precision
using the OOV sample (i.e., the number of modifications). This is also confirmed by the
experimental results presented in Section 5.3.

Table 6. Precision of the proposed PB-OOV algorithm meets the targeted precision for bit recovery.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

targeted precision
= 1− 1

2 er f c(θ) 0.999658 0.9999986 0.999320 0.999996

p′i1
(wexp, wexp, nwexp ) 0.999623 0.9999983

0.999345 0.999996
p′i1

(wopt, wopt, nwopt ) 0.999660 0.9999986

p′i0
(wexp, wexp, nwexp ) 0.999874 0.9999998

0.999351 0.999996
p′i0

(wopt, wopt, nwopt ) 0.999659 0.9999986

Further, we analyze the probability that the PB-OOV adversary will successfully
recover a complete noise vector. We observe the expected case ‖ē‖ = wexp(= wopt for
parameter set II). For parameter set II, the probability is given by the formula:

pvr′(wopt) = p′0 p
′m−wopt
i0

p
′wopt
i1

, (13)

where p′0 = p′0(wopt, wopt, θ2Rwopt)), p′ik = p′ik (wopt, wopt, θ2R(wopt)), k = 0, 1.
Similarly, for parameter set I, we have that:

pvr′(wexp) = p′0 p′∗w0
i0

p
′m−wexp−w0
i0

p′∗∆i1 p
′wexp−∆
i1

(14)

where p′0 = p′0(wexp, wexp, 4θ2R(wexp)), p′∗ik = p′ik (wexp, wexp, θ2R(w̄exp)), p′ik = p′ik (wopt, wopt,

θ2R(w̄opt)), k = 0, 1, w0 = ∆(1−τ)
τ =

(wexp−wopt)(1−τ)
τ .

Using Formulas (13) and (14), we can evaluate the probability that the PB-OOV
adversary will correctly recover a complete noise vector in the expected case. Table 7
shows the results of this evaluation, which confirm that the PB-OOV attack does meet the
targeted precision.
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Table 7. Precision of the proposed PB-OOV algorithm meets the targeted precision for noise
vector recovery.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

claimed precision 0.670720 0.998314 0.739967 0.998306

pvr′(wexp) 0.698279 0.998538 0.749770 0.998443

4.2.3. Secret Keys Recovery Comparison

Finally, let us compare the precision of the OOV attack and PB-OOV attack. We
observe the expected case w̄ = wexp(= wopt for parameter set II). Let l be the number
of secret bits, that is, secret key length and m be the noise vector length. The claimed
probability of key recovery in [12] is calculated as ckr = (1− er f c(θ))d

l
m e(1− 1

2 er f c(θ))l .
This probability is equal 0.37.

As we have shown in Section 4.2.2, the PB-OOV attack achieves the claimed precision
on bit level, therefore it can recover the secret key with probability 0.37. Let us further
compare this value with the probability that the OOV adversary recovers the key. In the
case of Random-HB#, the number of secret bits is l = (kx + ky)m and the adversary has to
recover kx + ky = 592 complete noise vectors of length m. The probability of a key recovery
can be calculated using the values from Table 5 as pvr(wexp)592. For parameter set I, the
probability of key recovery is 8.6× 10−19, and for parameter set II, it is equal 1.2× 10−7.
This is remarkably smaller than the claimed 0.37. In the case of HB#, the adversary has
to recover b l

m c complete noise vectors and additional l mod m bits. For parameter set I,
the probability of key recovery for HB# is 0.024, and for parameter set II, it is 0.159.

More formally, the OOV attack reconstructs the secret keys if it recovers:

- b l
m c whole m-bit noise vectors—which happens with probability pvr(w̄)b

l
m c,

- and then the remaining l mod m bits, by guessing incorrectly one more noise vec-
tor weight, and recovering each one of them—which happens with probability
pvrest(w̄) = p0 p(l mod m)τ

i1
p(l mod m)(1−τ)

i0
for parameter set II and

pvrest(w̄) = p∗0 p∗∆i1
p∗

∆(1−τ)
τ

i0
p(l mod m− ∆

τ )τ
i1

p(l mod m− ∆
τ )(1−τ)

i0
for parameter set I, since

∆
τ < l mod m.

Therefore, the probability of successful recovery of secret keys using OOV attack
will be:

Pr[OOV-Attack success] = pvr(w̄)b
l
m cpvrest(w̄) (15)

and similarly, probability of successful recovery of secret keys using PB-OOV attack is:

Pr[PB-OOV-Attack success] = pvr′(w̄)b
l
m cpvrest′(w̄), (16)

where pvrest′ is the same as pvrest, but with symbols p′ instead of p.
Complexity comparison. The complexity of the OOV attack needed to achieve the

required (claimed) key recovery rate is ComplOOV = argmin
n
{Pr[OOV-Attack success](n)

≥ ckr}. By increasing the number of modifications n until the claimed key recovery rate
is reached, we have estimated that the complexity of the OOV attack is higher than the
claimed—for parameter set II by 55% in the case of Random-HB# and by 18% for HB# (this
supports the results from [25] based on experimental evaluation), and for parameter set I by
150% in the case of Random-HB# and 35% for HB#. On the other hand, since the PB-OOV
attack achieves the required precision on a bit recovery level targeted in [12], its precision
and complexity is in accordance with the one claimed for the original OOV attack.
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5. Experimental Results and Discussion
5.1. Evaluation of the Acceptance Rates

We have conducted a set of experiments to confirm the convergence of experimentally
obtained acceptance rates to the corresponding PB values. There were 4 rounds of tests,
for n = 2500, n = 5000, n = 10,000 and n = 15,000. For each n, we generated 500 noise vectors
and flipped the appropriate number of their last bits, so that the expected weight of the
noise vectors is optimal, that is, 78. For each test vector ei, we measured the acceptance rate
and analyzed how it relates to POOV(‖ei‖) and PB(‖ei‖). In general, it can be noted that the
experimental acceptance rates lie above the corresponding OOV points, but compared to
the corresponding PB points, they are evenly distributed above and bellow (see Figure 11).
It can also be noticed that as n increases, the experimental points concentrate around the PB
points, as expected. This further explains and confirms that the OOV algorithm relaying
on the OOV approximation has high error rate when it comes to weight estimate, while the
corrected PB-OOV algorithm gives much better results.

Furthermore, we compare experimentally obtained acceptance rates c(ei)
n with OOV

and PB reference points, i.e., POOV(‖ei‖) and PB(‖ei‖), using a standard error measure—
Mean absolute error (MAE), and show how it relates to the correctness of weight estimates.
That is, for a set {ei}N

i=1 of test noise vectors, we observe the MAE between the acceptance

rates c(ei)
n , where n is the number of intercepted authentication sessions (i.e., modifications),

and POOV(‖ei‖) and PB(‖ei‖):

Avg_distOOV
n =

1
N

N

∑
i=1
| c(ei)

n
− POOV(‖ei‖)|,

Avg_distPB
n =

1
N

N

∑
i=1
| c(ei)

n
− PB(‖ei‖)|.

From the previous theoretical analysis given in Section 4.1, we have that c(ei)
n −−−→

n→∞
PB(‖ei‖), i = 1, . . . , N. Therefore:

Avg_distOOV
n −−−→

n→∞

1
N

N

∑
i=1
|PB(‖ei‖)− POOV(‖ei‖)|,

Avg_distPB
n −−−→n→∞

0.

Consequently, the expected MAE value for the OOV points, across all possible weights
‖ei‖, as n→ ∞, converges to:

E(Avg_distOOV
∞ ) =

1
N

N

∑
i=1

m

∑
w=1
|PB(w)− POOV(w)|(PB( f , m, τ, w)− PB( f , m, τ, w− 1)),

since Pr[‖ei‖ = w] = PB( f , m, τ, w) − PB( f , m, τ, w − 1), after flipping f last bits in ei,
while for the PB points they converge to: E(Avg_distPB

∞ ) = 0.
This is in accordance with the experimental results shown in Figure 12, for different

number of modifications n. Furthermore, Figures 12 and 13 show that there is an inverse
correlation between the distance (between the experimental and OOV points, i.e., PB points,
respectively) and the accuracy of weight estimation.
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(a) OOV alg. and n = 2500 (b) PB-OOV alg. and n = 2500

(c) OOV alg. and n = 5000 (d) PB-OOV alg. and n = 5000

(e) OOV alg. and n = 10,000 (f) PB-OOV alg. and n = 10,000

(g) OOV alg. and n = 15,000 (h) PB-OOV alg. and n = 15,000

Figure 11. Comparison of the experimentally obtained acceptance rates and the corresponding
POOV(‖ei‖) and PB(‖ei‖) points for n = 2500, 5000, 10,000, 15,000.
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Figure 12. MAE between the experimentally obtained acceptance rates and the OOV and PB points,
respectively, for n = 2500, 5000, 10,000 and 15,000.

Figure 13. Percentage of correct weights estimates based on acceptance rates using the PB distribution
and OOV approximation respectively, for n = 2500, 5000, 10,000 and 15,000.

5.2. Precision Comparison of the OOV and PB-OOV Weight Estimate: Experimental

Here, the differences in the weight estimate quality between the original OOV Algorithm 1
and the PB-OOV Algorithm 1 proposed in Section 4.1 are experimentally proven. We have
analyzed and compared effectiveness of the two algorithms for different Hamming weights.
For the standard parameter set I, 99% of all noise vectors have the weight between 250 and
330. The comparison of the algorithms is based on the sample of 5000 noise vectors whose
Hamming weight is from that interval. The number of modifications employed for weight
estimation corresponds to the HB# scenario. The success rate of the OOV algorithm is 20%
and for the PB-OOV it is 98%. Detailed results are given in Figure 14a. For the standard
parameter set II, 99% of all noise vectors have the weight between 60 and 95 (this is after
flipping (wopt −mτ)/(1− 2τ) bits to obtain a vector of the optimal weight from a vector of
the expected weight) and the comparison of the two algorithms is based on the sample of
5000 noise vectors with the Hamming weight in this interval. The number of modifications
employed for weight estimation corresponds to the HB# scenario. The experimental results
again show that the success rate of the OOV algorithm is much worse than PB-OOV (11%
in contrast to 99%). Details are given in Figure 14b.



Mathematics 2021, 9, 573 24 of 27

(a) Standard parameter set I (b) Standard parameter set II

Figure 14. Precision comparison of the weight estimate using the OOV and PB-OOV algorithms.

5.3. Evaluation of the PB-OOV Attack Precision

In Section 2.1 from [12], the authors derive the error formula and calculate the number
of modifications n that should provide the aimed accuracy of the OOV attack, that is,
of the weight estimate and bit recovery. However, the analysis given in Section 4.2 shows
that the precision deviates significantly from the one claimed. The analysis provides the
theoretical proof that supports the experimental findings presented in [25]. On the other
hand, the analysis of the proposed PB-OOV algorithm given in Section 4.2, shows that
this algorithm does achieve the desired precision and efficiency. We have conducted a
series of experiments in order to experimentally verify the correctness of the PB-OOV
attack. The experimental results presented in this section support the conclusions of the
theoretical analysis.

The tests are conducted for both HB# and Random-HB# protocols and parameter set II.
The number of modifications used (“sample size”) is the one from the [12]. For the HB#
protocol we have tested the weight estimate and bit recovery precision for 2000 randomly
generated noise vectors of the optimal weight. The weights of two noise vector were
incorrectly estimated as 79, since the obtained acceptance rates were 0.473227 and 0.475217.
This gives success rate of 0.999 in weight estimation step. When the weight of a vector
is incorrectly guessed, it further causes high error rate in the bit recovery process, since
the algorithm relies on the initial weight estimate west and chooses between west − 1 and
west + 1 after flipping the observed bit. However, when the weight estimate is correct,
targeted bit precision is 1− 1

2 er f c(θ), and our tests verify that the PB-OOV attack complies
with this. Namely, in the set of noise vectors whose weight is correctly estimated, the av-
erage bit guessing success rate in our test is 0.999342, compared to the targeted 0.999320.
For Random-HB#, we have randomly generated 25,000 noise vectors of the optimal weight.
The PB-OOV attack correctly estimated all weights, while the achieved average bit guess-
ing success rate was 0.999996, which is in line with the targeted precision. An interesting
finding regarding the OOV attack is that the bit guessing precision may significantly differ
for 0-bits and 1-bits, for example, in the case of HB# and parameter set II, precision for 0-bit
is 0.764623, while for 1-bit it is remarkably higher and equal 1− 5.5× 10−9 (see Table 4).
On the other hand, the proposed PB-OOV algorithm does not have this strong and distinct
bias. Table 8 summarizes the results of the tests.
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Table 8. PB-OOV experimentally obtained precision.

HB# Random-HB#

num. tests 2000 25,000

targeted OOV weight est.
precision = 1− er f c(θ) 0.998641 0.999992

experimentally obtained
weight est. precision 0.999 1

targeted OOV bit precision
= 1− 1

2 er f c(θ) 0.999320 0.999996

experimentally obtained avg.
bit precision 0.999342 0.999996

experimentally obtained
0-bit precision 0.999344 0.999996

experimentally obtained
1-bit precision 0.999333 0.999995

6. Conclusions

This paper provides a detailed examination of the OOV attack reported in [12] against
the LPN based authentication protocols known as HB# and Random-HB#. We have
found that the problem of discrepancy between the theoretically estimated performances
and complexity in [12] and the experimentally evaluated ones in [25] arises from non-
Bayesian reasoning with inadequate approximations of the probability distributions on
the acceptance rates during the attack, which can not be improved due to the limitations
of Central limit theorem use in the attack context. We give a correction of the attack by
employing proper, Bayesian inference after establishing the exact underlying probability
distributions, and prove that the new version of the attack, unlike the original one, achieves
the targeted precision and complexity.

Since the OOV attack is recognized as one of the cornerstones in the analysis of any
HB-like authentication protocol, our correction of the OOV attack is not only significant
against Random-HB# and HB#, but also for practical security analysis of all new members
of the HB-family. An interesting future direction could be a design of improved MIM
attacks against HB-like protocols, which could be based on the corrected version of the
OOV attack proposed in this paper.
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Appendix A

Table A1. Parameters’ values used in the OOV and PB-OOV attack.

Parameter Set I Parameter Set II

HB# Random-HB# HB# Random-HB#

θ 2.401 3.308 2.265 3.164

R(wexp) 16,780.41 *
269.39

R(wopt) 2742.61

R(wexp − 1) 15,789.60
270.95

R(wopt − 1) 2743.75

nwexp = θ2R(wexp) 96,736 183,626
1382 2697

nwopt = θ2R(wopt) 15,811 30,012

nwexp−1 = θ2R(wexp − 1) 91,024 172,783
1390 2712

nwopt−1 = θ2R(wopt − 1) 15,817 30,024
* Rexp is calculated using Formula (2) from the OOV paper [12].
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