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Abstract: This is the first time that the method for the investigation of unpredictable solutions
of differential equations has been extended to unpredictable oscillations of neural networks with
a generalized piecewise constant argument, which is delayed and advanced. The existence and
exponential stability of the unique unpredictable oscillation are proven. According to the theory, the
presence of unpredictable oscillations is strong evidence for Poincaré chaos. Consequently, the paper
is a contribution to chaos applications in neuroscience. The model is inspired by chaotic time-varying
stimuli, which allow studying the distribution of chaotic signals in neural networks. Unpredictable
inputs create an excitation wave of neurons that transmit chaotic signals. The technique of analysis
includes the ideas used for differential equations with a piecewise constant argument. The results are
illustrated by examples and simulations. They are carried out in MATLAB Simulink to demonstrate
the simplicity of the diagrammatic approaches.

Keywords: Hopfield neural networks; unpredictable oscillations; unpredictable input-output; trans-
mission of chaotic signals; delayed and advanced generalized piecewise constant argument; Poincaré
chaos; exponential stability

1. Introduction

There are hybrid neural networks, which are neither continuous-time nor purely
discrete-time, and among them are dynamical systems with impulses and models with
piecewise constant arguments [1–10]. In recent years, the dynamics of Hopfield-type
neural networks have been studied and developed by many authors by using impul-
sive differential equations [11–15] and differential equations with a piecewise constant
argument [16–19]. In this paper, a new model of Hopfield-type neural networks with an
unpredictable input-output, as well as a delayed and advanced generalized piecewise
constant argument is proposed. Hopfield-type neural networks are effective at adaptive
pattern recognition and vision and image processing [20–22]. Differential equations with a
piecewise constant argument describing the Hopfield neural networks may “memorize”
the values of the phase variable at certain moments of time to utilize the values during
the middle process till the next moment [5–10,16–19,23–28]. Neural networks, comprised
of chaotically oscillating elements, store and transmit information in almost the same
way as nerve cells in the brain. It is known that unpredictable oscillations cause chaotic
behavior [29–41]. Therefore, their presence is necessary to study chaotic dynamics in neural
networks.

The novelty of our results has to be considered with respect to oscillations, chaos,
and modeling for neural networks. Oscillations such as periodic and almost periodic
were discussed intensively in [16–19,23–27,42–45]. However, the most developed are
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unpredictable oscillations, which were introduced and developed in [31–39]. This is
the first time unpredictable oscillations have been considered for neural networks with
a generalized-type piecewise constant argument. The argument admits the property
to be delayed and advanced, and consequently, it provides rich opportunities for the
investigation and application of neural networks.

It is known that oscillations and periodic motions are frequently observed in the
activities of the neurons in the brain. Recent developments in the field of neural networks
have led to an increased interest in the complexity of the dynamics. Oscillations and chaos
in neural networks are actual and have stimulated the interest of many scientists [46–50].
They occur in a neural network system due to the properties of single neurons [46,50,51]
and synaptic connections among neurons [52,53]. Neural networks in present research
display unpredictable oscillations and chaos. The unpredictable function was introduced
in [29] and is based on the dynamics of unpredictable points and Poincaré chaos [30]. More
precisely, the function is an unpredictable point of the Bebutov dynamics, and consequently,
it is a member of the chaotic set [31]. The notion of the unpredictable point extends the
frontiers of the classical theory of dynamical systems, and the unpredictable function
provides new problems of the existence of unpredictable oscillations for the theory of
differential equations [29–36]. These studies have been identified as major contributing
factors for the emergence of new types of sophisticated motion. Significant results have
been obtained for unpredictable oscillations of Hopfield-type neural networks, shunting
inhibitory cellular neural networks, and inertial neural networks [37–39].

To the best of our knowledge, there have been very few results on the dynamical behavior
of Hopfield-type neural networks with piecewise constant arguments [16–19,26,27]. In the
present paper, we try to expand them by considering piecewise constant arguments of
the generalized type [5–10,16–19,23–28,43,44] and by using the theory of unpredictable
functions. We improve on previous methods by considering unpredictable inputs, which
allow studying the distribution of chaotic signals in neural networks.

2. Preliminaries

Denote by R,N,Z the set of all real numbers, natural numbers, and integers, re-
spectively. Introduce a norm for the vector u = (u1, · · · , um), ui ∈ R, i = 1, · · · , m, as
||u|| = max

1≤i≤m
|ui|, where | · | is the absolute value. Correspondingly, for a square matrix

A = (aij)m×m, the norm ‖A‖ = max
1≤i≤m

m

∑
j=1
|aij| is utilized.

We fix two real valued sequences θi, ξi, i ∈ Z, such that θi < θi+1, θi ≤ ξi ≤ θi+1 for
all i ∈ Z, |θi| → ∞ as |i| → ∞. It is assumed that there exists a positive number θ such that
θk+1 − θk ≤ θ for all integers k.

The main subject under investigation in this paper is the following Hopfield-type
neural network system with a piecewise constant argument:

x′i(t) = −aixi(t) +
m

∑
j=1

bij f j(xj(t)) +
m

∑
j=1

cijgj(xj(γ(t))) + ϑi(t), (1)

where t, xi ∈ R, i = 1, 2, . . . m, γ(t) = ξk if θk ≤ t < θk+1, k ∈ Z :

ai > 0—the rates with which the units self-regulate or reset their potentials when isolated
from other units and inputs;
m—the number of neurons in the network;
xi(t)—the state of the ith unit at time t;
f j, gj—the activation functions of the incoming potentials of the unit j;
bij, cij—the synaptic connection weights of the unit j on the unit i;
ϑi(t)—the time-varying stimulus, corresponding to the external input from outside the
network to the unit i.
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Throughout this paper, we assume that the parameters bij and cij are real and that
the activation functions f j, gj : R→ R j = 1, 2, ..., m are continuous functions. Moreover,
suppose that there exist positive constants λ and λ̄ such that the inequality λ ≤ ai ≤ λ̄,
holds for each i = 1, 2, . . . , m.

We present system (1) in the following vector form:

x′(t) = Ax(t) + B f (x(t)) + Cg(x(γ(t))) + ϑ(t), (2)

where x = colon(x1, x2, . . . , xm) is the neuron state vector, f (x) = colon( f1(x1),
f2(x2), . . . , fm(xm)) and g(x) = colon(g1(x1), g2(x2), . . . , gm(xm)) are the activations, and
ϑ = colon(ϑ1, ϑ2, . . . , ϑm) is the input vector. Moreover, A = diag(−a1,−a2, . . . ,−am),
B = (bij)m×m, C = (cij)m×m are matrices.

As the usual activations for continuous time neural network dynamics, the following
sigmoidal functions are considered [45]:

f (σ) = tanh(σ) =
eσ − e−σ

eσ + e−σ
,

f (σ) =
2
π

arctan(
2σ

π
).

They are used in neural networks as activation functions, since they allow both
amplifying weak signals and do not become saturated by strong signals. The activation
function and the output function are summed up with the term transfer functions. If the
activation function determines the total signal a neuron receives, the transfer function
translates the input signals to the output signals.

The block diagram of the Hopfield-type neural network system with a piecewise
constant argument is shown in Figure 1, and the symbols for the diagram are described in
Table 1.

Figure 1. The block diagram for the Hopfield-type neural network system (1).

Definition 1 ([29]). A uniformly continuous and bounded function v : R→ Rm is unpredictable
if there exist positive numbers ε0, δ and sequences tn, un, both of which diverge to infinity such that
v(t + tn)→ v(t) as n→ ∞ uniformly on compact subsets of R and ‖v(t + tn)− v(t)‖ ≥ ε0 for
each t ∈ [un − δ, un + δ] and n ∈ N.
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Table 1. Characteristics of elements of the block diagram in Figure 1.

Symbols Description

Integrator block

Sum block

Gain blocks, with values A, B, C

Transfer function block, with nonlinear functions f and g
MATLAB function block, with the piecewise constant function γ(t)

ϑ(t) Input function
x(t) Output function

3. Main Results

Let Σ0 denote the space of m-dimensional vector-functions ϕ : R → Rm, ϕ =
(ϕ1, ϕ2, ..., ϕm) with the norm ‖ϕ‖1 = sup

t∈R
‖ϕ(t)‖. The functions of this space are assumed

to satisfy the following properties:

(A1) they are uniformly continuous;
(A2) there exists a number H > 0 such that ‖ϕ‖1 < H for each function ϕ;
(A3) there exists a sequence tn that diverges to infinity such that ϕ(t+ tn)→ ϕ(t) uniformly

on each closed and bounded interval of the real axis for each function ϕ.

The following conditions on the system (2) are assumed:

(C1) ‖ f (u)− f (v)‖ ≤ L‖u− v‖ and ‖g(u)− g(v)‖ ≤ L̄‖u− v‖ for all u, v ∈ Rm, where
L, L̄ are positive constants;

(C2) there exist positive numbers m f , mg such that sup
‖x‖<H

‖ f (x)‖ ≤ m f and sup
‖x‖<H

‖g(x)‖ ≤

mg;
(C3) ϑ is a function from the space Σ0, and there exists a positive number mϑ such that

sup
t∈R
‖ϑ(t)‖ ≤ mϑ;

(C4) ‖B‖m f + ‖C‖mg + mϑ < Hλ;
(C5) ‖B‖L + ‖C‖L̄ < λ;
(C6) −λ + ‖B‖L + K‖C‖L̄ < 0, where

K =
(

1− θ[(λ + ||B||L)(1 + ||C||L̄θ)e(λ+||B||L)θ + ||C||L̄]
)−1

;

(C7) θ[(λ + ||B||L)(1 + ||C||L̄θ)e(λ+||B||L)θ + ||C||L̄] < 1;
(C8) there exists a sequence ηn with the property ηn → ∞ as n→ ∞ such that θk−ηn + tn −

θk → 0 and ξk−ηn + tn − ξk → 0 as n→ ∞ on each finite interval of integers, where
tn is the sequence given in Definition 1.

Lemma 1 ([10]). A function x(t) = (x1(t), ..., xm(t)) is a bounded solution of equation (1) if and
only if it is a solution of the following integral equation:

x(t) =
t∫

−∞

eA(t−s)[B f (x(s)) + Cg(x(γ(s))) + ϑ(s)]ds. (3)

Let us introduce the operator Π on Σ0 such that:

Πϕ(t) =
t∫

−∞

eA(t−s)[B f (ϕ(s)) + Cg(ϕ(γ(s))) + ϑ(s)]ds.

Lemma 2. ΠΣ0 ⊆ Σ0.
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Proof. Let us evaluate the derivative of Πϕ(t) with respect to the time variable t. Then,
we have:

dΠϕ(t)/dt = B f (ϕ(t)) + Cg(ϕ(γ(t))) + ϑ(t) +

+ A
t∫

−∞

eA(t−s)[B f (ϕ(s)) + Cg(ϕ(γ(s))) + ϑ(s)]ds.

Hence, we can find for all t ∈ R that:

‖dΠϕ(t)/dt‖ ≤ ‖B‖‖ f (ϕ(t))‖+ ‖C‖‖g(ϕ(γ(t)))‖+ ‖ϑ(t)‖+

+ λ

t∫
−∞

e−λ(t−s)[‖B‖‖ f (ϕ(t))‖+ ‖C‖‖g(ϕ(γ(t)))‖+ ‖ϑ(t)‖]ds

≤ ‖B‖m f + ‖C‖mg + mϑ + λ/λ
(
‖B‖m f + ‖C‖mg + mϑ

)
= (1 + λ/λ)

(
‖B‖m f + ‖C‖mg + mϑ

)
.

Since the derivative of Πϕ(t) is bounded, Πϕ is uniformly continuous. This means that
Πϕ satisfies the property (A1).

Moreover, we have for ϕ ∈ Σ0 that:

‖Πϕ(t)‖ ≤
t∫

−∞

e−λ(t−s)[‖B‖‖ f (ϕ(s))‖+ ‖C‖‖g(ϕ(γ(s)))‖+ ‖ϑ(s)‖]ds

≤
t∫

−∞

e−λ(t−s)
[
‖B‖m f + ‖C‖mg + mϑ

]
ds

≤ λ−1
(
‖B‖m f + ‖C‖mg + mϑ

)
.

The last inequality together with the condition (C4) implies that ||Πϕ||1 < H. Thus, Πϕ
satisfies the property (A2).

Now, we need to check the last property (A3) for Πϕ. In other words, we have to
verify that there exists a sequence tn that diverges to infinity such that for each Πϕ ∈ Σ0,
Πϕ(t + tn)→ Πϕ(t) uniformly on each closed and bounded interval of the real axis. Fix
an arbitrary positive number ε and a closed interval [a, b], where a, b ∈ R with a < b. It is
enough to show that ||Πϕ(t + tn)−Πϕ(t)|| < ε for sufficiently large n and t ∈ [a, b]. We
choose two numbers c < a and ε > 0 such that:

2λ−1[‖B‖LH + ‖C‖L̄H + mϑ]e−λ(a−c) < ε/3, (4)

ελ−1[1 + ‖B‖L] < ε/3, (5)

2λ−1((p + 1)ε + pH)(1− e−λθ)‖C‖L̄ < ε/3. (6)
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Take n large enough such that ‖ϕ(t + tn)− ϕ(t)‖ < ε and ‖ϑ(t + tn)− ϑ(t)‖ < ε on
[c, b]. Then, for ϕ ∈ Σ0, by writing:

Πϕ(t + tn)−Πϕ(t) =

t+tn∫
−∞

eA(t+tn−s)[B f (ϕ(s)) + Cg(ϕ(γ(s))) + ϑ(s)]ds

−
t∫

−∞

eA(t−s)[B f (ϕ(s)) + Cg(ϕ(γ(s))) + ϑ(s)]ds

=

t∫
−∞

eA(t−s)[B[ f (ϕ(s + tn))− f (ϕ(s))]

+ C[g(ϕ(γ(s + tn)))− g(ϕ(γ(s)))] + ϑ(s + tn)− ϑ(s)]ds,

one can see that:

‖Πϕ(t + tn)−Πϕ(t)‖ ≤
t∫

−∞

e−λ(t−s)[‖B‖L‖ϕ(s + tn)− ϕ(s)‖

+ ‖C‖L̄‖ϕ(γ(s + tn))− ϕ(γ(s))‖+ ‖ϑ(s + tn)− ϑ(s)‖]ds

is valid. If we divide the last integral into two parts, we get for t ∈ [a, b] that:

‖Πϕ(t + tn)−Πϕ(t)‖ ≤
c∫

−∞

e−λ(t−s)[‖B‖L‖ϕ(s + tn)− ϕ(s)‖

+ ‖C‖L̄‖ϕ(γ(s + tn))− ϕ(γ(s))‖
+ ‖ϑ(s + tn)− ϑ(s)‖]ds

+

t∫
c

e−λ(t−s)[‖B‖L‖ϕ(s + tn)− ϕ(s)‖

+ ‖C‖L̄‖ϕ(γ(s + tn))− ϕ(γ(s))‖
+ ‖ϑ(s + tn)− ϑ(s)‖]ds

≤ 2λ−1[‖B‖LH + ‖C‖L̄H + mϑ]e−λ(a−c)

+

t∫
c

e−λ(t−s)[1 + ‖B‖L]εds

+

t∫
c

e−λ(t−s)‖C‖L̄‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

≤ 2λ−1[‖B‖LH + ‖C‖L̄H + mϑ]e−λ(a−c)

+ λ−1[1 + ‖B‖L]ε

+

t∫
c

e−λ(t−s)‖C‖L̄‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

≤ 2λ−1[‖B‖LH + ‖C‖L̄H + mϑ]e−λ(a−c)

+ λ−1[1 + ‖B‖L]ε

+ ‖C‖L̄
t∫

c

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds.

We need to find an upper bound for the last integral. For this purpose, we shall
evaluate it by dividing the interval of integration into subintervals as follows. For a fixed
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t ∈ [a, b], we assume without loss of generality that θi ≤ θi−ηn + tn and θi ≤ θi−ηn + tn =
c < θi+1 < θi+2 < · · · < θi+p ≤ θi+p−ηn + tn ≤ t < θi+p+1 so that there exist exactly p
discontinuity moments in the interval [c, t].

Let us denote:

I =
t∫

c

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds.

We shall need the following presentation of the last integral.

I =

θi+1∫
c

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

+

θi+1−ηn+tn∫
θi+1

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

+

θi+2∫
θi+1−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

+

θi+2−ηn+tn∫
θi+2

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

+

θi+3∫
θi+2−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

...

+

t∫
θi+p−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

=
i+p−1

∑
k=i

θk+1∫
θk−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

+
i+p−1

∑
k=i

θk+1−ηn+tn∫
θk+1

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

+

t∫
θi+p−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds.

Now, if we define the integrals in the last expression as:

Ak =

θk+1∫
θk−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds

and:

Bk =

θk+1−ηn+tn∫
θk+1

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds,
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where k = i, i + 1, · · · , i + p− 1, then we can write that:

I =
i+p−1

∑
k=i

Ak +
i+p−1

∑
k=i

Bk +

t∫
θi+p−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds.

For t ∈ [θk−ηn + tn, θk+1), γ(t) = ξk, and we have by the condition (C8) that γ(t + tn) =
ξk+ηn , k = i, i + 1, · · · , i + p− 1. Hence, we obtain that:

Ak =

θk+1∫
θk−ηn+tn

e−λ(t−s)‖ϕ(ξk+ηn)− ϕ(ξk)‖ds

=

θk+1∫
θk−ηn+tn

e−λ(t−s)‖ϕ(ξk + tn + o(1))− ϕ(ξk)‖ds

=

θk+1∫
θk−ηn+tn

e−λ(t−s)‖ϕ(ξk + tn)− ϕ(ξk) + ϕ(ξk + tn + o(1))− ϕ(ξk + tn)‖ds

≤
θk+1∫

θk−ηn+tn

e−λ(t−s)[‖ϕ(ξk + tn)− ϕ(ξk)‖+ ‖ϕ(ξk + tn + o(1))− ϕ(ξk + tn)‖]ds

≤
θk+1∫

θk−ηn+tn

e−λ(t−s)[ε + ‖ϕ(ξk + tn + o(1))− ϕ(ξk + tn)‖]ds.

Since the function ϕ is uniformly continuous, for large n and ε > 0, we can find a ρ > 0
such that ‖ϕ(ξk + tn + o(1))− ϕ(ξk + tn)‖ < ε if |ξk+ηn − ξk − tn| < ρ. As a result of this
discussion, we conclude that:

Ak ≤ 2ε

θk∫
θk−1−ηn+tn

e−λ(t−s)ds ≤ 2ελ−1(1− e−λθ).

Moreover, we have by the condition (C8) that:

Bk ≤ 2H

θk−ηn+tn∫
θk

e−λ(t−s)ds ≤ 2Hλ−1(1− e−λθ).

Applying a similar idea used for the integral Ak, we get:

t∫
θi+p−1−ηn+tn

e−λ(t−s)‖ϕ(γ(s + tn))− ϕ(γ(s))‖ds ≤ 2ελ−1(1− e−λθ).

Thus, it is true that:

I ≤ 2(p + 1)ελ−1(1− e−λθ) + 2pHλ−1(1− e−λθ)

= 2λ−1((p + 1)ε + pH)(1− e−λθ).
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As a result of these evaluations, it follows that:

‖Πϕ(t + tn)−Πϕ(t)‖ ≤ 2λ−1[‖B‖LH + ‖C‖L̄H + mϑ]e−λ(a−c)

+ ελ−1[1 + ‖B‖L]

+ 2λ−1((p + 1)ε + pH)(1− e−λθ)‖C‖L̄

for all t ∈ [a, b]. Hence, the inequalities (4)–(6) give that ||Πϕ(t + tn)−Πϕ(t)|| < ε for
t ∈ [a, b]. Thus, the function Πϕ satisfies the property (A3). As a result, the operator Π is
invariant in Σ0.

Lemma 3. The operator Π is a contraction on Σ0.

Proof. Let the functions ϕ and ψ belong to the space Σ0. We obtain for all t ∈ R that:

‖Πϕ(t)−Πψ(t)‖ ≤
t∫

−∞

e−λ(t−s)[‖B‖L‖ϕ(s)− ψ(s)‖

+ ‖C‖L̄‖ϕ(γ(s))− ψ(γ(s))‖]ds

≤
t∫

−∞

e−λ(t−s)[‖B‖L‖ϕ(s)− ψ(s)‖1

+ ‖C‖L̄‖ϕ(s)− ψ(s)‖1]ds

≤ λ−1[‖B‖L + ‖C‖L̄]‖ϕ(t)− ψ(t)‖1.

Then, it is true for all t ∈ R that:

‖Πϕ−Πψ‖1 ≤ λ−1[‖B‖L + ‖C‖L̄]‖ϕ(t)− ψ(t)‖1.

Consequently, the condition (C5) implies that the operator Π : Σ0 → Σ0 is contractive.
The lemma is proven.

The following assertion is needed in the proof of the stability of the solution.

Lemma 4 ([10]). Assume that the conditions (C1), (C7) are fulfilled and z(t) is a continuous
function with ‖z(t)‖1 < H. If w(t) is a solution of:

w′(t) = Aw(t) + B[ f (w(t) + z(t))− f (z(t))]

+ C[g(w(γ(t)) + z(γ(t)))− g(z(γ(t)))], (7)

then the following inequality:

||w(γ(t))|| ≤ K||w(t)|| (8)

holds for all t ∈ R, where K is as defined in (C6).

Proof. First, we fix an integer i such that t ∈ [θi, θi+1) and then consider two alternative
cases (a) θi ≤ ξi ≤ t < θi+1 and (b) θi ≤ t < ξi < θi+1.
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For (a) t ≥ ξi, we have:

||w(t)|| ≤ ||w(ξi)||+
t∫

ξi

[||A||||w(s)||+ ||B||L||w(s)||+ ||C||L̄||w(ξi)||]ds

≤ ||w(ξi)||+
t∫

ξi

[
λ||w(s)||+ ||B||L||w(s)||+ ||C||L̄||w(ξi)||

]
ds

≤ ||w(ξi)||(1 + ||C||L̄θ) +

t∫
ξi

[
λ + ||B||L

]
|w(s)||ds.

The Gronwall–Bellman lemma yields that:

||w(t)|| ≤ ||w(ξi)||(1 + ||C||L̄θ)e(λ+||B||L)θ .

Moreover, for t ∈ [θi, θi+1), we have:

||w(ξi)|| ≤ ||w(t)||+
t∫

ξi

[||A||||w(s)||+ ||B||L||w(s)||+ ||C||L̄||w(ξi)||]ds

≤ ||w(t)||+
t∫

ξi

[(λ + ||B||L)||w(s)||+ ||C||L̄||w(ξi)||]ds

≤ ||w(t)||+
t∫

ξi

[
(λ + ||B||L)(1 + ||C||L̄θ)e(λ+||B||L)θ ||w(ξi)||

+ ||C||L̄||w(ξi)||
]
ds

≤ ||w(t)||+ θ
[
(λ + ||B||L)(1 + ||C||L̄θ)e(λ+||B||L)θ + ||C||L̄

]
||w(ξi)||.

Consequently, it follows from the condition (C7) that ‖w(ξi)‖ ≤ K‖w(t)‖, for t ∈ [θi, θi+1),
i ∈ Z. Therefore, (8) holds for all θi ≤ ξi ≤ t < θi+1, i ∈ Z.

The assertion for case (b) θi ≤ t < ξi < θi+1, i ∈ Z can be proven in the same way.
Thus, one can conclude that (8) holds for all t ∈ R. The lemma is proven.

Theorem 1. Assume that the conditions (C1)–(C8) hold true. If the function ϑ is unpredictable,
then the system (1) has a unique exponentially stable unpredictable solution.

Proof. First, we show that Σ0 is a complete space. Let φk(t), which has a limit φ(t) on R,
be a Cauchy sequence in the space Σ0. It can be easily shown that the limit function φ(t) is
uniformly continuous and bounded, and hence, it satisfies the properties (A2) and (A3). It
remains only to show that φ(t) satisfies the property (A3). Consider a closed and bounded
interval I ⊂ R. We have:

‖φ(t + tn)− φ(t)‖ ≤ ‖φ(t + tn)− φk(t + tn)‖
+ ‖φk(t + tn)− φk(t)‖+ ‖φk(t)− φ(t)‖.

If one takes sufficiently large n and k such that each term on the right-hand side of
the last inequality is less than ε

3 for a small enough ε > 0 and t ∈ I, then the inequality
‖φ(t + tn)− |φ(t)‖ < ε is satisfied on I. This implies that the sequence φ(t + tn) converges
uniformly to φ(t) on I. Thus, the space Σ0 is complete. Since the operator Π is invariant and
contractive in Σ0, according to Lemmas 2 and 3, respectively, it follows from the contraction
mapping theorem that the operator Π has a unique fixed point z(t) ∈ Σ0, which is the
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unique solution of the neural network system (1). Hence, the uniqueness of the solution is
shown.

Next, we verify that this solution is unpredictable. We can find a positive number κ
and l, k ∈ N such that the following inequalities:

κ < δ, (9)

κ
[
−(λ̄ + L‖B‖)(1/l + 2/k)− 2L̄‖C‖+ 1/2

]
≥ 3/2l (10)

and:
‖z(t + s)− z(t)‖ < ε0 min{1/k, 1/4l}, t ∈ R, |s| < κ, (11)

are satisfied. Suppose that the numbers κ, l, k and n ∈ N are fixed.
Denote:

∆ = ‖z(un + tn)− z(un)‖

and consider the cases: (i) ∆ ≥ ε0/l, (ii) ∆ < ε0/l.
(i) If ∆ ≥ ε0/l holds, we have:

‖z(t + tn)− z(t)‖ ≥ ‖z(un + tn)− z(un)‖ − ‖z(un)− z(t)‖
− ‖z(t + tn)− z(un + tn)‖
> ε0/l − ε0/4l − ε0/4l = ε0/2l

for t ∈ [un − κ, un + κ], n ∈ N.
(ii) If ∆ < ε0/l is true, it follows from (11) that:

‖z(t + tn)− z(t)‖ ≤ ‖z(un + tn)− z(un)‖+ ‖z(un)− z(t)‖
+ ‖z(t + tn)− z(un + tn)‖
< ε0/l + ε0/k + ε0/k = (1/l + 2/k)ε0

for t ∈ [un, un + κ]. We can see that:

z(t) = z(un) +

t∫
un

[Az(s) + B f (z(s)) + Cg(z(γ(s))) + ϑ(s)]ds

and:

z(t + tn) = z(un + tn) +

t∫
un

[Az(s + tn) + B f (z(s + tn))

+ Cg(z(γ(s + tn))) + ϑ(s + tn)]ds.

Subtracting the first equation from the second one, we get:

z(t + tn)− z(t) = z(un + tn)− z(un) +

t∫
un

[A[z(s + tn)− z(s)]

+ B[ f (z(s + tn))− f (z(s))]

+ C[g(z(γ(s + tn)))− g(z(γ(s)))]

+ [ϑ(s + tn)− ϑ(s)]]ds
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= z(un + tn)− z(un)−
t∫

un

A[z(s + tn)− z(s)]ds

+

t∫
un

B[ f (z(s + tn))− f (z(s))]ds

+

t∫
un

C[g(z(γ(s + tn)))− g(z(γ(s)))]ds

+

t∫
un

[ϑ(s + tn)− ϑ(s)]ds.

Therefore, we have that:

‖z(t + tn)− z(t)‖ ≥ −‖z(un + tn)− z(un)‖ −
t∫

un

λ̄‖z(s + tn)− z(s)‖ds

−
t∫

un

‖B‖‖ f (z(s + tn))− f (z(s))‖ds

−
t∫

un

‖C‖‖g(z(γ(s + tn)))− g(z(γ(s)))‖ds

+

t∫
un

‖ϑ(s + tn)− ϑ(s)‖ds

≥ −ε0/l − λ̄κ(1/l + 2/k)ε0 − ‖B‖Lκ(1/l + 2/k)ε0

− ‖C‖L̄
t∫

un

‖z(γ(s + tn))− z(γ(s))‖ds +
κ

2
ε0

for t ∈ [un +
κ
2 , un + κ].

For a fixed t ∈ [un +
κ
2 , un + κ], we can take sufficiently small κ so that θi−ηn + tn ≤

un < un +
κ
2 ≤ t ≤ un + κ < θi+1 for some i ∈ Z. Hence, γ(t) = ξi for t ∈ [un +

κ
2 , un + κ],

which implies together with the condition (C8) that γ(t + tn) = ξi+ηn . Since z(t) ∈ Σ0, the
function z is uniformly continuous. Using this fact, for ε0 > 0 and for large n, we can find
a ρ > 0 such that:

t∫
un

‖z(γ(s + tn))− z(γ(s))‖ds =
t∫

un

‖z(ξi+ηn)− z(ξi)‖ds

≤
t∫

un

‖z(ξi + tn)− z(ξi)‖ds

+

t∫
un

‖z(ξi + tn + o(1))− z(ξi + tn)‖ds

≤ 2κε0,

if ‖ξi+ηn − ξi − tn‖ < ρ.
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At the end, we have by the inequality (10) that:

‖z(t + tn)− z(t)‖ ≥ −ε0/l − λ̄(1/l + 2/k)κε0 − ‖B‖L(1/l + 2/k)κε0 −

− 2‖C‖L̄κε0 +
κ

2
ε0

≥ −ε0/l + 3ε0/2l ≥ ε0/2l.

Based on the inequalities obtained in cases (i) and (ii), we see that the solution z(t) is
unpredictable with un = un +

3κ
4 and δn = κ

4 .
Lastly, let us consider the stability of the solution z(t).
Denote w(t) = y(t)− z(t), where y(t) = colon(y1(t), y2(t), ..., ym(t)) is another solu-

tion of the neural network system (1) with a piecewise constant argument of the generalized
type. Then, w(t) = colon(w1(t), w2(t), ..., wm(t)) will be a solution of (7).

We have that:

||w(t)|| ≤e−λ(t−t0)‖w(t0)‖

+
∫ t

t0

e−λ(t−s)[||B||L||w(s)||+ ||C||L̄||w(γ(s))||]ds.
(12)

By applying the inequalities (8) to (12), we obtain that:

||w(t)|| ≤ e−λ(t−t0)||w(t0)||+
∫ t

t0

e−λ(t−s)[||B||L ||w(s)||+ ||C||L̄K‖w(s)‖]ds.

Hence, we find that:

‖w(t)‖ ≤ e−λ(t−t0)‖w(t0)‖+
∫ t

t0

e−λ(t−s)(‖B‖L + K‖C‖L̄)||w(s)||ds.

The last inequality can be written as follows:

eλt‖w(t)‖ ≤ eλt0 ||w(t0)||+ (‖B‖L + K‖C‖L̄)
∫ t

t0

eλs‖w(s)‖ds.

If we apply the Gronwall–Bellman lemma for the last inequality, it leads to:

||w(t)|| ≤ ||w(t0)||e(−λ+‖B‖L+K‖C‖L̄)(t−t0).

In other words, we have:

||y(t)− z(t)|| ≤ ||y(t0)− z(t0)||e(−λ+‖B‖L+K‖C‖L̄)(t−t0).

Now, based on the condition (C6), we conclude that the solution z(t) of (1) is uniformly
exponentially stable. The theorem is proven.

4. Examples and Numerical Simulations

We present two examples in this section. First, we construct an example of an unpre-
dictable function by means of the logistic map considered in [29]. Then, we make use of
this function in the second example, which deals with a Hopfield-type neural network
system.

Example 1. Consider the following discrete logistic map given by:

χi+1 = µχi(1− χi), (13)

where i ∈ Z. We know that if µ ∈ (0, 4], then the iterations of this map belong to the interval
[0, 1] [54]. Moreover, if µ ∈ [3 + ( 2

3 )
1/2, 4], equation (13) has an unpredictable solution. Let Ψi,

i ∈ Z, denote an unpredictable solution of (13) for µ = 3.93. There exist a positive number ε0
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and sequences pn qn that diverge to infinity such that |Ψi+pn −Ψi| → 0 as n → ∞ for each i in
bounded intervals of integers and |Ψpn+qn −Ψqn | ≥ ε0 for each n ∈ N.

Consider the following integral defined by:

Θ(t) =
∫ t

−∞
e−4(t−s)Ω(s)ds, t ∈ R,

where Ω(t) = Ψi for t ∈ [i, i + 1), i ∈ Z. It is worth noting that Θ(t) is bounded on the whole real
axis such that sup

t∈R
|Θ(t)| ≤ 1/4. In [37], it was proven that the function Θ(t) is an unpredictable

function.
Since we do not know the initial value of the function Θ(t), we are not able to visualize it. For

this reason, we represent the function Θ(t) as follows:

Θ(t) =
∫ t

−∞
e−4(t−s)Ω(s)ds = e−4tΘ0 +

∫ t

0
e−4(t−s)Ω(s)ds, (14)

where Θ0 =
∫ 0

−∞
e4sΩ(s)ds. It is worth noting that the simulation of an unpredictable function is

impossible, since the initial value is not known.
That is why, we simulate a function Φ(t) that approaches the function Θ(t) as time increases.

Let us determine:

Φ(t) = e−4tΦ0 +
∫ t

0
e−4(t−s)Ω(s)ds, (15)

where Φ0 is a fixed number, which is not necessarily equal to Θ0. Subtract equality (15) from
equality (14) to obtain that Θ(t)−Φ(t) = e−4t(Θ0 −Φ0), t ≥ 0. The last equation demonstrates
that the difference Θ(t) − Φ(t) exponentially diminishes. This means that the function Φ(t)
exponentially tends to the unpredictable function Θ(t), i.e., the graphs of these functions approach,
as time increases.

The functions Φ(t) and Θ(t) are the solutions of the differential equation:

Φ′(t) = −4Φ(t) + Ω(t),

and instead of the curve describing the unpredictable solution Θ(t), we can take the graph of Φ(t),
which approximates the first one asymptotically. In Figure 2, we depict the graph defined by the
initial value Φ(0) = 0.45.

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

Φ
(t

)

Figure 2. The graph of function Φ(t), which exponentially approaches the unpredictable function Θ(t).
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Example 2. Consider the following Hopfield-type neural network given by:

x′i(t) = −aixi(t) +
3

∑
j=1

bij f j(xj(t)) +
3

∑
j=1

cijgj(xj(γ(t))) + ϑi(t), (16)

where a1 = 0.5, a2 = 0.2, a3 = 0.25, fi(xi(t)) = 0.1 tanh(xi(t)/8),
gi(xi(t)) = 0.05 tanh(xi(t)/6), i = 1, 2, 3, b11 b12 b13

b21 b22 b23
b31 b32 b33

 =

 0.1 0.2 0.5
0.3 0.1 0.2
0.2 0.1 0.3

,

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

 0.1 0.2 0.1
0.2 0.2 0.2
0.1 0.3 0.1


and the time-varying stimulus is: ϑ1(t)

ϑ2(t)
ϑ3(t)

 =

 −24Θ(t)− 0.04
48Θ3(t) + 0.05
58Θ3(t) + 0.03

.

Here, Θ(t) is the unpredictable function mentioned in Example 1.

Let the argument function γ(t) = ξk be defined by the sequences θk = k, ξk = 2k+1
2 +

Ψk, k ∈ Z.
We can see that the conditions (C1)–(C8) are valid for the neural network (16) with

λ = 0.2, λ̄ = 0.5, Lj = 0.0125, L̄j = 0.0083, m f = 0.1, mg = 0.05, for j = 1, 2, 3, and
moreover, mv = 6.04, K = 1.1648. If we accept H = 31, then the system (16) satisfies all
conditions of Theorem 1. Therefore, (16) has a unique exponentially stable unpredictable
solution x(t).

Since the initial value is not known precisely, it is not possible to simulate the unpredictable
solution x(t). For this reason, we consider another solution ψ(t) = (ψ1(t), ψ2(t), ψ3(t)), which
starts initially at the point ψ(0) = (−12.4956, 0.7828, 12.1987).

The graph of function ψ(t) approaches the unpredictable solution x(t) of equation (16),
as time increases. That is, instead of the curve describing the unpredictable solution, one
can consider the graph of x(t). We present the coordinates of the solution ψ(t) in Figure 3.
Moreover, Figure 4 indicates the trajectory of the solution.
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Figure 3. The coordinates of function ψ(t), which exponentially converge to the coordinates of the
unpredictable solution x(t).
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Figure 4. The trajectory of function ψ(t).

Further, we describe a circuit implementation of the proposed Hopfield-type neural
network (16) using MATLAB Simulink. The Simulink model of the Hopfield-type neural
network is depicted in Figure 5, and the symbols are described in Table 2.
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g 3()

Figure 5. The block diagram for System (16).

In the block diagram, we took the hyperbolic tangent transfer function as the sigmoid
functions f and g. To implement the block diagram, we used the transfer function “tansig”
from the MATLAB Simulink library. Inputs ϑ1(t), ϑ2(t), ϑ3(t) are unpredictable functions.

Table 2. Characteristics of elements of the block diagram in Figure 5.

Symbols Description

Integrator block

Sum block

Gain blocks with the values ai, bij, cij, i, j = 1, 2, 3

tansig

Transfer function block, with nonlinear functions f and g

MATLAB function block, with the piecewise constant function γ(t)

Input function

Output function
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