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Abstract: We study the persistence of eigenvalues and eigenvectors of perturbed eigenvalue prob-
lems in Hilbert spaces. We assume that the unperturbed problem has a nontrivial kernel of odd
dimension and we prove a Rabinowitz-type global continuation result. The approach is topological,
based on a notion of degree for oriented Fredholm maps of index zero between real differentiable
Banach manifolds.
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1. Introduction

Nonlinear spectral theory is a research field of increasing interest, which finds ap-
plication to properties of the structure of the solution set of differential equations, see
e.g., [1,2].

In this context, a nontrivial question consists of studying nonlinear perturbations
of linear problems and in investigating the so-called “persistence” of eigenvalues and
eigenvectors.

More precisely, let G and H denote two real Hilbert spaces. By a “perturbed eigenvalue
problem” we mean a system of the following type:{

Lx + sN(x) = λCx

x ∈ S,
(1)

where s, λ are real parameters, L, C : G → H are bounded linear operators, S denotes
the unit sphere of G, and N : S → H is a nonlinear map. We call solution of (1) a triple
(s, λ, x) ∈ R×R× S satisfying the above system. The element x ∈ S is then said a unit
eigenvector corresponding to the eigenpair (s, λ) of (4), and the set of solutions of (1) will be
denoted by Σ ⊆ R×R×S.

To investigate the topological properties of Σ, we consider (1) as a (nonlinear) pertur-
bation of the eigenvalue problem {

Lx = λCx

x ∈ S,
(2)
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where we assume that the operator L− λC ∈ L(G, H) is invertible for some λ ∈ R. When
λ ∈ R is such that Ker(L− λC) is nontrivial, we call λ an eigenvalue of the equation L = λC
or, equivalently, of problem (2). A solution (λ, x) of (2) will be called an eigenpoint; in
this case λ and x are, respectively, an eigenvalue and a unit eigenvector of the equation
Lx = λCx.

Let (λ∗, x∗) be an eigenpoint of (2) and suppose that the following conditions hold:

(H1) C is a compact operator,
(H2) Ker(L− λ∗C) is odd dimensional,
(H3) Img(L− λ∗C) ∩ C(Ker(L− λ∗C)) = {0}.

Under assumptions (H1)–(H3) our main result, Theorem 5 below, asserts that

• in the set Σ of the solutions of (1), the connected component containing (0, λ∗, x∗) is
either unbounded or includes a trivial solution (0, λ∗, x∗) with λ∗ 6= λ∗.

The proof of Theorem 5, which can be thought of as a Rabinowitz-type global con-
tinuation result [3], is based on a preliminary study of the “unperturbed” problem (2). In
particular, notice that the eigenpoints of (2) coincide with the solutions of the equation

ψ(λ, x) = 0,

where ψ is the H-valued function (λ, x) 7→ Lx− λCx defined on the cylinder R×S, which
is a smooth 1-codimensional submanifold of the Hilbert space R×G. A crucial point is then
to evaluate the topological degree of the map ψ. Since the domain of ψ is a manifold, we
cannot apply the classical Leray–Schauder degree. Instead, we use a notion of topological
degree for oriented Fredholm maps of index zero between real differentiable Banach
manifolds, developed by two authors of this paper, and whose construction and properties
are summarized in Section 3 for the reader’s convenience. Such a notion of degree has been
introduced in [4] (see also [5–7] for additional details).

Taking advantage of the odd multiplicity assumption (H2), of condition (H1) on the
compactness of C, and of the transversality condition (H3), we are then able to apply a result
of [8] concerning the case of simple eigenvalues. Precisely, call λ∗ ∈ R a simple eigenvalue
of (2) if there exists x∗ ∈ S such that Ker(L− λ∗C) = Rx∗ and H = Img(L− λ∗C)⊕RCx∗.
In [8] we proved that

• if λ∗ is a simple eigenvalue of (2) and x∗ and −x∗ are the two corresponding unit
eigenvectors, then the “twin” eigenpoints p∗ = (λ∗, x∗) and p̄∗ = (λ∗,−x∗) are
isolated zeros of ψ. Moreover, under the assumption that the operator C is compact,
they give the same contribution to the b f -degree, which is either 1 or −1, depending
on the orientation of ψ.

Such an assertion generalizes, to the infinite dimensional case, an analogous result
in [9] concerning a “classical eigenvalue problem” in Rk. Let us point out that the result
in [9] is based on the notion of Brouwer degree for maps between finite dimensional
oriented manifolds, whereas, as already stressed, the extension to the infinite-dimensional
setting of [8] requires a degree for Fredholm maps of index zero acting between Banach
manifolds, as the one introduced in [4]. To apply this degree we need the unit sphere S to
be a smooth manifold: for this reason, we restrict our study to Hilbert spaces instead of the
more general Banach environment.

The study of the local [10–16] as well as global [5,8,9,17,18] persistence property when
the eigenvalue λ∗ is not necessarily simple has been performed in recent papers by the
authors, also in collaboration with R. Chiappinelli. In particular, a first pioneering result in
this sense is due to Chiappinelli [19], who proved the existence of the local persistence of
eigenvalues and eigenvectors, in Hilbert spaces, in the case of a simple isolated eigenvalue.

Among others, let us quote our paper [18] in which we tackled a problem very similar
to the one we consider here. The main result of [18] regards, roughly speaking, the global
persistence property of the eigenpairs (s, λ) of (1), in the sλ-plane, under the odd multiplicity
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assumption. Thus, the result we obtain here on the global persistence of the solutions
(s, λ, x) of (1) was, in some sense, implicitly conjectured in [18].

The present paper generalizes the “global persistence” property of solution triples
which either in finite-dimensional or infinite-dimensional case, has been studied in [5,8,9,17]
in the case of a simple eigenvalue. Since it is known that the persistence property need
not hold if λ∗ is an eigenvalue of even multiplicity, it is natural to investigate the odd-
multiplicity case. However such an extension is not trivial and is based on advanced
degree-theoretical tools.

We close the paper with some illustrating examples showing, in particular, that the odd
dimensionality of Ker(L−λ∗C) cannot be removed, the other assumptions remaining valid.

2. Preliminaries

In this section we recall some notions that will be used in the sequel. We mainly
summarize some concepts which are needed for the construction of the topological degree
for oriented Fredholm maps of index zero between real differentiable Banach manifolds
introduced in [4], here called b f -degree to distinguish it from the Leray–Schauder degree,
called LS-degree (see [5–7] for additional details).

It is necessary to begin by focusing on the preliminary concept of orientation for
Fredholm maps of index zero between manifolds. The starting point is an algebraic notion
of orientation for Fredholm linear operators of index zero.

Consider two real Banach spaces E and F and denote by L(E, F) the space of the
bounded linear operators from E into F with the usual operator norm. If E = F, we
write L(E) instead of L(E, E). By Iso(E, F) we mean the subset of L(E, F) of the invertible
operators, and we write GL(E) instead of Iso(E, E). The subspace of L(E, F) of the compact
operators will be denoted by K(E, F), or simply by K(E) when F = E. Finally, F (E, F) will
stand for the vector subspace of L(E, F) of the operators having finite dimensional image
(recall that in the infinite dimensional context, F (E, F) is not closed in L(E, F)). We shall
write F (E) when F = E.

Recall that an operator T ∈ L(E, F) is said to be Fredholm (see e.g., [20]) if its kernel,
Ker T, and its cokernel, coKer T = F/T(E), are both finite dimensional. The index of a
Fredholm operator T is the integer

ind T = dim(Ker T)− dim(coKer T).

In particular, any invertible linear operator is Fredholm of index zero. Observe also
that if T ∈ L(Rk,Rs), then ind T = k− s.

The subset of L(E, F) of the Fredholm operators will be denoted by Φ(E, F); while
Φn(E, F) will stand for the set {T ∈ Φ(E, F) : ind T = n}. By Φ(E) and Φn(E) we will
designate, respectively, Φ(E, E) and Φn(E, E).

We recall some important properties of Fredholm operators.

(F1) If T ∈ Φ(E, F), then Img T is closed in F.
(F2) The composition of Fredholm operators is Fredholm and its index is the sum of the

indices of all the composite operators.
(F3) If T ∈ Φn(E, F) and K ∈ K(E, F), then T + K ∈ Φn(E, F).
(F4) For any n ∈ Z, the set Φn(E, F) is open in L(E, F).

Let T ∈ L(E) be given. If I − T ∈ F (E), where I ∈ L(E) is the identity, we say that
T is an admissible operator (for the determinant). The symbol A(E) will stand for the affine
subspace of L(E) of the admissible operators.

It is known (see [21]) that the determinant of an operator T ∈ A(E) is well defined as
follows: det T := det T|Ê, where T|Ê is the restriction (as domain and as codomain) to any
finite dimensional subspace Ê of E containing Img(I − T), with the understanding that
det T|Ê = 1 if Ê = {0}. As one can check, the function det : A(E)→ R inherits most of the
properties of the classical determinant. For more details, see e.g., [22].
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Let T ∈ Φ0(E, F) be given. As in [5], we will say that an operator K ∈ F (E, F) is a
companion of T if T + K is invertible (in previous papers, e.g., in [4], it was used the word
corrector instead of companion).

Observe in particular that any T ∈ Iso(E, F) has a natural companion: that is, the zero
operator 0 ∈ L(E, F). This fact was crucial in [4] for the construction of the b f -degree.

Given T ∈ Φ0(E, F), we denote by C(T) the (nonempty) subset of F (E, F) of all
the companions of T. The following definition establishes a partition of C(T) in two
equivalence classes and is a key step for the definition of orientation given in [4].

Definition 1 (Equivalence relation). Two companions K1 and K2 of an operator T ∈ Φ0(E, F)
are equivalent (more precisely, T-equivalent) if the admissible operator (T + K2)

−1(T + K1) has
positive determinant.

Definition 2 (Orientation). An orientation of T ∈ Φ0(E, F) is one of the two equivalence classes
of C(T), denoted by C+(T) and called the class of positive companions of the oriented operator
T. The set C−(T) = C(T) \ C+(T) of the negative companions is the opposite orientation
of T.

Some further definitions are in order.

Definition 3 (Natural orientation). Any T ∈ Iso(E, F) admits the natural orientation: the one
given by considering the trivial operator of L(E, F) as a positive companion.

Definition 4 (Oriented composition). The oriented composition of two oriented operators,
T1 ∈ Φ0(E1, E2) and T2 ∈ Φ0(E2, E3), is the operator T2T1 with the orientation given by
considering K = (T2 + K2)(T1 + K1)− T2T1 as a positive companion whenever K1 and K2 are
positive companions of T1 and T2, respectively.

Observe that the oriented composition is associative and, consequently, this notion
can be extended to the composition of three (or more) oriented operators.

Definition 5 (Sign of an oriented operator). Let T ∈ Φ0(E, F) be an oriented operator. Its sign
is the integer

sign T =


+1 if T is invertible and naturally oriented,
−1 if T is invertible and not naturally oriented,

0 if T is not invertible.

A crucial fact in the definition of oriented map and the consequent construction of the
b f -degree is that

• the orientation of any operator T∗ ∈ Φ0(E, F) induces an orientation of the operators
in a neighborhood of T∗.

In fact, since Iso(E, F) is open in L(E, F), for any companion K of T∗ we have that
T + K is invertible when T is sufficiently close to T∗. Thus, because of property (F3) of
the Fredholm operators, any such T belongs to Φ0(E, F). Consequently, K is as well a
companion of T.

Definition 6. Let Γ: X → Φ0(E, F) be a continuous map defined on a metric space X. A
pre-orientation of Γ is a function that to any x ∈ X assigns an orientation ω(x) of Γ(x). A
pre-orientation (of Γ) is an orientation if it is continuous, in the sense that given any x∗ ∈ X, there
exist K ∈ ω(x∗) and a neighborhood W of x∗ such that K ∈ ω(x) for all x ∈ W. The map Γ is
said to be orientable if it admits an orientation, and oriented if an orientation has been chosen. In
particular, a subset Y of Φ0(E, F) is orientable or oriented if so is the inclusion map Y ↪→ Φ0(E, F).
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Observe that the set Φ̂0(E, F) of the oriented operators of Φ0(E, F) has a natural
topology, and the natural projection π : Φ̂0(E, F) → Φ0(E, F) is a 2-fold covering space
(see [7] for details). Therefore, an orientation of a map Γ as in Definition 6 could be regarded
as a lifting Γ̂ of Γ. This implies that if the domain X of Γ is simply connected and locally
path connected, then Γ is orientable.

Let f : U → F be a C1-map defined on an open subset of E, and denote by d fx ∈
L(E, F) the Fréchet differential of f at a point x ∈ U.

We recall that f is said to be Fredholm of index n, called Φn-map and hereafter also
denoted by f ∈ Φn, if d fx ∈ Φn(E, F) for all x ∈ U. Therefore, if f ∈ Φ0, Definition 6 and
the continuity of the differential map d f : U → Φ0(E, F) suggest the following

Definition 7 (Orientation of a Φ0-map in Banach spaces). Let U be an open subset of E
and f : U → F a Fredholm map of index zero. A pre-orientation or an orientation of f are,
respectively, a pre-orientation or an orientation of d f , according to Definition 6. The map f is said
to be orientable if it admits an orientation, and oriented if an orientation has been chosen.

Remark 1. A very special Φ0-map is given by an operator T ∈ Φ0(E, F). Thus, for T there are
two different notions of orientations: the algebraic one and that in which T is seen as a C1-map,
according to Definitions 2 and 7, respectively. In each case T admits exactly two orientations (in
the second one this is due to the connectedness of the domain E). Hereafter, we shall tacitly assume
that the two notions agree. Namely, T has an algebraic orientation ω if and only if its differential
dTx : ẋ 7→ Tẋ has the ω orientation for all x ∈ E.

Let us summarize how the notion of orientation can be given for maps acting between
real Banach manifolds. In the sequel, by manifold we shall mean, for short, a smooth Banach
manifold embedded in a real Banach space.

Given a manifoldM and a point x ∈ M, the tangent space ofM at x will be denoted
by TxM. IfM is embedded in a Banach space Ẽ, TxM will be identified with a closed
subspace of Ẽ, for example by regarding any tangent vector of TxM as the derivative Γ′(0)
of a smooth curve Γ : (−1, 1)→M such that Γ(0) = x.

Assume that f : M→ N is a C1-map between two manifolds, respectively embedded
in Ẽ and F̃ and modelled on E and F. As in the flat case, f is said to be Fredholm of index n
(written f ∈ Φn) if so is the differential d fx : TxM→ Tf (x)N , for any x ∈ M (see [23]).

Given f ∈ Φ0, suppose that to any x ∈ M it is assigned an orientation ω(x) of d fx
(also called orientation of f at x). As above, the function ω is called a pre-orientation of f , and
an orientation if it is continuous, in a sense to be specified (see Definition 9).

Definition 8. The pre-oriented composition of two (or more) pre-oriented maps between manifolds
is given by assigning, at any point x of the domain of the composite map, the composition of the
orientations (according to Definition 4) of the differentials in the chain representing the differential
at x of the composite map.

Assume that f : M→ N is a C1-diffeomorphism. Thus, for any x ∈ M, we may take
as ω(x) the natural orientation of d fx (recall Definition 3). This pre-orientation of f turns
out to be continuous according to Definition 9 below (it is, in some sense, constant).

From now on, unless otherwise stated, any diffeomorphism will be considered oriented
with the natural orientation. In particular, in a composition of pre-oriented maps, all charts
and parametrizations of a manifold will be tacitly assumed to be naturally oriented.

Definition 9 (Orientation of a Φ0-map between manifolds). Let f : M→ N be a Φ0-map
between two manifolds modelled on E and F, respectively. A pre-orientation of f is an orientation
if it is continuous in the sense that given any two charts, ϕ : U → E ofM and ζ : V → F of N ,
such that f (U) ⊆ V, the pre-oriented composition

ζ ◦ f ◦ ϕ−1 : U → V
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is an oriented map according to Definition 7.
The map f is said to be orientable if it admits an orientation, and oriented if an orientation

has been chosen.

For example any local diffeomorphism f : M → N admits the natural orientation,
given by assigning the natural orientation to the operator d fx, for any x ∈ M (see
Definition 3).

In contrast, a very simple example of non-orientable Φ0-map is given by a constant
map from the 2-dimensional projective space into R2 (see [7]).

Notation 1. Let D be a subset of the product X×Y of two metric spaces. Given x ∈ X, we call
x-slice of D the set Dx = {y ∈ Y : (x, y) ∈ D}. Moreover, if f : D → Z is a map into a metric
space Z, we denote by fx : Dx → Z the partial map of f defined by fx = f (x, ·).

As with the case of a single map, one can define a notion of orientation of a continuous
family of Φ0-maps depending on a parameter s ∈ [0, 1]. To be precise, one has the following

Definition 10 (Oriented Φ0-homotopy). A Φ0-homotopy between two Banach manifoldsM
and N is a C1-map h : [0, 1]×M→ N such that for any s ∈ [0, 1], the partial map hs = h(s, ·)
is Fredholm of index zero. An orientation of h is a continuous function ω that to any (s, x) ∈
[0, 1]×M assigns an orientation ω(s, x) to the differential d(hs)x ∈ Φ0(TxM, Th(s,x)N ), where

“continuous” means that, given any chart ϕ : U → E ofM, a subinterval J of [0, 1], and a chart
ζ : V → F ofN such that h(J×U) ⊆ V, the pre-orientation of the map Γ : J×U → Φ0(E, F) that
to any (s, x) ∈ J×U assigns the pre-oriented composition

d(ζ ◦ hs ◦ ϕ−1)x = dζh(s,x)d(hs)x(dϕx)
−1

is an orientation, according to Definition 6.
The homotopy h is said to be orientable if it admits an orientation, and oriented if an

orientation has been chosen.

If a Φ0-homotopy h has an orientation ω, then any partial map hs = h(s, ·) has a
compatible orientation ω(s, ·). Conversely, one has the following

Proposition 1 ([4,7]). Let h : [0, 1]×M → N be a Φ0-homotopy, and assume that one of its
partial maps, say hs, has an orientation. Then, there exists and is unique an orientation of h which
is compatible with that of hs. In particular, if two maps fromM to N are Φ0-homotopic, then they
are both orientable or both non-orientable.

As a consequence of Proposition 1, one gets that any C1-map f : M→M which is
Φ0-homotopic to the identity is orientable, since so is the identity (even whenM is finite
dimensional and not orientable).

The b f -degree, introduced in [4], satisfies the three fundamental properties listed
below: Normalization, Additivity and Homotopy Invariance. In [6], by means of an axiomatic
approach, it is proved that the b f -degree is the only possible integer-valued function that
satisfies these three properties.

More in detail, the b f -degree is defined in a class of admissible triples. Given an oriented
Φ0-map f : M→ N , an open (possibly empty) subset U ofM, and a target value y ∈ N ,
the triple ( f , U, y) is said to be admissible for the b f -degree provided that U ∩ f−1(y) is
compact. From the axiomatic point of view, the b f -degree is an integer-valued function,
degb f , defined on the class of all the admissible triples, that satisfies the following three
fundamental properties.



Mathematics 2021, 9, 561 7 of 18

• (Normalization) If f : M→ N is a naturally oriented diffeomorphism onto an open subset
of N , then

degb f ( f ,M, y) = 1, ∀y ∈ f (M).

• (Additivity) Let ( f , U, y) be an admissible triple. If U1 and U2 are two disjoint open subsets
of U such that U ∩ f−1(y) ⊆ U1 ∪U2, then

degb f ( f , U, y) = degb f ( f |U1 , U1, y) + degb f ( f |U2 , U2, y).

• (Homotopy Invariance) Let h : [0, 1]×M→ N be an oriented Φ0-homotopy, and Γ : [0, 1]→
N a continuous path. If the set{

(s, x) ∈ [0, 1]×M : h(s, x) = γ(s)
}

is compact, then degb f (h(s, ·),M, γ(s)) does not depend on s ∈ [0, 1].

Other useful properties are deduced from the fundamental ones (see [6] for details).
Here we mention some of them.

• (Localization) If ( f , U, y) is an admissible triple, then

deg( f , U, y) = deg( f |U , U, y).

• (Existence) If ( f , U, y) is admissible and degb f ( f , U, y) 6= 0, then the equation f (x) = y
admits at least one solution in U.

• (Excision) If ( f , U, y) is admissible and V is an open subset of U such that f−1(y) ∩U ⊆
V, then

deg( f , U, y) = deg( f , V, y).

In some sense, given an admissible triple ( f , U, y), the integer degb f ( f , U, y) is an
algebraic count of the solutions in U of the equation f (x) = y. In fact, from the fundamental
properties one gets the following

• (Computation Formula) If ( f , U, y) is admissible and y is a regular value for f in U, then
the set U ∩ f−1(y) is finite and

degb f ( f , U, y) = ∑
x∈U∩ f−1(y)

sign(d fx).

Another useful property that can be deduced from the fundamental ones is the

• (Topological Invariance) If ( f , U, y) is admissible and g : N → O is a naturally oriented
diffeomorphism onto a manifold O, then

degb f ( f , U, y) = degb f (g ◦ f , U, g(y)).

Some further notation and definitions are in order.

Notation 2. Hereafter we will use the shorthand notation degb f ( f , U) instead of degb f ( f , U, 0),
where f : M→ F is an oriented Φ0-map from a manifold into a Banach space, U is an open subset
ofM, and 0 is the null vector of F. Analogously, degLS( f , U) means the Leray–Schauder degree
degLS( f , U, 0), where U is an open bounded subset of a Banach space E, f : U → E is a compact
vector field defined on the closure of U, and 0 is the null vector of E.

Definition 11. Let X be a metric space and K ⊆ A ⊆ X. We shall say that K is an isolated
subset ofA if it is compact and relatively open in A. Thus, there exists an open subset U of X such
that U ∩A = K. The set U is called an isolating neighborhood of K among (the elements
of) A.
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Definition 12. Let f : M→ F be an oriented Φ0-map from a manifold into a Banach space. If K
is an isolated subset of f−1(0), we shall call contribution of K to the b f -degree of f the integer
degb f ( f , U), where U ⊆ M is any isolating neighborhood of K among f−1(0). The excision
property of the degree implies that degb f ( f , U) does not depend on the isolating neighborhood U.

Regarding Definition 12, we observe that the finite union of isolated subsets of f−1(0)
is still an isolated subset. Moreover, from the excision and the additivity properties of the
b f -degree one gets that the contribution to the b f -degree of this union is the sum of the
single contributions of these subsets.

3. The Eigenvalue Problem and the Associated Topological Degree

Let, hereafter, G and H denote two real Hilbert spaces and consider the eigen-
value problem {

Lx = λCx

x ∈ S,
(3)

where λ is a real parameter, L, C : G → H are bounded linear operators, and S denotes the
unit sphere of G.

To prevent the problem from being meaningless, we will always assume that the operator
L− λC ∈ L(G, H) is invertible for some λ ∈ R.

When λ ∈ R is such that Ker(L− λC) is nontrivial, then λ is called an eigenvalue of
the equation L = λC or, equivalently, of problem (3).

A solution (λ, x) of (3) will also be called an eigenpoint. In this case, λ and x are,
respectively, an eigenvalue and a unit eigenvector of the equation Lx = λCx.

Notice that the eigenpoints are the solutions of the equation

ψ(λ, x) = 0,

where ψ is the H-valued function (λ, x) 7→ Lx− λCx defined on the cylinder R×S, which
is a smooth 1-codimensional submanifold of the Hilbert space R×G.

By S we will denote the set of the eigenpoints of (3). Therefore, given any λ ∈ R, the
λ-slice Sλ = {x ∈ S : (λ, x) ∈ S} of S coincides with S∩Ker(L− λC).

Thus, Sλ is nonempty if and only if λ is an eigenvalue of problem (3). In this case, Sλ

will be called the eigensphere of (3) corresponding to λ or, simply, the λ-eigensphere. Observe
that Sλ is a sphere whose dimension equals that of Ker(L− λC) minus one. The nonempty
subset {λ}×Sλ of the cylinder R×S will be called an eigenset of (3).

Remark 2. The assumption that L− λC is invertible for some λ ∈ R implies that, for any λ ∈ R,
the restriction of C to the (possibly trivial) kernel of L− λC is injective.

Remark 2 can be proved arguing by contradiction. In fact, assume that the assertion is
false. Then, there are λ∗ ∈ R and a nonzero vector

x∗ ∈ Ker(L− λ∗C) ∩Ker C.

This implies that, for any λ, the operator L− λC is non-injective and, consequently, non-
invertible, in contrast to the assumption. In fact, for any λ, one has

(L− λC)x∗ = (L− λ∗C)x∗ − (λ− λ∗)Cx∗ = 0.

Remark 3. If the operator C is compact, then, from the assumption that L− λC is invertible for
some λ̂ ∈ R, it follows that L− λC is Fredholm of index zero for any λ ∈ R and, consequently, the
set of the eigenvalues of problem (3) is discrete. Moreover, Ker(L−λC) is always finite dimensional,
and so is the intersection

Img(L− λC) ∩ C(Ker(L− λC)).
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Consequently, if this intersection is the singleton {0}, taking into account Remark 2 and the
fact that L− λC ∈ Φ0(G, H), one has

H = Img(L− λC)⊕ C(Ker(L− λC)).

To prove Remark 3 notice that, if L− λ̂C is invertible, then it is trivially Fredholm of
index zero. Now, given any λ ∈ R, one has

(L− λC) = (L− λ̂C)− (λ− λ̂)C.

Thus, because of the compactness of C, from property (F3) of Fredholm operators,
one gets that L− λC is also Fredholm of index zero. Finally, the set of the eigenvalues of
problem (3) is discrete since so is, according to the spectral theory of linear operators, the
set of the characteristic values of (L− λ̂C)−1C.

Because of Remark 3, from now until the end of this section we assume that the operator C
is compact.

Observe that the function ψ defined above is the restriction to R×S of the nonlinear
smooth map

ψ : R×G → H, (λ, x) 7→ Lx− λCx.

According to Remark 3, any partial map ψλ : G → H of ψ is Fredholm of index
zero. Since the map σ : R×G → G given by σ(λ, x) = x is clearly Φ1, the same holds
true, because of the property (F2) of Fredholm operators, for the composition ψ = ψλ ◦ σ.
Consequently, again because of property (F2), one has that the restriction ψ of ψ to the
1-codimensional submanifold R×S of R×G is Φ0.

Notice that, if dim G = 1, the cylinder R×S is disconnected: it is the union of two
horizontal lines, R×{−1} and R×{1}.

Because of this, to make some statements simpler, from now on, unless otherwise stated,
we assume that the dimension of the space G is greater than 1.

In this case, the cylinder R×S is connected, and simply connected if dim G > 2. It is
actually contractible if G is infinite dimensional. Therefore, the Φ0-map ψ, defined above,
is orientable and admits exactly two orientations.

We choose one of them and hereafter we assume that ψ is oriented.

Remark 4. Let λ̂ ∈ R be such that L− λ̂C is invertible and let Z : H → G denote its inverse.
Then, given any λ ∈ R, the two equations

• ψλ(x) = (L− λC)x = 0 ∈ H,
• ηλ(x) = Zψλ(x) = (I − (λ− λ̂)ZC)x = 0 ∈ G

are equivalent (I being the identity on G). Therefore, if B denotes the unit ball of G, the Leray–
Schauder degree with target 0 ∈ G, degLS(ηλ, B), of the compact vector field ηλ is well defined
whenever λ is not an eigenvalue of the equation Lx = λCx.

Observe that, as a consequence of the homotopy invariance property of the Leray–
Schauder degree, the function λ 7→ degLS(ηλ, B) is constant on any interval in which it
is defined. Moreover, in these intervals, degLS(ηλ, B) is either 1 or −1, since the equation
ηλ(x) = 0 has only one solution: the regular point 0 ∈ G.

Remark 5. Let U be an isolating neighborhood of a compact subset of the set S of the eigenpoints
of (3), and let Z : H → G be as in Remark 4. Then degb f (ψ, U) = degb f (η, U), provided
that the map η = Zψ is the oriented composition obtained by considering Z as a naturally
oriented diffeomorphism.

Concerning possible relations between the LS-degree of ηλ and the b f -degree of ψ (or,
equivalently, of η = Zψ), we believe that the following conjecture is true.
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(C) Let [α, β] be a compact (nontrivial) real interval such that the extremes are not
eigenvalues of Lx = λCx. Then the b f -degree of ψ (or, equivalently, of η = Zψ)
on the open subset U = (α, β)×S of R×S is different from zero if and only if
degLS(ηα, B) 6= degLS(ηβ, B).

In support of the above conjecture we observe that both the conditions

degb f (ψ, U) 6= 0 and degLS(ηα, B) 6= degLS(ηβ, B)

imply the existence of at least one eigenpoint p∗ = (λ∗, x∗) ∈ U. The first one because of
the existence property of the b f -degree and the last one due to the homotopy invariance
property of the LS-degree.

Definition 13. An eigenpoint (λ∗, x∗) of (3) is said to be simple provided that the operator
T = L− λ∗C is Fredholm of index zero and satisfies the conditions:

(1) Ker T = Rx∗,
(2) Cx∗ /∈ Img T.

We point out that, if an eigenpoint p∗ = (λ∗, x∗) is simple, then the corresponding
eigenset {λ∗}×Sλ∗ is disconnected. In fact, it has only two elements: p∗ and its twin
eigenpoint p̄∗ = (λ∗,−x∗), which is as well simple.

The following theorem obtained in [5] was essential in the proofs of some results in [5]
concerning perturbations of (3), as problem (4) in the next section.

Theorem 1. In addition to the compactness of C, assume that p∗ = (λ∗, x∗) and p̄∗ = (λ∗,−x∗)
are two simple twin eigenpoints of (3). Then, the contributions of p and p̄ to the b f -degree of ψ
are equal: they are both either 1 or −1 depending on the orientation of ψ. Consequently, if U is an
isolating neighborhood of the eigenset {λ∗}×Sλ∗ , one has degb f (ψ, U) = ±2.

We close this section strictly devoted to the unperturbed eigenvalue problem (3) with a
consequence of Theorem 1, which will be crucial in the proof of our main result (Theorem 5
in Section 4).

Theorem 2. Let λ∗ ∈ R, put T = L− λ∗C, and suppose that

(H1) C is a compact operator,
(H2) Ker T is odd dimensional,
(H3) Img T ∩ C(Ker T) = {0}.

Then, given (in R×S) an isolating neighborhood U of the eigenset {λ∗}×Sλ∗ , one has
degb f (ψ, U) 6= 0.

Proof. Because of the assumption Img T ∩ C(Ker T) = {0}, as well as the fact that T is
Fredholm of index zero, we can split the spaces G and H as follows:

G = G1 ⊕ G2 with G1 = (Ker T)⊥ and G2 = Ker T;

H = H1 ⊕ H2 with H1 = Img T and H2 = C(Ker T).

With these splittings, T and C can be represented in block matrix form as follows:

T =

 T11 0

0 0

, C =

 C11 0

C21 C22

.

The operators T11 : G1 → H1 and C22 : G2 → H2 are isomorphisms (the second one
because of Remark 2), while C11 : G1 → H1 and C21 : G1 → H2 are, respectively, compact
and finite dimensional.
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We can equivalently regard the equation ψ(λ, x) = 0 as Zψ(λ, x) = 0, where Z : H →
G is an isomorphism. We choose Z as follows:

Z =

 T−1
11 0

0 C−1
22

.

Given any λ ∈ R, the operator ψλ = L−λC ∈ L(G, H) can be written as T − (λ− λ∗)C.
Therefore, putting η = Zψ : R×G → G, the partial map ηλ : G → G (see Notation 1) can be
represented as

ηλ =

 I11 − (λ− λ∗)Ĉ11 0

−(λ− λ∗)Ĉ21 λ∗ I22 − λI22

,

where I is the identity on G = G1 ⊕ G2 and Ĉ = ZC (observe that Ĉ22 coincides with the
identity I22 ∈ L(G2)).

This shows that, given any λ ∈ R, the endomorphism ηλ : G → G is a compact vector
field. Therefore, its Leray–Schauder degree on the unit ball B of G is well defined whenever
λ is not an eigenvalue of the equation Lx = λCx, and this happens when λ is close to,
but different from, λ∗. Since G2 is odd dimensional and, because of assumption (H3), the
geometric and algebraic multiplicities of λ∗ coincide, the function λ 7→ degLS(ηλ, B) has a
sign-jump crossing λ∗. Therefore, if conjecture (C) above were true, we would have done.
So we need to proceed differently.

We consider an isolating neighborhood of the eigenset {λ∗}×Sλ∗ of the type U =
(α, β)×S and we approximate the family of operators ηλ, λ ∈ [α, β], with a family η ε

λ ∈
L(G), λ ∈ [α, β], having in (α, β) only simple eigenvalues; the number of them equal to the
dimension of G2 = Ker T.

First of all we point out that

• the operator I11 − (λ− λ∗)Ĉ11 ∈ L(G1) is invertible for all λ ∈ [α, β], since otherwise
the equation Lx = λCx would have eigenvalues different from λ∗ in the interval [α, β].

Now, given ε > 0 such that (λ∗ − ε, λ∗ + ε) ⊂ (α, β), we choose a linear operator
Aε ∈ L(G2) with the following properties:

• in the operator norm, the distance between Aε and λ∗ I22 is less than ε,
• the eigenvalues of Aε are real and simple,
• any eigenvalue λ of Aε is such that |λ− λ∗| < ε.

For any λ ∈ R we define η ε
λ ∈ L(G1 ⊕ G2) by

η ε
λ =

 I11 − (λ− λ∗)Ĉ11 0

−(λ− λ∗)Ĉ21 Aε − λI22

.

Then, any eigenvalue λ of Aε is as well an eigenvalue of the equation η ε
λ(x) = 0, and

viceversa provided that λ ∈ [α, β]. Therefore, η ε
λ(x) = 0 has exactly n = dim(G2) simple

eigenvalues in the interval (α, β). Consequently, the function

ηε : R×S→ G, (λ, x) 7→ η ε
λ(x)

has exactly n eigensets in the open subset U = (α, β)×S of the cylinder R×S, all of them
corresponding to a simple eigenvalue. Therefore, according to Theorem 1, the contribution
of each of them to degb f (η

ε, U) is either 2 or −2. Consequently, taking into account that n
is odd, one gets degb f (η

ε, U) 6= 0.
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Let the isomorphism Z be naturally oriented and let the restriction η of η to the mani-
fold R×S be oriented according to the composition Zψ. Thus, because of the topological
invariance property of the b f -degree, we get

degb f (η, U) = degb f (ψ, U).

Hence, it remains to show that, if ε > 0 is sufficiently small, then

degb f (η
ε, U) = degb f (η, U).

In fact, this is a consequence of the homotopy invariance property of the b f -degree. To
see this it is sufficient to show that (if ε is small) the homotopy h : [0, 1]×U → G, defined
by h(t, λ, x) = tηε(λ, x) + (1− t)η(λ, x), is admissible, i.e.,

h(t, λ, x) 6= 0 for t ∈ [0, 1] and (λ, x) ∈ ∂U = {(λ, x) ∈ [α, β]×S : λ = α or λ = β}.

Let us prove that this is true for the left boundary of U; that is, for λ = α. The
argument for λ = β will be the same.

We need to show that (if ε is small) the linear operator At = tη ε
α + (1− t)ηα of L(G) is

invertible for any t ∈ [0, 1]. In fact, since A0 = ηα is invertible, and the set of the invertible
operators of L(G) is open, this holds true for all At provided that ε is sufficiently small.

4. The Perturbed Eigenvalue Problem and Global Continuation

Here, as in Section 3, G and H denote two real Hilbert spaces, L, C : G → H are
bounded linear operators, S is the unit sphere of G and, as in problem (3), the operator
L− λC is invertible for some λ ∈ R.

Consider the perturbed eigenvalue problem{
Lx + sN(x) = λCx

x ∈ S,
(4)

where N : S→ H is a C1 compact map and s is a real parameter.
A solution of (4) is a triple (s, λ, x) ∈ R×R×S satisfying (4). The element x ∈ S is a

unit eigenvector corresponding to the eigenpair (s, λ).
The set of solutions of (4) will be denoted by Σ and E is the subset of R2 of the

eigenpairs. Notice that E is the projection of Σ into the sλ-plane and the s = 0 slice Σ0 of Σ
is the same as the set S = ψ−1(0) of the eigenpoints of (3), where ψ has been defined in the
previous section.

A solution (s, λ, x) of (4) is regarded as trivial if s = 0. In this case, p = (λ, x) is the
corresponding eigenpoint of problem (3). When p is simple, the triple (0, λ, x) ∈ Σ will be as
well said to be simple. A nonempty subset of Σ of the type {0}×{λ}×Sλ will be called a
solution-sphere.

We consider the subset {(s, λ, x) ∈ Σ : s = 0} = {0}×Σ0 = {0}×S of the trivial
solutions of Σ as a distinguished subset. Thus, it makes sense to call a solution q∗ = (0, λ∗, x∗)
of (4) a bifurcation point if any neighborhood of q∗ in Σ contains nontrivial solutions.

We say that a bifurcation point q∗ = (0, λ∗, x∗) is global (in the sense of Rabinowitz [3])
if in the set of nontrivial solutions there exists a connected component, called global (bi-
furcating) branch, whose closure in Σ contains q∗ and it is either unbounded or includes
a trivial solution q∗ = (0, λ∗, x∗) with λ∗ 6= λ∗. In the second case q∗ is as well a global
bifurcation point.

A meaningful case is when a bifurcation point q∗ = (0, λ∗, x∗) belongs to a connected
solution-sphere {0}×{λ∗}×Sλ∗ . In this case, the dimension of Sλ∗ is positive and we will
simply say that x∗ is a bifurcation point. In fact, 0 and λ∗ being known, x∗ can be regarded
as an alias of q∗.

For a necessary condition as well as some sufficient conditions for a point x∗ of a
connected eigensphere to be a bifurcation point see [11]. Other results regarding the
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existence of bifurcation points belonging to even-dimensional eigenspheres can be found
in [5,8,9,12,13,15–18].

As already pointed out, if the operator C is compact, then ψ : R×S→ H is Fredholm
of index zero, and this is crucial for the global results regarding the perturbed eigenvalue
problem (4).

Because of this, from now on, unless otherwise stated, we will tacitly assume that the linear
operator C is compact.

We define the C1-map

ψ+ : R×R×S→ H, (s, λ, x) 7→ ψ(λ, x) + sN(x),

in which ψ : R×S→ H, as in Section 3, is given by ψ(λ, x) = Lx− λCx. Therefore the set
(ψ+)−1(0) of the zeros of ψ+ coincides with Σ.

As shown in [5], because of the compactness of C and N, one gets that ψ+ is proper
on any bounded and closed subset of its domain. Consequently, any bounded connected
component of Σ is compact. This fact will be useful later.

Notice that ψ+ is the restriction to the manifold R×R×S of the nonlinear map

ψ
+ : R×R×G → H, (s, λ, x) 7→ ψ(λ, x) + sN(x),

where ψ is as in Section 3 and N is the positively homogeneous extension of N.
The following result of [5] is crucial for proving the existence of global bifurca-

tion points.

Theorem 3. Given an open subset Ω of R×R×S, let

Ω0 =
{
(λ, x) ∈ R×S : (0, λ, x) ∈ Ω

}
be its 0-slice. If degb f (ψ, Ω0) is well defined and nonzero, then Ω contains a connected set of
nontrivial solutions whose closure in Ω is non-compact and meets at least one trivial solution of (4).

Corollary 1 below, which was deduced in [5] from Theorem 3, asserts that the contri-
bution to the b f -degree of the 0-slice of any compact (connected) component of Σ is null.
We will need this basic property later.

Corollary 1. Let D be a compact component of Σ, and let D0 ⊂ R×S be its (possibly empty)
0-slice. Then, if U ⊂ R×S is an isolating neighborhood of D0, one has degb f (ψ, U) = 0.

The following result, obtained in ([5] [Theorem 4.5]), regards the existence of a global
branch of solutions emanating from a trivial solution of problem (4) which corresponds to
a simple eigenpoint of (3).

Theorem 4. If (λ∗, x∗) is a simple eigenpoint of problem (3), then, in the set Σ of the solutions
of (4), the connected component containing (0, λ∗, x∗) is either unbounded or includes a trivial
solution (0, λ∗, x∗) with λ∗ 6= λ∗.

We are now ready to prove our main result, which extends Theorem 4 and provides a
global version of Theorem 3.9 in [15], the latter concerning the existence of local bifurcation
points belonging to even dimensional eigenspheres.

Theorem 5. In addition to the compactness of C, let (λ∗, x∗) be an eigenpoint of (3) and denote
by T the non-invertible operator L− λ∗C. Assume that

• Ker T is odd dimensional,
• Img T ∩ C(Ker T) = {0}.
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Then, in the set Σ of the solutions of (4), the connected component containing (0, λ∗, x∗) is
either unbounded or includes a trivial solution (0, λ∗, x∗) with λ∗ 6= λ∗.

Proof. Because of the compactness of C, according to Remark 3, the operator L− λC is
Fredholm of index zero for all λ ∈ R. Moreover, the set of the eigenvalues of problem (3)
is discrete. Consequently, the eigenset {λ∗}×Sλ∗ , which is compact and nonempty, is
relatively open in the set S of the eigenpoints. Thus, it admits an isolating neighborhood
U ⊂ R×S and, therefore, degb f (ψ, U) is well defined.

Denote by D the connected component of Σ containing (0, λ∗, x∗). We may assume
that D is bounded. Thus, it is actually compact, since ψ+ is proper on any bounded and
closed subset of R×R×S. We need to prove that D contains a trivial solution (0, λ∗, x∗)
with λ∗ 6= λ∗.

Assume, by contradiction, that this is not the case. Then the 0-sliceD0 ofD is contained
in the eigenset {λ∗}×Sλ∗ . We will show that this contradicts Corollary 1. We distinguish
two cases: n = 1 and n > 1, where n is the dimension of Ker T.

Case n = 1. Because of the assumption Img T ∩ C(Ker T) = {0}, the eigenpoint
p∗ = (λ∗, x∗) is simple and {λ∗}×Sλ∗ has only two points: p∗ = (λ∗, x∗) and p̄∗ =
(λ∗,−x∗). In this case, according to Theorem 1, the contribution to the b f -degree of any
subset of {λ∗}×Sλ∗ is different from zero, and this, having assumed D0 ⊆ {λ∗}×Sλ∗ , is
incompatible with Corollary 1.

Case n > 1. The solution-sphere {0}×{λ∗}×Sλ∗ is connected and, consequently, it is
contained in the component D of Σ. Thus, the eigenset {λ∗}×Sλ∗ is contained in the slice
D0 of D. Having assumed D0 ⊆ {λ∗}×Sλ∗ , we get D0 = {λ∗}×Sλ∗ . Hence, because of
Theorem 2, given an isolating neighborhood U of D0, one gets degb f (ψ, U) 6= 0, and we
obtain a contradiction with Corollary 1.

Remark 6. Under the notation and assumptions of Theorem 5 suppose, in addition, that
dim(Ker T) > 1. Then, the connected component D containing (0, λ∗, x∗) contains as well the
connected solution-sphere D∗ = {0}×{λ∗}×Sλ∗ .

This implies that there exists at least one point q̂ = (0, λ∗, x̂) ∈ D∗ which is in the clo-
sure D \D∗ of the difference D \ D∗. Thus, q̂ (or, equivalently, its alias x̂ ∈ Sλ∗ ) is a global
bifurcation point.

5. Some Illustrating Examples

In this section we provide three examples in `2 concerning Theorem 5. The dimensions
of Ker T (where T = L− λ∗C) are, respectively, 3, 2, and 1. The second example, in which
Ker T is two dimensional, shows that in Theorem 5, as well as in Remark 6, the hypothesis of
the odd dimensionality of Ker T cannot be removed, the other assumptions remaining valid.

Given a positive integer k, let Tk ∈ L(`2) be the bounded linear operator that to any
x = (ξ1, ξ2, ξ3, . . . ) ∈ `2 associates the element

Tkx = (0, 0, . . . , 0, ξk+1, ξk+2, . . . ),

in which the first k components are 0. Notice that Tk is Fredholm of index zero and its
kernel is the k-dimensional space

Ker Tk = {x ∈ `2 : x = (ξ1, ξ2, . . . , ξk, 0, 0, . . . )},

which is orthogonal to Img Tk.
Hereafter, C will be the well-known compact linear operator defined by

(ξ1, ξ2, ξ3, . . . ) 7→ (ξ1/1, ξ2/2, ξ3/3, . . . , ξn/n, . . . ).
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Given any compact (possibly nonlinear) map N : `2 → `2 of class C1, consider the
perturbed eigenvalue problem {

Tkx + sN(x) = λCx,

x ∈ S,
(5)

where S is the unit sphere of `2. As before, we denote by Σ the set of solutions (s, λ, x)
of (5).

Observe that, for any k ∈ N, k ≥ 1, λ∗ = 0 is an eigenvalue of the unperturbed
equation Tkx = λCx and the condition Img Tk ∩ C(Ker Tk) = {0} is satisfied. Therefore,
according to Theorem 5, given any positive odd integer k, any compact perturbing map
N : `2 → `2 of class C1, and any x∗ ∈ S∩Ker Tk, the connected component of Σ containing
(0, 0, x∗) is either unbounded or encounters a trivial solution (0, λ∗, x∗) with λ∗ 6= 0.

In the three examples below we will check whether or not the assertions of Theorem 5
and Remark 6 hold, by taking, for all of them, the same perturbing map. Namely,

N : `2 → `2, (ξ1, ξ2, ξ3, ξ4, . . . ) 7→ (−ξ2, ξ1,−ξ4, ξ3, 0, 0, 0, . . . ).

Example 1 (k = 3). The eigenvalues of the unperturbed equation T3x = λCx are 0, 4, 5, 6, . . .
The first one, λ∗ = 0, has geometric and algebraic multiplicity 3 and all the other eigenvalues
are simple.

A standard computation shows that, in the sλ-plane, the set E of the eigenpairs has a connected
subset E1 satisfying the equation 3s2 + (λ− 2)2/4 = 1, corresponding to eigenvectors of the type
(0, 0, ξ3, ξ4, 0, 0, ...). The set E1 is an ellipse with center (0, 2) and half-axes 1/

√
3 and 2. Observe

that it includes the eigenpair (s, λ) = (0, 0). All the other eigenpairs are the points of the horizontal
lines λ = 5, λ = 6, λ = 7, etc. Thus, the connected component in Σ containing any trivial solution
(0, λ, x) with eigenvalue λ ≥ 5 is unbounded, and this agrees with Theorem 5.

The above ellipse can be parametrized by s = (1/
√

3) sin θ, λ = 2(1− cos θ), θ ∈ [0, 2π],
and for any θ in the open interval (0, 2π), the kernel of the equation

T3x + (1/
√

3) sin θNx− 2(1− cos θ)Cx = 0

is 1-dimensional and spanned by the vector

x(θ) = (0, 0, (1/
√

3) sin θ,−(2/3)(1− cos θ), 0, 0, . . . ).

Since E1 is bounded, so is the connected component D of Σ containing the 2-dimensional
solution-sphere D∗ = {0}×{λ∗}×Sλ∗ (recall that λ∗ = 0). As we shall see, D includes the twin
trivial solutions (0, λ∗,±x∗), where

λ∗ = 4 and x∗ = x(π)/‖x(π)‖ = (0, 0, 0, 1, 0, 0 . . . ).

According to Remark 6, there exists at least one bifurcation point x̂ ∈ Sλ∗ . Actually, in
this case one gets exactly two (global) bifurcation points. This is due to the fact that D \ D∗ has
two disjoint “twin” branches whose closures meet the solution-sphere D∗. The branches can be
parametrized with θ ∈ (0, 2π) as follows:

q(θ) =
(
(1/
√

3) sin θ, 2(1− cos θ), x(θ)/‖x(θ)‖
)
,

q̄(θ) =
(
(1/
√

3) sin θ, 2(1− cos θ),−x(θ)/‖x(θ)‖
)
.

Then, if the following limits exist:

lim
θ→0

q(θ) and lim
θ→0

q̄(θ),
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we get the bifurcation points (as elements of D∗). Equivalently, to find the aliases of these points
(that is, the corresponding elements in the eigensphere Sλ∗ ) we compute

± lim
θ→0

(x(θ)/‖x(θ)‖)

obtaining±(0, 0, 1, 0, 0, . . . ) ∈ Sλ∗ . In fact, to compute the limits, observe that sin θ = us(θ)θ and
2(1− cos θ) = uc(θ)θ2, where us and uc are continuous functions such that us(0) = uc(0) = 1.
Hence, one quickly obtains

lim
θ→0

(1/
√

3) sin θ√
(1/3) sin2 θ + (4/9)(1− cos θ)2

= 1,

lim
θ→0

−(2/3)(1− cos θ)√
(1/3) sin2 θ + (4/9)(1− cos θ)2

= 0.

Example 2 (k = 2). The eigenvalues of the unperturbed equation T2x = λCx are 0, 3, 4, 5, 6, . . .
The first one, λ∗ = 0, has geometric and algebraic multiplicity 2 and all the others are simple.

As in Example 1, for any eigenvalue λ ≥ 5, one gets an horizontal line of eigenpairs containing
(0, λ). Moreover, as one can check, the trivial eigenpairs (0, 3) and (0, 4) are vertices of an ellipse
of eigenpairs with center (0, 7/2) and half-axes 1/

√
48 and 1/2, corresponding, as in Example

1, to eigenvectors of the type (0, 0, ξ3, ξ4, 0, 0, ...). However, in a neighborhood of the origin of the
sλ-plane there are no eigenpairs, except the isolated one (0, 0). This means that the solution-circle
D∗ = {0}×{λ∗}×Sλ∗ is an isolated subset of Σ. Therefore, the assertions of Theorem 5 and
Remark 6 do not hold in this case. Moreover, according to Corollary 1, the contribution of D∗ to the
b f -degree of the map ψ is zero.

In conclusion, in Theorem 5 and Remark 6, the assumption that Ker T is odd dimensional
cannot be removed.

Example 3 (k = 1). In this case, the eigenvalues of the unperturbed problem are 0, 2, 3, 4, 5, . . .
All of them are simple. As in the previous two examples, the sλ-plane contains infinitely many
horizontal lines of eigenpairs. Their equations are λ = 5, λ = 6, λ = 7, . . .

In addition to the horizontal lines, the set of the eigenpairs has two bounded components: an
ellipse with center (0, 1) and half-axes 1/

√
2 and 1, therefore containing (0, 0) and (0, 2); and,

as in Example 2, an ellipse joining (0, 3) with (0, 4), with center (0, 7/2) and half-axes 1/
√

48
and 1/2.

Finally, one can check that, in accordance with Theorem 5, given any one of the two points of
the 0-dimensional solution-sphere {0}×{0}×S0, its connected component in Σ is bounded and
contains a point of {0}×{2}×S2. This agrees with Theorem 5.

6. Conclusions and Perspectives

In this paper, we obtain a Rabinowitz-type global continuation result, namely the
above Theorem 5, for nontrivial solution triples of perturbed eigenvalue problems in
Hilbert spaces under the assumption that the unperturbed problem has a nontrivial kernel
of odd dimension.

Our result is based on a link between two apparently different topics, i.e., linear
eigenvalue problems and topological degree theory. In particular, we apply the so called
b f -degree introduced in [4] for oriented C1 Fredholm maps of index zero between real
differentiable Banach manifolds, which extends the Brouwer degree for maps between
oriented finite dimensional smooth manifolds, as well as the Leray-Schauder degree for C1

compact vector fields in Banach spaces.
Our work is inspired by some papers by R. Chiappinelli, in which the local persistence

of eigenvalues and eigenvectors is studied in the case of a simple isolated eigenvalue,
and this property is applied to investigate the structure of the solution set of differential
equations (see also [5] for possible applications of our results to boundary value problems).
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Recently, in [5] we obtained a global continuation result for nontrivial solution triples,
under the assumption of the existence of a simple isolated eigenvalue. In spite of the
apparent similarity, we stress that the present extension to the odd-dimensional case is not
trivial. In fact, to prove Theorem 5 we have first to evaluate the b f -degree of a suitable
nonlinear map in an open subset of the cylinder R× S (S being the unit sphere of the Hilbert
space G), see Theorem 2. If we were able to relate this degree with the Leray–Schauder
degree of a suitable compact vector field in the unit ball of G, we could provide a simpler
proof of Theorem 2. This is the content of the above conjecture (C), which will be the object
of a future investigation.
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