
mathematics

Article

Parallel One-Step Control of Parametrised Boolean Networks

Luboš Brim , Samuel Pastva , David Šafránek and Eva Šmijáková *

����������
�������

Citation: Brim, L.; Pastva, S.;

Šafránek, D.; Šmijáková, E. Parallel

One-Step Control of Parametrised

Boolean Networks. Mathematics 2021,

9, 560. https://doi.org/10.3390/

math9050560

Academic Editor: J. Alberto Conejero

Received: 30 January 2021

Accepted: 26 February 2021

Published: 6 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic; brim@fi.muni.cz (L.B.);
xpastva@fi.muni.cz (S.P.); safranek@fi.muni.cz (D.Š.)
* Correspondence: xsmijak1@fi.muni.com

Abstract: Boolean network (BN) is a simple model widely used to study complex dynamic behaviour
of biological systems. Nonetheless, it might be difficult to gather enough data to precisely capture the
behavior of a biological system into a set of Boolean functions. These issues can be dealt with to some
extent using parametrised Boolean networks (ParBNs), as this model allows leaving some update
functions unspecified. In our work, we attack the control problem for ParBNs with asynchronous
semantics. While there is an extensive work on controlling BNs without parameters, the problem of
control for ParBNs has not been in fact addressed yet. The goal of control is to ensure the stabilisation
of a system in a given state using as few interventions as possible. There are many ways to control
BN dynamics. Here, we consider the one-step approach in which the system is instantaneously
perturbed out of its actual state. A naïve approach to handle control of ParBNs is using parameter
scan and solve the control problem for each parameter valuation separately using known techniques
for non-parametrised BNs. This approach is however highly inefficient as the parameter space of
ParBNs grows doubly exponentially in the worst case. We propose a novel semi-symbolic algorithm
for the one-step control problem of ParBNs, that builds on symbolic data structures to avoid scanning
individual parameters. We evaluate the performance of our approach on real biological models.

Keywords: boolean networks; parameters; control; reprogramming; attractors; perturbations

1. Introduction

Cell reprogramming is currently one of the most critical challenges in computational
biology. The goal of cell reprogramming is to control the cell’s phenotype. This ability opens
many opportunities, mainly in regenerative medicine. To reach the desired phenotype,
the correct transcription factors must be identified. That is close to impossible to achieve
using only in vitro biological experiments due to the very high number of possibilities of
how the cell might be interfered with. This is where in silico analysis and computational
models of cell dynamics come into play. Formal methods and their integration provide
a promising technology that allows fully automatic identification of control strategies by
using computational models.

A cell can be viewed as a set of genes and their mutual regulators. The compact
abstraction of these relationships can be modelled using Boolean networks (BNs). BNs are
becoming a very popular means for in silico experiments, as they are both simple and
expressive [1]. Moreover, BNs have applications not only in molecular biology, but also in
many other areas including circuit theory and computer science. BNs are composed of two
essential parts. The first part is a finite set of Boolean variables representing genes or other
biochemical substances. The second part is a set of Boolean update functions which specify
the way variables dynamically change their value based on influences from other variables.
Typically, influences among variables are visualised in the form of a so-called regulatory
network displaying the structure of a BN (an example is shown in Figure 1a).

Mathematics 2021, 9, 560. https://doi.org/10.3390/math9050560 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9393-7545
https://orcid.org/0000-0003-1993-0331
https://orcid.org/0000-0002-0713-2431
https://doi.org/10.3390/math9050560
https://doi.org/10.3390/math9050560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9050560
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/5/560?type=check_update&version=2

Mathematics 2021, 9, 560 2 of 16

M2C DNA P53 FM2N
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0

1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

DNA P53 FDNA
0 0 0
0 1 0
1 0 1
1 1 0

P53 FM2C
0 0
1 1

M2N FP53
0 1
1 0

(a) (b) (c)

Figure 1. (a) A regulatory network of a simple BN describing the DNA damage mechanism adapted
from [2]. Every regulation is either activating (green) or inhibiting (red) and observable. (b) Update
function FM2N. (c) Update functions FDNA, FM2C and FP53.

In BN models, time is considered to be discrete. At each time step, some variables
are selected for an update. The scheduling of updates has a strong influence on the
reachable configurations of the variables. There are two dominant updating paradigms.
The synchronous paradigm updates all variables simultaneously, and thus generates de-
terministic dynamics. In contrast, the (fully) asynchronous paradigm updates a single
non-deterministically selected variable at each time step. In this work, we consider the
asynchronous update schedule as it often captures the behaviour of biological systems
more realistically compared to its synchronous paradigm [3].

At any particular time moment, the tuple of all variables’ values in the BN is called a
state of the network. The state-transition graph (STG) has as its nodes the states, and each
directed edge represents a possible transition from one state to another one in a single
update. The size of the STG grows exponentially with the number of variables, which
causes the state-space explosion problem [4]. Since the BN is a finite-state system, the state
of the system will in a long-run evolve into a single state (steady-state) or a set of recurring
states (a complex attractor). These steady states or recurring states are collectively called
attractors and correspond with the terminal strongly connected components (TSCC) in the STG.
More on BN attractors can be found in [5].

A significant shortcoming of BNs, when used for modelling real phenomena, resides
in the necessity to fully specify the update functions. In practice, it is often complicated to
exactly identify Boolean functions from biological data. However, there is typically good
evidence of the fact that a variable regulates another one [6,7]. Parametrised Boolean networks
(ParBN) [8,9] address the possibility to specify BNs without the precise knowledge of some
update functions; the unknown part is represented in terms of logical parameters. In ParBNs,
only regulators of a variable need to be specified. This allows capturing multiple variants
of the possible actual behaviour of variables without conducting many more expensive
experimental observations. A disadvantage of ParBNs is that their analysis is significantly
more difficult compared to the non-parametrised case as the edges in the STG change
according to the chosen parametrisations, i.e., a particular setting of logical parameters in
the specification of update functions.

The goal of the Boolean network control is to influence the behaviour of the network
so that it stabilises in a particular attractor. A typical way to change the behaviour is to
perturb the values of some variables. In this paper, we consider one-step state perturbations in
which we apply all the perturbations of variables simultaneously and only once. After the
perturbation, the system is left to behave normally. Solutions of the BN control problem for
a model of a cell in silico provide the basis for experimental designs allowing reprograming
the cell in vitro. Since the practical realisation of particular perturbations requires non-
trivial effort, the number of perturbations typically needs to be minimised. To that end,
the control problem is usually enriched with some optimisation criteria.

Mathematics 2021, 9, 560 3 of 16

Typically, two elementary types of control problems are distinguished: (i) achieving
a single desired target attractor irrespective of the current state (target control) [10], (ii)
achieving control between every pair of attractors (full control) [11].

The target control problem has been studied in non-parametrised BNs with both the
synchronous and asynchronous update. In synchronous case, the method [10] identifies
the control kernel, a minimal set of nodes, inferred from the explicit STG of the BN. In [12]
a network graph aggregation approach is employed at the level of the regulatory network
avoiding construction of the full STG. In [13], the regulatory network is divided into
partially dependent parts identified as strongly connected components. In the case of
asynchronous BNs, the approach in [14] computes a set of relevant BN variables based on
the identification of particular motifs in the regulatory network.

Traditional approaches mentioned above assume the control to be implemented
by involving a permanent perturbation applied continuously for an extended period
of time. However, this is not possible to be efficiently achieved in practise [15]. To that
end, the concept of one-step perturbation has been introduced in [16] in the context of
asynchronous BNs (the perturbation is applied in the initial state, and after that, the
system evolves according to its original dynamics). The algorithms in [16] address both
target and full control, and they solve the existential problem as well as the optimal
problem (identifying the minimal set of perturbations). The method is based on an efficient
identification of a strong basin. In this paper, we employ a similar idea for the target control
in the novel context of ParBNs.

It is also worth noting that in [17,18] the authors work with the concept of temporary
perturbations filling the gap between one-step and permanent perturbations. Moreover,
complex control strategies considering temporal sequences of perturbations are studied
in [19–22]. All those results are developed for non-parametrised BNs only.

All listed existing methods for BN control are difficult to lift on ParBNs. That is
because the naïve solution considering iteration of a method for every parametrisation
would suffer by the combinatorial explosion of the parameter space.

In this paper, we focus on the source-target variant of the ParBN control problem.
To the best of our knowledge, we provide the first efficient solution to this problem. It is
worth noting that the parameters bring many new challenges to the control problem.
First, the attractors might significantly differ with the change in the parametrisation of
the network. Second, the minimal state perturbation does not necessarily work for all
parametrisations, and therefore, the notion of the optimal control strategy needs to be
adapted to such a situation. Third, the parameter-space explosion (in addition to the state-
space explosion) makes the problem computationally demanding. The parameter space is
in the worst case, doubly exponential [23]. Each ParBN parametrisation generates a unique
BN model with a unique STG. That is why using algorithms developed for asynchronous
non-parametrised BNs and computing the control set for each parametrisation distinctly
(parameter scan) is not feasible, and a new approach needs to be developed.

We propose an efficient alternative to the naïve parameter scan approach to compute
the one-step target control of ParBNs. Technically, our approach relies on the integration
of several formal methods. In particular, we employ a representation of ParBNs based on
a symbolic edge-coloured graph using BDDs [9,24]. For this representation, we extend a
well-established algorithm for asynchronous BNs control employing one-step perturba-
tions [16]. The technique is based on the identification of attractor’s strong basin (states
from which it is possible to reach only the attractor). Our novel algorithm is able to compute
the strong basins of all ParBN parametrisations simultaneously instead of computing them
one by one (individually for every parametrisation). We show that for highly parametrised
models, our approach is significantly more efficient than the naïve approach.

Mathematics 2021, 9, 560 4 of 16

2. Preliminaries

In this section, we introduce Boolean networks (BNs) and define related terms regard-
ing long-term behaviour of BNs. Then we expand the notion of BNs by adding parameters,
allowing for unspecified or unknown behaviour in the network.

2.1. Boolean Networks

Boolean network are a simple model widely used to study complex dynamic be-
haviour of biological systems [1]. That is why we define Boolean networks in a way that
closely relates to regulatory networks, which represent biological processes using directed
dependency graphs of biochemical entities:

Definition 1 (Boolean network). A Boolean network is a tuple B = (V , R,F) such that:
(i) V = {A, B, . . .} is a finite set of Boolean state variables.
(ii) R ⊆ V ×V is a set of regulations. For A ∈ V , we say that T (A) = {B ∈ V | (B, A) ∈ R}

is the context of A, i.e., the subset of V regulating A.
(iii) F = {FA | A ∈ V} is a family of logical update functions. The signature of each FA is

given by the context of A as FA : {0, 1}T (A) → {0, 1}.

An example of a regulatory network and update functions is given in Figure 1.

Definition 2 (State and state space of Boolean network). A state s of a BN B is a valuation of
its Boolean variables, i.e., s : V → {0, 1}. The set of all possible states is Π(B) = {0, 1}V and is
called the state space of B. Given a state s, s[A 7→ b] denotes a copys of s where the value of A is
set to b ∈ {0, 1}. Finally, for a state s and an update function FA, we use the abbreviated notation
FA(s) to denote FA applied to s restricted to the context of A.

The states of BN are Boolean (binary) configuarations of variables. That is why we can
conduct standard Hamming operations [25] on them. Given two states s, s′, their Hamming
difference hdif(s, s′) is the set of all variables in which the two states differ:

hdif(s, s′) = {A ∈ V | s(A) 6= s′(A)}

The Hamming distance is then the cardinality of this set:

hdis(s, s′) = |hdif(s, s′)|

2.1.1. Regulatory Network

With every BN B it is possible to associate a directed graph (V , R) called a regulatory
network or a dependency graph of B. This graph captures influences among the variables of
B. When visualising a BN, its regulatory network is usually displayed as a directed graph
(with update functions specified separately). For a BN B, one also often considers certain
general properties of its regulations, which can then be depicted in the regulatory network.

We say that a regulation (A, B) ∈ R is observable if there exists a state such that changing
the value of A also changes the value of FB, formally:

∃s ∈ Π(B) : FB(s[A 7→ 0]) 6= FB(s[A 7→ 1])

Intuitively, this means that the presence of one biochemical entity has an observable
influence on another entity. When a regulation is not marked observable, it can have an
influence on the regulated entity, but we do not enforce it. Such regulations are drawn with
a question mark.

In addition to observability, we also consider two possible monotonicity properties
of a regulation: activation and inhibition. Regulation is activating if by increasing A it is
not possible to decrease FB. For example, if A and C activate B, the possible functions FB
are A ∨ C or A ∧ C. On the contrary, regulation is inhibiting, if by increasing A one cannot

Mathematics 2021, 9, 560 5 of 16

increase the value of FB. For example, if A and C inhibit B, the possible functions FB are
¬A∨ ¬C or ¬A∧ ¬C. There can be regulations which are neither activating nor inhibiting.
However, most regulations in this paper are either inhibiting or activating as this is typical
for biological models. Graphically, activating regulation is depicted as a regular green
arrow while inhibiting regulation is drawn as a flat red arrow (see Figure 1a).

2.1.2. Boolean Network Dynamics

The complete dynamical behaviour of a boolean network B is captured by the directed
state-transition graph (STG) G = (S, T), where S = Π(B) and T ⊆ S× S. The definition
of the transition relation T depends on the updating scheme that defines the way variables
update their states along time. In this paper, we consider asynchronous updating. At a
discrete time step, the system non-deterministically applies some FA ∈ F to a state s.
We then obtain a transition relation→ which is defined as follows:

(s, t) ∈→ if and only if s 6= t ∧ ∃FA ∈ F : s[A 7→ FA(s)] = t

Please note that for every (s, t) ∈→ the Hamming distance hdis(s, t) = 1 as during
one step only one variable can change its value. For (s, t) ∈→, we simply write s → t.
We use→∗ to denote a reflexive and transitive closure of→, also writing s →∗ t when
(s, t) ∈→∗. Also note that the transition relation is non-deterministic. We denote Async(B)
the state-transition graph of B under asynchronous updating scheme.

When studying the long-term behaviour of a BN, we typically only consider fair
infinite paths in the state-transition graph. In a fair path, if a transition is enabled infinitely
often, it has to be taken infinitely often. Therefore, the system cannot infinitely delay
the available transitions, and it is not possible to cycle forever in a non-terminal strongly
connected component.

The long-term behaviour of BNs is captured by the notion of attractors [5]. In biological
models, we observe a phenotype in which the system eventually stabilises, whereas, in BN
computational model, we observe attractors which are understood as terminal strongly
connected components of the STG. In the following, we use these two terms interchangeably.

Definition 3 (Attractor). Let B = (V , R,F) be a BN. An attractor of B is a terminal strongly
connected component (TSCC) in Async(B), i.e., a maximal subset A ⊆ Π(B) such that for all
s, t ∈ A, s→∗ t, and for all s ∈ A and t ∈ Π(B), s→ t implies t ∈ A.

We denote a set of all attractors of B as A(B) or simply as A if B is clear from the
context. For a fixed state s, we define Att(s) to be an attractor A ∈ A such that s ∈ A, or an
empty set when s does not belong to any attractor. Furthermore, for an attractor A ∈ A(B)
we also define a notion of its weak and strong basins.

Definition 4 (Weak and strong basin). Let B = (V , R,F) be a BN and A its attractor. A weak
basin of A is the set of states from which it is possible to reach A:

WB(B, A) = {s ∈ Π(B) | s→∗ t for some t ∈ A}
A strong basin is a set of states from which it is not possible to reach any other attractor

than attractor A:

SB(B, A) = WB(B, A) \
⋃

A′∈A[A′ 6=A]

WB(B, A′)

Notice that due to the fairness property, once a strong basin of an attractor A is
reached, the system eventually stabilises in the given attractor. For better illustration,
Figure 2 depicts weak and strong basins of some BN.

Mathematics 2021, 9, 560 6 of 16

Figure 2. Attractors, weak basins and strong basins in an STG of BN. The BN contains two attractors:
single-state attractor 1 (light-red area) and cyclic two-states attractor 2 (light-blue area). Both these
attractors have strong basins of size 3 (solid red area for attractor 1, blue are for attractor 2 resp.).
Please note that states of attractors are also parts of their basins. Moreover, the strong basins never
have any intersections as given by definition. Finally, the red-lined and blue-lined areas contain
weak basin states of attractor 1 and attractor 2. The strong basin is always a subset of a weak basin.
The weak basins are over-lapping.

2.2. Parametrised Boolean Networks

Given a complex real-life system it might be very challenging to precisely determine
all the update functions F of a Boolean network. Parametrised Boolean networks [8,9] provide
a framework to deal with the lack of precise knowledge about the updating mechanism
in a system. This extension assumes a set of logical parameters which determine the
behaviour of update functions. Therefore, parametrised logical update functions either
return a Boolean value (they behave normally) or a logical parameter representing the
uncertainty of the consequent behaviour:

Definition 5 (Parametrised Boolean network). We define a parametrised Boolean network
(ParBN) to be a tuple B̂ = (V ,P , R, P,F). Here, V and R are the same as in Definition 1 and
(i) P = {P, Q, . . .} is a finite set of Boolean logical parameters;
(ii) P ⊆ {0, 1}P is a subset of valid parametrisations;
(iii) F = {F̂A | A ∈ V} is a family of parametrised logical update functions. The signature

of each F̂A is given as F̂A : {0, 1}T (A) → ({0, 1} ∪ P).

For p ∈ P, we write p(P) to denote the value of P in p and we also use the same
notation p[P 7→ k] for substitution as we used for states. The notion of the state space
of a ParBN is identical to that of a BN. By fixing p ∈ P, we obtain B̂p = (V, R,F(p)) (a
standard BN), Ap (the set of attractors of B̂p), and Attp(s) (the attractor of state s in the
parametrisation p).

The asynchronous semantics of a ParBN B̂ is represented using an edge-labelled state-
transition graph Async(B̂), where each transition s→ t is labelled with a subset of parametri-
sations P(s, t) ⊆ P for which it is enabled. That is, p ∈ P(s, t) if and only if s → t in
Async(B̂p). For a fixed s, we denote successors(s) the set of all successors of s (states with
Hamming distance one). In Figure 3, we show a small example of a ParBN. Figure 4 then
presents its asynchronous semantics for selected subset of parametrisations.

Mathematics 2021, 9, 560 7 of 16

M2C M2N

P53 DNA

?
M2CDNAP53 F̂M2N

FM2N

0 0 0 P1 0 0 1 1 1 1 1 1 1
0 0 1 P2 0 0 0 0 0 0 0 1 1
0 1 0 P3 0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 P4 0 1 0 1 1 1 1 1 1
1 1 0 P5 0 1 1 0 1 1 1 1 1
1 1 1 P6 0 0 0 0 0 1 0 0 1

DNA P53 F̂DNA
FDNA

0 0 P7 0 1 1
0 1 0 0 0 0
1 0 1 1 1 1
1 1 P8 0 0 1

P53 FM2C
0 0
1 1

M2N FP53
0 1
1 0

(a) (b) (c)

Figure 3. (a) A regulatory network of a simplified ParBN similar to one in Figure 1a. Compared to the previous case, we
do not know whether regulation (DNA, DNA) is observable. (b) All possible valid update functions FM2N satisfying the static
constraints (monotonicity, observability). (c) Valid update functions FDNA, FM2C and FP53 satisfying the static constraints.
Here, Pi denote the parameters (P) of the ParBN.

0 1
0 0

♠♣
1 1
0 0

♠♣

0 0
0 0

1 0
0 0

♣

0 1
1 0

1 1
1 0

�N
♠♣

0 0
1 0

1 0
1 0

♣

0 0
0 1

♣
1 0
0 1

0 1
0 1N

♠♣

1 1
0 1

0 0
1 1

♣
1 0
1 1

♣

0 1
1 1

♠♣
1 1
1 1

♠♣

♣

♣

♣

♣

N

�,
♠,
♣

♠,
♣

�
,N

Figure 4. The asynchronous semantics of the ParBN given in Figure 3a, restricted to P = {�,N,♠,♣}.
Here, � = {P2,3,6 : 0, P1,4,5,7,8 : 1}, N = �[P3 7→ 1], ♠ = �[P6 7→ 1], and ♣ = ♠[P8 7→ 0]. The unla-
belled edges are enabled for all parametrisations. The highlighted vertices represent attractors for
indicated parametrisations.

In general, the size of the set of all possible parametrisations (parameter space) can be
even doubly exponential in the number of Boolean variables. In particular, the number
of Boolean functions in a model with n variables is 22n

. It is thus critical to restrict the
parameter space as much as possible. In many biological models, regulations are usually
supplemented with static constraints limiting their outcomes [26,27].

We already presented observability, activation and inhibition as specific properties of
regulations. In a parametrised setting, these properties can be used as constraints to restrict
the parametrisation space. We assume that every regulation in a ParBN can be marked
with a subset of these three constraints. Then for all p ∈ P of B̂, B̂p must adhere to these
constraints, e.g., a regulation marked observable in B̂ must be observable in B̂p and the
same for activation and inhibition.

In Figure 3a, a ParBN is displayed where all regulations are marked as either acti-
vating or inhibiting. Figure 3b,c then show the possible update functions satisfying these

Mathematics 2021, 9, 560 8 of 16

static constraints together with the corresponding logical parameters. Please note that
the fully parametrised model would have 16 parameters and 65,536 parametrisations,
but by applying the static constraints, only 27 parametrisations remain valid, significantly
reducing the size of the associated edge-coloured graph.

Notice that the standard notion of an attractor cannot be directly transferred to ParBNs,
because a state can belong to an attractor only in certain parametrisations (for different
parametrisations, the attractors do not have to overlap).

Definition 6 (Attractor in parametrised Boolean network). We say that a subset A ⊂ Π(B̂)
is an attractor in a parametrisation p ∈ P if A is an attractor of B̂p. Furthermore, given a state s,
we can define Ap(s) as the subset of P, such that for each p ∈ Ap(s), Attp(s) 6= ∅.

3. Control Problem for Parametrised Boolean Networks

A computational model is controllable if we can assure that from some initial state,
it reaches a desired final state in a finite amount of steps. This property was well-studied
in the context of synchronous BNs [10,28] and is also being pioneered for asynchronous
BNs [18,29]. However, the control problem for ParBNs has not been explored yet. ParBNs
offer a more flexible representation of biological systems by allowing some uncertainty in
the specification of the logic behind regulations. Since in reality information on regulatory
mechanisms is typically ambiguous or unknown, studying the control problem for ParBNs
enables new attractive, real-life applications, such as the discovery of candidate transcrip-
tion factors for cell reprogramming (i.e., to change a cell’s phenotype) when the model is
not fully known.

3.1. Control Problem for Boolean Networks

There are multiple ways to control the behaviour of a BN, mainly differentiated
between state and function perturbations [30]. State perturbations force the system to
change its current state. Alternatively, function perturbations adjust the update function(s)
and therefore modify the edges of the system’s state-transition graph. Typically, changing
the processes in a cell (function perturbation) is more difficult than artificially adding or
extracting a biochemical substance (state perturbation). For this reason, this paper focuses
on state perturbations.

State perturbations can be further differentiated based on their temporal characteristics,
mainly one-step, sequential, temporary, and permanent control. In one-step control, we change
the values of the controlled variables once, and then the network evolves as originally
defined. Sequential control identifies a sequence of perturbations that are applied at
different time steps. When applying the control temporarily, there exists a finite amount
of computational steps after which the control is released. Finally, the most intrusive
control is permanent control of variables. However, this scenario is rather unrealistic in
practice, as the given substance would need to be added or extracted forever. Moreover,
the permanent perturbation might disrupt the original long-term behaviour of the network
or introduce completely new behaviours.

Finally, we consider different control objectives, defined in [16] as follows:

(i) Source-target control: Given a source state s ∈ Π(B), and a target attractor T ∈ A, find
such control that when applied, the BN always converges from the state s to the
attractor T.

(ii) Target control: Given a target attractor T ∈ A, find a control for every source attractor
S ∈ A (such that S 6= T) that when applied, the BN converges from S to T.

(iii) Full control: For all pairs of distinct attractors S, T ∈ A, find a control which guarantees
that the BN converges from S to T.

(iv) All-pairs control: Given a subset of source attractors S ⊆ A and target attractors
T ⊆ A, for every pair S ∈ S and T ∈ T , find a control which guarantees that the BN
converges from S to T.

Mathematics 2021, 9, 560 9 of 16

In some cases, one may also choose when the control is applied. Here, we consider
immediate control, i.e., the control applied to the given state. Alternatively, during sequential
control, the perturbations can be applied multiple times at different time points. This
way, we can sometimes control the system using fewer perturbations. However, this
approach brings new issues, such as dealing with the non-determinism of the BN (different
perturbations may be necessary in different branches of the non-deterministic network’s
behaviour). Moreover, we would need to be able to precisely observe a current state
of the BN. These issues can be addressed to some extent using attractor-based sequential
approach [20].

In summary, the control problems for BNs differ in the following aspects:

• What do we want to control; goal: What is the initial state of the BN? Where we want to
end? Do we want to control only one scenario or multiple scenarios?

• What control we apply: We can either perturb states (once, temporarily, forever) or
functions of variables;

• When we apply control: Only once from an initial state in contrast with applying control
to an arbitrary state and any amount of times.

3.2. One-Step Control Set of Parametrised Boolean Networks

In this paper, we focus on state perturbations applied immediately in the initial state. This
is the elementary way to perturb the system when solving the source-target control problem.
The respective notion of one-step control is stated formally in the following definition.

Definition 7 (One-step control of ParBN). Given a ParBN B̂, a one-step state perturbation
control C (further referred simply as control) is a tuple (1, 0) where 1, 0 ⊆ V , 0 and 1 are mutually
disjoint (possibly empty) subsets of variables of B̂. The set of all possible controls is denoted C.
An application of control C to a state s, denoted C(s), results in a state s′ defined as:

s′(v) =


1 v ∈ 1
0 v ∈ 0
s(v) otherwise

The size of C is defined as Size(C) = |1|+ |0|.

Next, we focus on establishing the control problem (when computing the one-step
perturbation control) in ParBNs. Conceptually, the parametrised control problem is to
some extent similar to the parameter synthesis problem. The goal of parameter synthesis is to
find parametrisations that ensure some desired behaviour in the network. Such behaviour
can also involve reachability of specific attractors. However, the critical distinction be-
tween parameter synthesis problem and control problem is that in control, one determines
perturbations that lead to a particular objective (with respect to given parametrisations),
possibly resulting in behaviour that is not achievable only by tuning the network parame-
ters. In this work, we thus treat parameters as unknown properties of the system rather
than components that can be influenced.

One of the most significant challenges of ParBN control is that the attractors change
based on the parametrisation. To that end, it makes sense to solve the control problem
only for parametrisations which admit the given attractor. The parametrised control
problem then computes a mapping that associates a potential control with the maximal
set of parametrisations for which the control is applicable (the so-called control enabling
parametrisations). Formally, the considered parametrised control problem is stated in the
following definition.

Definition 8 (Source-target control in ParBN). Given a ParBN B̂, a source state s and a target
state t, find a mapping Cp : C → 2Ap(t) which assigns each control C ∈ C a maximal (possibly

Mathematics 2021, 9, 560 10 of 16

empty) set of parametrisations p for which when C is applied, B̂p converges from s to Attp(t). We
refer to Cp(C) as the control enabling parametrisations for C.

Intuitively, control enabling parametrisations Cp(C) = p are the parametrisations,
for which the target state is achieved by applying C in the non-parametrised case. Please
note that source-target problem in the context of ParBN is aiming to drive the network into a
target state of some attractor instead of an attractor itself. This is because parameterisations
might contain attractors which are considered similar to all of them contain the given
state. Therefore, in all parameterisations Ap(t) the given state t is entered infinitely often
by the controlled BN. If this is not the case of some ParBN and some parametrisations
contain attractors which are out of the interest, the set of parameterisations Ap(t) might be
replaced with an arbitrary one.

It is worth noting that it is always possible to bring the system into the given target
state by setting the ParBN’s variables to the values adequately (with the values of the
given target state). We call this control trivial. However, when controlling a system, we
typically look for a control which requires the fewest interventions possible. Therefore,
we want to minimise the number of the controlled variables and the trivial solution
might not be optimal. In a non-parametrised setting, this is typically the only considered
optimisation criterion.

In a ParBN, the situation is further complicated due to the dependence on the parame-
ters. To reach some attractor, it is sufficient to reach its strong basin after the application of
a control. Nonetheless, the strong basin of an attractor can vary according to the parametri-
sation, and the control thus “works” only for control enabling parametrisations. We are
interested maximising the number of this type of parametrisations. To capture this property
of ParBN control we introduce the notion of robustness that normalises the number of
control enabling parametrisations:

Definition 9 (Robustness of control). Given a ParBN B̂, a target state t, a control set C and
Cp(C), the robustness of control C is defined as the ratio between the number of control enabling
parametrisations and the number of all relevant parametrisations:

Rob(C) =
|Cp(C)|
|Ap(t)|

Unfortunately, it is not always possible to ensure that some control is both minimal
and the most robust. For example, there may be a control set C small in size, which
only works for a small fraction of the parameter space. Consequently, while C is easily
applicable, it may be unlikely to work in reality, as the real behaviour of the system can
also follow one of the parametrisations which are not controlled by C. We discuss this issue
in more detail in Section 5.

4. Materials and Methods

We are now ready to describe our computational framework for solving the one-step
state perturbation control of ParBN. We start by introducing our approach for finding
strong basins in a ParBN. Then we explain the framework for exploring ParBN’s STG and
for manipulation with ParBN’s parametrisations. Finally, we build a concise workflow for
ParBN control employing the proposed algorithms.

4.1. Semi-Symbolic Parametrised Strong Basin Search Algorithm

We assume the set of parametrisations of a ParBN is represented as a reduced ordered
binary decision diagram (BDD) [24]. The decision variables of the BDD are the parameters
of the network (P), meaning that every path from the root to a leaf in such a BDD rep-
resents a parametrisation of the ParBN. Common logical operations on such BDDs (and,
or, negation, ...) then correspond to set operations (intersection, union, complement, ...).
Furthermore, static constraints (activation, inhibition, observability) can be formalised

Mathematics 2021, 9, 560 11 of 16

using Boolean formulae over P , and we can, therefore, create a BDD which enforces all
imposed constraints and represents the set of all valid parametrisations.

Recall that we represent Async(B̂) as an edge-labelled state-transition graph, where
each transition s→ t has an associated set of parametrisations P(s, t) ⊆ P represented as
a BDD. A parametrised state set is a mapping Π(B̂) → 2P assigning to each state a set of
parametrisations. Furthermore, we suppose that the state space is represented explicitly,
meaning that all operations on states are performed element-wise (typically in parallel).

We consider parametrised reachability procedures — given a source state s and
a parameter set P, these procedures compute a maximal parametrised state set of all
forward/backward reachable states from the source state s (containing all reachable states t
where each t is associated with a maximal set of parametrisations Pt for which t is reachable
from s):

forwardReachability(s, P) = {t 7→ Pt | ∀p ∈ Pt : p ∈ P ∧ s→∗p t}
backwardReachability(s, P) = {t 7→ Pt | ∀p ∈ Pt : p ∈ P ∧ t→∗p s}

The chosen representation (explicit state space and symbolic parametrisations) allows
computing the reachability procedures in parallel. For the underlying implementation,
we are working with internal libraries of the tool Aeon [31] which provides most of the
necessary functionality, including a convenient format for specifying ParBNs and parallel
reachability procedures.

The key observation for controlling ParBNs is that an attractor is always reached
from its strong basin (see Definition 4). From all other states, it is possible to reach also
some other attractor(s); therefore, reaching the target attractor is not guaranteed. When
the attractor’s strong basin for all parametrisations is known, we can compute the control
mapping Cp from a source state to the target attractor by considering Hamming differences
between the source and the states of the strong basin.

Our algorithm is based on the fixed-point approach for strong basin computation in
non-parametrised BNs [32]. The premise is that only states from which it is possible to
reach the attractor (weak basin) can be part of the strong basin. The weak basin of the
attractor is computed using some standard reachability algorithms, for example, BFS. Then
states are iteratively removed if it is possible to leave the basin from them (and therefore
not reach the given attractor). Finally, if there are no states left to remove, the fixed-point is
achieved, and the strong basin is found.

For parametrised control, we first need to determine Ap(t) for the target state t, since
in all other parametrisations, t is not a part of any attractor. This process is described in
Algorithm 1. The algorithm is following: we first compute all reachable states, but only
the one from which we can also reach back the target state itself are a part of a TSCC.
Otherwise, it is possible to reach some other component of the system from the target
state, and that contradicts the notion of attractor. In the parametrised setting, we obtain a
mapping of states to parameterisations in which it is not possible to return to the target
again. Therefore, in all these parametrisation the target state is not a part of any attractor,
and so we discard them from the full parameter space P to obtain Ap(t).

In Algorithm 2, we extend the approach from [32] onto ParBN. For each state we
remember under which parametrisations it is in the basin, starting with the parametrised
weak basin. Then we iterate over the basin’s states. For each state, we consider its
successors, and we compute the parametrisations for which some successor is not in the
strong basin. In these parametrisations, it is possible to leave the basin, and therefore these
parametrisations are not part of the strong basin, and so we remove them for this state.
We can process the states in parallel and compute for them the parameterisations which
are not part of the strong basin. To avoid writing to the strong basin structure while it is
intensively read from, we store the parameterisation which should be removed separately,
and after it is computed, we update the strong basin structure sequentially. The procedure
is repeated until nothing more can be removed from the strong basin.

Mathematics 2021, 9, 560 12 of 16

Algorithm 1: Compute attractor parametrisations Ap(target).

Input : PBN B̂, target attractor state target

Output : Attractor parametrisations Ap(target)

fwd← f orwardReachability(target, P);
bwd← backwardReachability(target, P);
/* For every state, compute the BDD difference */
notAttractor← fwd \ bwd;
return P \⋃

s∈Π(B̂) notAttractor(s);

Algorithm 2: Compute strong basin for an attractor in parallel.

Input : PBN B̂, a state target, attractor parametrisations Ap(target)
Output :parameterised state set Π(B̂)→ 2Ap(target) representing the strong basin

SB← backwardReachability(target, Ap(target));
to_update← s in {s ∈ Π(B̂) | SB(s) 6= ∅};
do

updated← ∅;
to_remove← ∀s ∈ Π(B̂)→ ∅;
parallel for to_update do

for t in successors(s) do
/* Recompute parametrisations leading outside of basin */
to_remove(s)← SB(s) ∩ P(s, t) ∩ (P \ SB(t));

if to_remove(s) 6= ∅ then
updated← updated∪ {s} ;

to_update← ∅;
for t in updated do

/* Update strong basin */
SB(s)← SB(s) \ to_remove(s);
/* Only predecessors of updated vars might be updated in the

next iteration */
to_update← to_updated∪ predecessors(s) ;

while to_update 6= ∅;
return SB;

4.2. Control Computation Workflow

Now we can describe a complete workflow for computing the source-target control in
ParBNs, depicted in Figure 5. The workflow consists of three inputs and three computation
steps, resulting in the control mapping Cp.

Given an input ParBN and a target attractor state target, we start by computing valid
parametrisations set Ap(target) using Algorithm 1. Then, the parametrised strong basin is
computed from the ParBN with target attractor state target and its valid parametrisations
Ap(target) using Algorithm 2. After that, from the strong basin and the source state,
we obtain the complete control mapping. Notice that we do not need to know the source
state for computing the strong basin and that we can re-use the target’s strong basin for
obtaining control for different sources.

To compute the control mapping, observe that viable controls correspond exactly to the
Hamming differences (the variables with opposite values) between the source state and the
states of the strong basin; yielding one viable control C for every state s in the strong basin
SB. Any other control C′ does not reach the strong basin and therefore does not guarantee
to reach the target attractor (for these, Cp(C′) = ∅). A control C is then viable only for
parametrisations for which s appears in the strong basin, we thus set Cp(C) = SB(s).

Mathematics 2021, 9, 560 13 of 16

Figure 5. Workflow of computing the source-target control problem. Parts in the orange boxes
represent inputs and blue boxes represent (intermediate) results.

Finally, we can compute the size and robustness of each control as we have all knowl-
edge regarding the variables which need to be controlled and parametrisations for which
the controls work. If it is desired, we can construct a witness BN for a control C (a non-
parametrised BN where the given control works) by fixing some parameter from Cp(C).

In highly parametrised models, it is not unusual to obtain a control with size 0, where
in some parametrisations no action would be needed to control the model. This is because,
in some parametrisations, the source might already be a part of the target’s strong basin.
If this case is considered unrealistic (since there is probably a need for control, thus these
parametrisations appear to be invalid), the parametrisations Ap(target) can be replaced
with a custom set of parametrisations.

The resulting set of all available controls can be then used for e.g., cell reprogramming.
However, we might obtain many possible controls, and we need to decide which one
should be applied. To do that, we can decide based on the size of control or its robustness.
The control set can be arbitrarily filtered discarding controls with size bigger than the
trivial control (which always has 100% robustness) or bigger than some set size. Similarly,
the control set can be pruned based on too low robustness. It is left to the actual application
to decide which control would best suit its needs. Namely, whether it is more important
for the control set to be small or to be robust, as typically, there is rarely available control
which would be optimal in both these factors.

5. Results

We evaluate our approach on two real-life BN models. We compare the performance of
our approach using a different number of parameters implanted into the models, resulting
in different size of relevant parameter space. We conducted all measurements using a
machine equipped with AMD Ryzen Threadripper 2990 WX 32-Core Processor and 64 GB
of memory.

The first model is a cell-fate decision model [33]. The model provides a high-level view
of possible different cell fates such as pro-survival, necrosis or apoptosis. We used a fully
parametrised version (all update functions are completely parametrised) of this model,
and we selected seven biologically relevant attractors. We computed strong basins only for
these attractors in several parametrised versions of the model differing in the number of
unknown parameters (see Table 1).

The second model, a myeloid differentiation network [34], was designed to model a
bone marrow tissue cell differentiation from common myeloid cell to specialised blood
cells (megakaryocytes, erythrocytes, granulocytes, and monocytes). The original non-
parametrised network has eleven nodes and six attractors. We derived several parametrised
versions of the model by arbitrarily parametrising update functions of the model. Similarly
to the previous case, we used only attractors of the original network when computing
strong basins for parametrised versions of the model. The results are again shown in
Table 1.

Mathematics 2021, 9, 560 14 of 16

Table 1. Results of strong basins computation. The values are stated as ranges because we computed
strong basins of all attractors considered in the given models. The second column shows the number
of model’s parameters. The third column shows count ranges of parametrisations which contain the
given attractor. The fourth and fifth columns display ranges of the number of states in the weak (resp.
strong) basins. The last column contains ranges of times needed to compute strong basins.

Model |P| |Ap(t)| # WB States # SB States Time

Cell-Fate

1 1 258,000–
491,184 32–352 4.4–9.19 s

8 1–4 258,000–
491,464 21–79 4.63–13.42 s

20 7–56 258,048–
491,520 1632–262,144 5.82–26.59 s

Myeloid

1 1 128–1152 64–384 8–30 ms
32 63–2052 224–1984 64–1472 14–214 ms

70 5.9× 104–
1.8× 107 1512–2048 256–2048 147–1717 s

94 3.4× 106–
3.7× 109 2008–2048 1024–2048 0.6–15.38 s

Next, we “virtually” compare our approach to the naïve parameter-scan approach.
In [16], a strong basin of (non-parametrised) asynchronous BNs is computed using a
block decomposition method with 4 ms needed to finish the computation for the myeloid
model. Even if the reported hardware was slower than in our case and we assume that
the strong basin computation for one parametrisation would last only 1 ms, the fully
parametrised myeloid model contains an attractor which is present in 3.7× 109 parametri-
sations. Therefore, the expected time for computing a strong basin for all parametrisations
with 32-fold parameterisation is more than a day compared to less than 27 s achieved using
our parameter-based semi-symbolic approach.

We evaluate the scalability of our approach on a fully parametrised myeloid model.
The results are shown in Table 2. The computation was restricted to the specified amount
of CPUs. The final speed-up achieved on our machine, when using 32 CPUs compared to a
non-parallel CPU usage was about 10-fold.

Table 2. Scalability of strong basin computation. The strong basins are computed on attractors of
myeloid model .

CPUs Attractor 1 Attractor 2 Attractor 3 Attractor 4 Attractor 5 Attractor 6

1 6.13 s 99.31 s 71.32 s 130.17 s 45.84 s 136.65 s
2 3.34 s 54.32 s 38.87 s 71.31 s 24.95 s 74.29 s
4 1.86 s 31.3 s 21.83 s 40.31 s 13.71 s 42.26 s
8 1.11 s 19.34 s 13.31 s 24.68 s 8.4 s 26.49 s

16 0.87 s 14.03 s 9.32 s 17.56 s 5.77 s 18.86 s
32 0.6 s 10.98 s 6.87 s 13.22 s 4.54 s 15.38 s

Now let us have a look at an example of how the results might be interpreted and a
suitable control selected. Suppose that we want to reprogram an erythrocyte cell (pheno-
type having factors EKLF = 1 and GATA-2 = 0) into a monocyte cell (phenotype having
factors cJun = 1 and EgrNab = 1) of the myeloid model. First, we obtain a strong basin of
the monocyte attractor having 1472 states yielding us 1472 possible control sets. We can
observe that trivial, i.e., the most robust control strategy (setting variables so that we reach
the attractor right after applying the control), has size 8. We can discard all controls with
size 8 and larger as they are less optimal in all aspects than the trivial control. In our case,
there are 1259 controls with a smaller size than the trivial one.

Resulting smallest control sets have the size 1. However, the best robustness among
these controls is 46%. Therefore, it is quite likely that it will not work in practice. If we

Mathematics 2021, 9, 560 15 of 16

allow the control to have size 2, we can use the control with 76.8% robustness. Further
increasing the size provides control with the size 3 and the robustness 92% and so is highly
likely to reprogram the cell’s phenotype. To achieve only slightly more robustness (93.8%),
we may use a control of size 5. In this highly parametrised model, there is no control with
100% robustness being smaller than the trivial one. It is not a rule of the thumb that with
bigger size of control we obtain better robustness, for example, the control with the size 11
(the only one, with all variables, reversed compared to the original one) has the robustness
of only 50%.

It can be seen that the unknown properties of ParBN make selection of one particular
“best“ control complicated. The smallest control has low chance to work in reality and while
control of size 3 works has significantly better chance to work, the success of the control is
not guaranteed, i.e., this is why a careful in vitro experimentation is needed to verify the
correctness of the control in reality. Nonetheless, the obtained control set still can help and
highly reduce the exponential number of potential transcription factor combinations.

6. Conclusions

We introduced the control problem for parametrised Boolean networks and we pro-
posed an algorithm for solving the source-target variant of this problem using one-step
perturbations. The core procedure of the algorithm is a fixed-point computation of the
parametrised strong basin of the given target. The method we proposed is semi-symbolic–
it relies on a unique integration of symbolic (based on BDD representation) and explicit
(based on enumerative model checking) formal methods. We demonstrated that our ap-
proach is capable if controlling highly parametrised models in seconds. Owing to the
doubly exponential explosion of the number of possible parametrisations, such a result
cannot be achieved with the naïve parameter scan approach.

In future work, we would like to scale up the algorithm for searching the strong
basin, i.e., by using some symbolic approach for exploring ParBN’s state transition graph.
Moreover, we would like to consider other variants of ParBN control problems based on
variants of non-parametrised control problems (see Section 3.1). Last but not least, we
would like to incorporate the developed methods into an existing ParBN toolkit–the AEON
tool [31].

Author Contributions: Conceptualization, E.Š.; methodology, E.Š.; software, S.P. and E.Š.; validation,
L.B., S.P. and D.Š.; formal analysis, E.Š.; investigation, E.Š.; data curation, S.P.; writing—original draft
preparation, E.Š.; writing—review and editing, L.B., S.P. and D.Š.; visualisation, E.Š.; supervision,
D.Š. and L.B.; project administration, D.Š. and E.Š.; funding acquisition, L.B. and D.Š. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schwab, J.D.; Kühlwein, S.D.; Ikonomi, N.; Kühl, M.; Kestler, H.A. Concepts in Boolean network modeling: What do they all

mean? Comput. Struct. Biotechnol. J. 2020, 18, 571–582. [CrossRef]
2. Abou-Jaoudé, W.; Ouattara, D.A.; Kaufman, M. From structure to dynamics: Frequency tuning in the P53–MDM2 network: I.

logical approach. J. Theor. Biol. 2009, 258, 561–577. [CrossRef]
3. Zheng, D.; Yang, G.; Li, X.; Wang, Z.; Liu, F.; He, L. An Efficient Algorithm for Computing Attractors of Synchronous And

Asynchronous Boolean Networks. PLoS ONE 2013, 8, e60593. [CrossRef]
4. Clarke, E.M.; Klieber, W.; Nováček, M.; Zuliani, P. Model checking and the state explosion problem. In LASER Summer School on

Software Engineering; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–30.
5. Hopfensitz, M.; Müssel, C.; Maucher, M.; Kestler, H.A. Attractors in Boolean networks: A tutorial. Comput. Stat. 2013, 28, 19–36.

[CrossRef]
6. Santos-Zavaleta, A.; Salgado, H.; Gama-Castro, S.; Sánchez-Pérez, M.; Gómez-Romero, L.; Ledezma-Tejeida, D.; García-Sotelo,

J.S.; Alquicira-Hernández, K.; Muñiz-Rascado, L.J.; Peña-Loredo, P.; et al. RegulonDB v 10.5: Tackling challenges to unify classic
and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 2018, 47, D212–D220. [CrossRef] [PubMed]

http://doi.org/10.1016/j.csbj.2020.03.001
http://dx.doi.org/10.1016/j.jtbi.2009.02.005
http://dx.doi.org/10.1371/journal.pone.0060593
http://dx.doi.org/10.1007/s00180-012-0324-2
http://dx.doi.org/10.1093/nar/gky1077
http://www.ncbi.nlm.nih.gov/pubmed/30395280

Mathematics 2021, 9, 560 16 of 16

7. Fang, L.; Li, Y.; Ma, L.; Xu, Q.; Tan, F.; Chen, G. GRNdb: Decoding the gene regulatory networks in diverse human and mouse
conditions. Nucleic Acids Res. 2020, 49, D97–D103. [CrossRef]

8. Zou, Y.M. Boolean Networks with Multiexpressions and Parameters. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013, 10, 584–592.
[CrossRef] [PubMed]

9. Beneš, N.; Brim, L.; Pastva, S.; Poláček, J.; Šafránek, D. Formal Analysis of Qualitative Long-Term Behaviour in Parametrised
Boolean Networks. In Formal Methods and Software Engineering; Ait-Ameur, Y., Qin, S., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 353–369.

10. Junil Kim, S.M.P.; Cho, K.H. Discovery of a kernel for controlling biomolecular regulatory networks. Nat. Sci Rep 2013, 3, 1–9.
11. Fiedler, B.; Mochizuki, A.; Kurosawa, G.; Saito, D. Dynamics and control at feedback vertex sets. I: Informative and determining

nodes in regulatory networks. J. Dyn. Differ. Equ. 2013, 25, 563–604. [CrossRef]
12. Zhao, Y.; Ghosh, B.K.; Cheng, D. Control of large-scale Boolean networks via network aggregation. IEEE Trans. Neural Netw.

Learn. Syst. 2015, 27, 1527–1536. [CrossRef]
13. Moradi, M.; Goliaei, S.; Foroughmand-Araabi, M.H. A Boolean network control algorithm guided by forward dynamic

programming. PLoS ONE 2019, 14, 1–21. [CrossRef]
14. Zañudo, J.G.T.; Albert, R. Cell Fate Reprogramming by Control of Intracellular Network Dynamics. PLoS Comput. Biol. 2015,

11, 1–24. [CrossRef]
15. Cornelius, S.P.; Kath, W.L.; Motter, A.E. Realistic control of network dynamics. Nat. Commun. 2013, 4, 1–9. [CrossRef] [PubMed]
16. Baudin, A.; Paul, S.; Su, C.; Pang, J. Controlling large Boolean networks with single-step perturbations. Bioinformatics 2019,

35, i558–i567. [CrossRef]
17. Mandon, H.; Haar, S.; Paulevé, L. Temporal Reprogramming of Boolean Networks. In CMSB; Springer: Berlin/Heidelberg,

Germany, 2017; Volume 10545, pp. 179–195.
18. Su, C.; Pang, J. A Dynamics-based Approach for the Target Control of Boolean Networks. CoRR 2020. [CrossRef]
19. Abou-Jaoudé, W.; Traynard, P.; Monteiro, P.T.; Saez-Rodriguez, J.; Helikar, T.; Thieffry, D.; Chaouiya, C. Logical Modeling and

Dynamical Analysis of Cellular Networks. Front. Genet. 2016, 7, 94. [CrossRef] [PubMed]
20. Mandon, H.; Su, C.; Haar, S.; Pang, J.; Paulevé, L. Sequential Reprogramming of Boolean Networks Made Practical. In Computa-

tional Methods in Systems Biology; Bortolussi, L., Sanguinetti, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 3–19.

21. Pardo, J.; Ivanov, S.; Delaplace, F. Sequential Reprogramming of Biological Network Fate. In CMSB; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 20–41.

22. Su, C.; Pang, J. Sequential Control of Boolean Networks with Temporary and Permanent Perturbations. arXiv 2020,
arXiv:2004.07184.

23. Wang, R.S.; Saadatpour, A.; Albert, R. Boolean modeling in systems biology: An overview of methodology and applications.
Phys. Biol. 2012, 9, 055001. [CrossRef]

24. Bryant, R.E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Comput. 1986, 35, 677–691. [CrossRef]
25. Dolev, S.; Frenkel, S.; Tamir, D.E.; Sinelnikov, V. Preserving hamming distance in arithmetic and logical operations. J. Electron.

Test. 2013, 29, 903–907. [CrossRef]
26. Klarner, H. Contributions to the Analysis of Qualitative Models of Regulatory Networks. Ph.D. Thesis, Free University of Berlin,

Berlin, Germany, 2015.
27. Streck, A. Toolkit for reverse engineering of molecular pathways via parameter identification. Ph.D. Thesis, Free University of

Berlin, Berlin, Germany, 2016.
28. Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of complex networks. Nature 2011, 473, 167–173. [CrossRef] [PubMed]
29. Su, C.; Paul, S.; Pang, J. Controlling Large Boolean Networks with Temporary and Permanent Perturbations. In International

Symposium on Formal Methods; Springer: Cham, Switzerland, 2019.
30. Mandon, H. Algorithms for Cell Reprogramming Strategies in Boolean Networks. Ph.D. Thesis, Université Paris-Saclay,

Saint-Aubin, France, 2019.
31. Beneš, N.; Brim, L.; Pastva, S.; Šafránek, D. AEON: Attractor Bifurcation Analysis of Parametrised Boolean Networks. In CAV,

CA, USA, 2020; Springer: Cham, Switzerland, 2020; Volume 12224
32. Paul, S.; Pang, J.; Su, C. On the Full Control of Boolean Networks. In CMSB; Springer: Brno, Czech Republic, 2018; pp. 313-317.
33. Calzone, L.; Tournier, L.; Fourquet, S.; Thieffry, D.; Zhivotovsky, B.; Barillot, E.; Zinovyev, A. Mathematical Modelling of Cell-Fate

Decision in Response to Death Receptor Engagement. PLoS Comput. Biol. 2010, 6, 1–15. [CrossRef] [PubMed]
34. Krumsiek, J.; Marr, C.; Schroeder, T.; Theis, F.J. Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription

Factor Network. PLoS ONE 2011, 6, 1–10. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/nar/gkaa995
http://dx.doi.org/10.1109/TCBB.2013.79
http://www.ncbi.nlm.nih.gov/pubmed/24091393
http://dx.doi.org/10.1007/s10884-013-9312-7
http://dx.doi.org/10.1109/TNNLS.2015.2442593
http://dx.doi.org/10.1371/journal.pone.0215449
http://dx.doi.org/10.1371/journal.pcbi.1004193
http://dx.doi.org/10.1038/ncomms2939
http://www.ncbi.nlm.nih.gov/pubmed/23803966
http://dx.doi.org/10.1093/bioinformatics/btz371
http://dx.doi.org/10.1145/3388440.3412464
http://dx.doi.org/10.3389/fgene.2016.00094
http://www.ncbi.nlm.nih.gov/pubmed/27303434
http://dx.doi.org/10.1088/1478-3975/9/5/055001
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1007/s10836-013-5421-9
http://dx.doi.org/10.1038/nature10011
http://www.ncbi.nlm.nih.gov/pubmed/21562557
http://dx.doi.org/10.1371/journal.pcbi.1000702
http://www.ncbi.nlm.nih.gov/pubmed/20221256
http://dx.doi.org/10.1371/journal.pone.0022649
http://www.ncbi.nlm.nih.gov/pubmed/21853041

	Introduction
	Preliminaries
	Boolean Networks
	Regulatory Network
	Boolean Network Dynamics

	Parametrised Boolean Networks

	Control Problem for Parametrised Boolean Networks
	Control Problem for Boolean Networks
	One-Step Control Set of Parametrised Boolean Networks

	Materials and Methods
	Semi-Symbolic Parametrised Strong Basin Search Algorithm
	Control Computation Workflow

	Results
	Conclusions
	References

