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Abstract: In most of the service systems considered so far in queuing theory, no fresh customer
is admitted to a batch undergoing service when the number in the batch is less than a threshold.
However, a few researchers considered the case of customers accessing ongoing service batch,
irrespective of how long service was provided to that batch. A queuing system with a different kind
of accessibility that relates to a real situation is studied in the paper. Consider a single server queuing
system in which the service process comprises of k stages. Customers can enter the system for
service from a node at the beginning of any of these stages (provided the pre-determined maximum
service batch size is not reached) but cannot leave the system after completion of service in any of the
intermediate stages. The customer arrivals to the first node occur according to a Markovian Arrival
Process (MAP). An infinite waiting room is provided at this node. At all other nodes, with finite
waiting rooms (waiting capacity cj, 2 ≤ j ≤ k), customer arrivals occur according to distinct Poisson
processes with rates λj, 2 ≤ j ≤ k. The service is provided according to a general bulk service rule,
i.e., the service process is initiated only if at least a customers are present in the queue at node 1 and
the maximum service batch size is b. Customers can join for service from any of the subsequent
nodes, provided the number undergoing service is less than b. The service time distribution in each
phase is exponential with service rate µm

j , which depends on the service stage j, 1 ≤ j ≤ k, and the
size of the batch m, a ≤ m ≤ b. The behavior of the system in steady-state is analyzed and some
important system characteristics are derived. A numerical example is presented to illustrate the
applicability of the results obtained.

Keywords: queuing system; Markovian arrival process; accessible service batches; transport systems

1. Introduction

A detailed literature survey of bulk service queueing systems can be found in [1,2].
In most of the works, customer service is provided in batches of varying sizes with mini-
mum batch size a and maximum batch size b-also called general bulk service (GBS) rule
(introduced by Neuts [3]). In that paper, the author assumes that a minimum of a cus-
tomers are required to start a service. This is referred to as the quorum. The maximum
permissible batch size is set as b(a < b). Therefore, at a service completion epoch, if more
than b customers are in the queue, the server takes the first b among those waiting for
service and the remaining customers have to wait until their turn comes. If the number
of customers waiting when the service of the current batch is completed is between a
and b, both included, then all of them are taken together for service. On the other hand,
if only less than a customers are waiting in the queue at the epoch of service completion,
then the server stays idle or goes on a vacation. The motivation for this assumption is
economic—that offering service with at least a customers in each service batch reduces
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cost. Airport shuttles follow this rule. There are several other examples in real life that
fit into this definition. In literature, certain batch service queuing systems are considered
wherein customers can join or access an ongoing service batch any time before service of
the batch is completed, provided the specified maximum service batch size is not reached.
The assumption made in that admission strategy is that customers who join during an
ongoing service batch will not increase the total service time of the batch. Queuing systems
with accessible batch service have been studied quite extensively and many variants of the
same can be found in the literature. A brief survey of literature on queuing systems with
accessible batches can be found in the next paragraph.

Continuous-time queuing systems with accessible service batches have been studied
in the literature (see [4–12]), while discrete-time queues with accessible and non-accessible
batches are considered in [13–20]. The steady-state and transient distribution of system
states for a single server queuing system with Poisson arrivals and exponential service to
a single customer or to a batch (depending on the number of customers in the queuing
system) are studied in [6,8], respectively. If the number of customers in the system is
less than c, service will be provided singly. Otherwise, service is provided in batches.
Late arrivals can access the system until the number in a batch is less than d, but greater
than or equal to c. As an extension to the above models, bulk service queuing systems
with service according to a Modified General Bulk Service Rule (Server starts service
only when queue size is at least c. The server continues to serve at a service completion
epoch even when the number in queue is less than c but greater than or equal to a ≤ c)
in addition to assumptions in previous models ([6,8]) are analyzed in [10] (Continuous
case) and [20] (Discrete case). Krishnamoorthy and Ushakumari analyze a finite as well
as infinite capacity single server queuing system with Poisson arrivals and exponential
service (with service rate depending on the number of customers in the system) in [7].
In this paper, it is assumed that, though customers depart individually from the system,
service is provided either singly or accessible batches. In [11,12], a finite (infinite buffer)
bulk queuing system with renewal input and exponential service provided either singly or
in batches, depending on the number of customers present in the system, is studied (the
difference being that, in [12], accessibility to an ongoing service is restricted to a threshold
value d). In [5], Ayappan and Renganathan consider a single server preemptive priority
queue in which high priority customers are given service in batches according to GBS Rule
and with accessibility to batches, while low priority customers are provided service singly.
Bulk service queues with accessible and/or non- accessible batches (finite and/or infinite
buffer queues) having geometrically distributed inter-arrival as well as service times are
analyzed in [13–15]. A discrete-time bulk service queue with geometrically distributed
inter-arrival times, accessibility to service batches, and service times following negative
binomial distribution is studied in [16]. Bulk service vacation queueing systems with
accessible batches have been studied in [19,21–24]. Additionally, in [23], the service batch
sizes are assumed to be Markov dependent. A two-server queueing system in which server
1 alone provides accessible batch service is analyzed in [25]. Though permitting customers
to join an ongoing service batch helps in reducing congestion and waiting time in queues,
it is not often very realistic. A customer who wishes to get service from the very beginning
may be forced to join an ongoing service batch. On the contrary, some customers might
not require an entire service but just a part of it, and, for them, joining the service from the
very beginning will increase their waiting time or results in a higher cost for service (to be
paid by such customers).

The queuing system considered in the present paper overcomes these shortcomings
as service is assumed to be provided in stages, and customers can access an ongoing
service batch from the beginning of these stages, depending on their requirement. This
queuing model is immediately seen to be applied in elevators and transport systems.
More specifically, consider an organization (could be an office/educational institution/an
exhibition, etc.), where people go to get some work done. A public transport system
operates to ferry people to this destination from different locations in the city. Individuals
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seeking service of the organization queue up at different locations (Henceforth, these
specific locations will be referred to as nodes). Node 1 is the starting point where an infinite
capacity waiting space is provided. At all other nodes, only finite capacity waiting rooms
are provided. The transport system collects passengers from different nodes numbered
1, 2, . . . k in that order. Finally, it reaches the destination. The transport vessel has only finite
capacity b, and it starts service from node 1 the moment a minimum of a passengers are
available. However, more people can board the transport, subject to the capacity restriction.
In case it starts with b passengers from node 1, then no more passengers can board it from
that node or from any intermediate nodes. If the transport starts from node 1 with less
than b passengers then, from intermediate nodes, the resulting number of passengers who
could board the transport is such that the number of passengers in the system does not
exceed b. One can as well study the case of passengers returning from the organization;
in this case, the effect will be reversed because passengers alight at different intermediate
nodes: k, k− 1, . . . and finally at 1, if there is any. This will be taken up in a future study.

The model being discussed in this paper could also be applied to inventory transport.
Raw materials are collected from different locations to be transported to a manufacturing
plant. The raw material available at node 1 is the maximum needed item. The remaining
items to be collected at nodes 2 through k are used as catalysts and so their consumption is
minimum. Thus, at node 1, maximum quantity is collected, subject to capacity restriction;
only if this capacity restriction is not reached will commodities at remaining nodes be
collected. Furthermore, we can impose storage capacity restrictions at the plant. Based
on this, the optimal transportation schedule is to be drawn. The availability of materials
at the various nodes is also to be taken into consideration. This will be a direction for
future investigation.

Another example is the lateral entry system followed in academic institutions. In En-
gineering Bachelor’s degree program (4 years = 8 semesters), freshers are admitted to
semester 1. Those who already have a Diploma (a 3-year program) can opt to join when
the other batch reaches the 3rd semester. There are several other examples from real life for
the model discussed in this paper. The highlights of the present paper are:

• It introduces the concept of customer accessing an ongoing service at the start of any
service stage from where it requires service rather than accessing service of an ongoing
batch, upon the customer’s arrival.

• There are numerous papers in bulk service queuing literature in which service time
depends on the size of a service batch. In this paper, we go further to assume that
service rate depends on both the stage of service and number of customers undergoing
service in the current stage.

However, we should admit that the model discussed can be further extended to cover
much more general arrival and service pattern—for example, marked Markovian arrival
processes (MMAP) or even batch Markovian arrival processes (BMAP) (batch arrivals)
and phase-type service. However, the phase-type service is not appropriate because, in
transport systems, there are rarely backward stage transitions. In the following sentences,
the restriction of the model analyzed is summarized. The arrival process to the first node
is a fairly general process, namely Markovian arrival process (MAP); for arrivals to the
remaining nodes, we could have also made this assumption; however, it results in a
tremendous increase in the dimension of the process under consideration. Even with a
Marked Markovian arrival process (MMAP) assumption for arrivals to all nodes, there is
a dimensionality problem.
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2. The Model

We consider a single server queuing system where the server provides service in k
stages. Service is in batches. At node 1, there should be no less than a customers to start
the service; but at most b can get into service. At node 2, new customers, waiting at node
2, can join this batch when it completes the first stage of service, provided the size of the
batch is less than b. The number of customers joining the service batch at this node is equal
to min{d2, b− b1}, where b1 is the number of customers in the batch in stage 1 and d2 is
the number waiting at node 2. In general, at node j, min{dj, b− bj−1} customers join for
service in the batch when it completes service in stage j− 1. Customers requiring service
right from stage 1 (who arrive while service is progressing in stage 1 or beyond), queue
up before node 1 in an infinite capacity waiting room. Only those customers requiring
service from stages starting from 2/3/ . . . k alone are to wait in the respective nodes; each
of these nodes is provided finite waiting rooms (i.e., waiting room capacity cj is assumed
to be finite for nodes through 2 to k). The reason for not considering the case of infinite
capacity intermediate nodes is that it is impossible to analyze it with the technique adopted
at present. This will be considered in a follow-up paper. Though customers can access
service from intermediate nodes, they cannot leave the system after completing service
from an intermediate node. Customer arrivals to node 1 follow MAP with representation
(D0, D1). The entries of matrices D0 and D1 denote, respectively, the transition rates of
the underlying CTMC on r phases with and without arrivals. The expected number of
arrivals per unit of time in stationary mode or the fundamental rate of MAP is defined
as λ1 = θD1e, θ is the stationary probability vector of the underlying CTMC of MAP
(i.e., θ satisfies θD = 0, θe = 1, D = D0 + D1). The input flow to nodes 2, 3 . . . k follow
Poisson process with respective arrival rates λj. The service time at stage j is exponentially
distributed with parameter µm

j which depends on the stage j; 1 ≤ j ≤ k and the size of the
service batch at that stage m; a ≤ m ≤ b. The pictorial representation of a queueing system
in which service is provided in four phases is as shown in Figure 1.

Figure 1. Queueing system with four stages of service, with accessibility to service from the beginning of any stage.

The above queueing model can be studied as a CTMC as described below. First, we
introduce some notations:

Nj(t)-number of customers in the queue at node j at time t
S(t)-size of the batch undergoing service, if any, at time t
J(t)-the stage of the service process if any, at time t
I(t)-the underlying phase of MAP at node 1
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Then, {(N1(t), N2(t), ...Nk(t), S(t), J(t), I(t)) : t ≥ 0} is a CTMC on state space Ω =
Ω1 ∪Ω2 where, Ω1 = {(n1, n2, ..., nk, i) : 0 ≤ n1 ≤ a− 1; 0 ≤ n2 ≤ c2; ...0 ≤ nk ≤ ck; 1 ≤
i ≤ r} and Ω2 = {(n1, n2, ..., nk, m, j, i) : n1 ≥ 0; 0 ≤ n2 ≤ c2; ...0 ≤ nk ≤ ck; a ≤ m ≤ b; 1 ≤
j ≤ k; 1 ≤ i ≤ r}. Ω1 denotes the set of states whence the server is idle and Ω2 denotes
the set of states whence the server is serving a batch of size m in stage j. The states are
arranged in lexicographic order.

The infinitesimal generator matrix is

Q1 =



B00 B01
B11 B12

...
. . . . . .

Ba−1a Ba−1a−1 Ba−1a
Ba0 B1 B0

Ba+10 B1 B0
...

. . . . . .
Bb0 B1 B0

Bb+11 B1 B0
. . . . . . . . .

Bb+aa−1 B1 B0
B2 B1 B0

B2 B1 B0
. . . . . . . . .


Here, Bll′ denotes the transition rate matrix from n1 = l to n1 = l′. B0 = I ⊗ D1

denotes the transition rate matrix from n1 to n1 + 1; n1 ≥ a, B1 denotes the transition

rate matrix within level n1; n1 ≥ a and B2 = I ⊗


0 0 . . . Ek1 ⊗ µa

k Ir
0 0 . . . Ek1 ⊗ µa+1

k Ir
...

...
0 0 . . . Ek1 ⊗ µb

k Ir

, Ek1 =

ek(k).e′1(k) transition rate matrix from n1 to n1− b, n1 ≥ a + b. The order of B0, B1, B2 being
(c2 + 1) . . . (c3 + 1) . . . (ck + 1) . . . (b− a + 1).k.r.

As an illustration, the infinitesimal generator matrix when a = 2 and b = 4 is

Q1 =



B00 B01
B10 B11 B12
B20 0 B1 B0
B30 0 0 B1 B0
B40 0 0 0 B1 B0
0 B51 0 0 0 B1 B0
0 0 B2 0 0 0 B1 B0
0 0 0 B2 0 0 0 B1 B0

. . . . . . . . .


If the service begins with none or a single customer, the matrix Q1 will be of GI/M/1

type. Otherwise, this can be brought to the GI/M/1 type queue by redefining the level
using a. Redefine level 0, l(0), to include states with n1 = 0, 1, . . . a− 1, level 1, l(1), to
include states with n1 = a, a + 1, . . . 2a− 1 and, in general level n, l(n), to include states
with n1 = na, na + 1 . . . (n + 1)a− 1. Then, infinitesimal matrix changes to
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Q2 =



C00 C01
C10 C1 C0
C20 C2 C1 C0
C30 C3 C2 C1 C0
C40 C4 C3 C2 C1 C0

. . . . . . . . .


C0 = ea(a)× e′1(a)⊗ B0.
Let s = a+b

a , if it is an integer and s = [ a+b
a ] + 1, otherwise.

Ci = 0; i > s and Ci0 = 0; i ≥ s.

(The reason being that sa− b belongs to level 1 and hence there is no transition from
level s to level 0.)

For the example considered above,

C00 =

[
B00 B01
B10 B11

]
, C01 =

[
0 0

B12 0

]
,

C10 =

[
B20 0
B30 0

]
, C20 =

[
B40 0
0 B51

]
,

C1 =

[
B1 B0
0 B1

]
, C0 =

[
0 0
B0 0

]
, C3 =

[
B2 0
0 B2

]
We could also redefine level using b, the maximum size of a service batch. Then,

the infinitesimal generator matrix will be a LIQBD. However, we prefer the former as it
lessens the computational effort. The transitions from states in level 0 (i.e., 0 ≤ n1 ≤ a− 1)
to itself and rates are given in the following Tables 1–6:

Table 1. Transitions and corresponding rates of transition within level 0.

Sl. No From To Rate

1 (n1, n2...nk, i) (n1, n2...nk, i) d0
ii − (∑j 6=1,nj<cj

λj)

2 (n1, n2...nk, i) (n1, n2...nk, i′) d0
ii′

3 (n1, n2...nk, i) (n1 + 1, n2...nk, i′) dii′

4 (n1, n2...nk, i) (n1 − 1, n2...nk, a, 1, i′) dii′

5 (n1, n2...nj...nk, i) (n1, n2...nj + 1...nk, i) λj

6 (n1, n2...nk, m, k, i) (n1, n2...nk, i) µm
k

7 (n1, n2...nj...nk, m, j, i) (n1, n2...nj...nk, m, j, i) d0
ii − (∑j 6=1,nj<cj

λj + µm
j )

8 (n1, n2...nj...nk, m, j, i) (n1, n2..nj...nk, m, j, i′) d0
ii′

9 (n1, n2...nj...nk, m, j, i) (n1 + 1, n2...nj...nk, m, j, i′) dii′

10 (n1, n2...nj...nk, m, j, i) (n1, n2...nj...nk, m, j + 1, i) µm
j

11 (n1, n2...nj...nk, m, j, i) (n1, n2...nj+1 −m′...nk, m + m′, j + 1, i) µm
j

Transitions under serial numbers 1, 7 represent self transition; 3, 4, 9 correspond to
the arrival of a customer to the first node with the difference that in 4, the arrival initiates
service of a batch of size a. Transition under serial number 2, 8 indicate phase change in
MAP. Transitions under 6 indicate the server going idle with service completion. Transition
under serial number 11 represents the transition from state j to j + 1, with m′ customers
waiting at node j + 1 taken for service. 10 represents the transition from state j to j + 1,
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without taking new customers either due to attainment of maximum service batch size or
not having customers waiting in subsequent node.

Table 2. Transitions and corresponding rates of transition from level 0 to 1.

From To Rate

(n1, n2...nj...nk, m, j, i) (n1 + 1, n2...nj...nk, m, j, i′) dii′

Table 3. Transitions and corresponding rates of transition from level n (i.e., n1 ≥ a) to lower levels.

From To Rate

(n1, n2...nk, m, k, i) (n1 −m′, n2...nk, m′, 1, i) µm
k

Table 4. Transitions and corresponding rates of transition from level n (i.e., n1 ≥ b) to lower levels

From To Rate

(n1, n2...nk, m, k, i) (n1 − b, n2...nk, b, 1, i) µm
k

Table 5. Transitions and corresponding rates of transition from level n ≥ 1 (i.e., n1 ≥ a) to level n + 1.

From To Rate

(n1, n2..nj..nk, m, j, i) (n1 + 1, n2..nj..nk, m, j, i′) dii′

Table 6. Transitions and corresponding rates of transition within level n (i.e., n1 ≥ a).

Sl. No From To Rate

1 (n1, n2..nj..nk, m, j, i) (n1, n2..nj..nk, m, j, i) d0
ii − (∑j 6=1,nj<cj

λj + µm
j )

2 (n1, n2..nj..nk, m, j, i) (n1, n2..nj..nk, m, j, i′) d0
ii′

3 (n1, n2..nj..nk, m, j, i) (n1 + 1, n2..nj..nk, m, j, i′) dii′

4 (n1, n2..nj..nk, m, j, i) (n1, n2..nj..nk, m, j + 1, i) µm
j

5 (n1, n2..nj..nk, m, j, i) (n1, n2..nj+1 −m′..nk, m + m′, j + 1, i) µm
j

3. Steady-State Analysis

In this section, the steady-state analysis of the above queueing model is done after
establishing the stability condition.

3.1. Stability Condition

Lemma 1. The system is stable iff φ̃B0e < b.φ̃B2e, φ̃B0e = λ1, the arrival rate of customers to
the first phase.

Proof. Let φ = (φ1, φ2, . . . , φa) denote the steady-state probability vector of the generator
matrix, C = ∑s

i=0 Ci. Then, φ satisfies

φC = 0 and φe = 1.

C is a block circulant matrix and hence φ = 1
a (e
′(a)⊗ φ̃), where φ̃ is a row vector

that satisfies φ̃(∑2
i=0 Bi) = 0.

The queueing system is stable (see Neuts [26]) if and only if φC0e < ∑i=∞
i=2 (i −

1)φCie or, φ̃B0e < b.φ̃B2e, φ̃B0e = λ1, where λ1 is the arrival rate of customers to the
first phase.
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3.2. Steady-State Probability Vector

Assuming that the stability condition is satisfied, we outline the procedure for com-
putation of the steady-state probability vector x of the infinitesimal generator matrix Q2.
x satisfies

xQ2 = 0 and xe = 1.

Partitioning x to (x0, x1, x2, x3...), we see that x is such that

xi = x1Ri−1, i ≥ 2,

where R is the minimal non-negative solution to the equation

s

∑
i=0

RiCi = 0.

The boundary equations are given as

s−1

∑
i=0

xiCi0 = 0,

x0C01 +
s

∑
i=1

xiCi = 0.

The normalizing condition, xe = 1, gives

x0e + x1[I − R]−1e = 1.

For the queuing system under consideration, we have seen that

C0 = ea(a)⊗ e′1(a)⊗ B0 =


0 0 ... 0
0 0 ... 0
...

... . . .
...

B0 0 ... 0

.

The first a− 1 blocks of C0 are zeros, which implies that the R matrix has the form

R =


0 0 ... 0
0 0 ... 0
...

... . . .
...

R1 R2 ... Ra

.

4. System Characteristics
4.1. Analysis of Service Times

Lemma 2. The service time of a customer who joins for service from node j, when there are
m customers in service, {nl ; j + 1 ≤ l ≤ k} customers in node l is phase-type distributed,
PH(β j, STj), with the initial probability vector β j having entry 1, corresponding to the state
(nj+1 . . . nk, m, i) in which the process is in, with all other entries 0.

Proof. The service time of a customer depends on the phase from which he joins for service
and size of the batch he joins. Suppose the TC joins for service from stage j, 1 < j < k. His
service time is time to absorption of CTMC,

{(Nj+1(t), Nj+2(t), . . . Nk(t), S(t), J(t)) : t ≥ 0} to {∗}, state indicating the completion
of service. The state space is given as {(nj+1, nj+2, . . . , nk, m, j′) : 0 ≤ nj+1 ≤ cj+1; . . . 0 ≤
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nk ≤ ck; a + 1 ≤ m ≤ b; j ≤ j′ ≤ k} ∪ {∗}. The infinitesimal generator of this Markov
chain is

STj =

[
Sj S0

j
0 0

]
.

Table 7 indicating the transitions and respective rates is given below:

Table 7. Transition rates.

From To Rate

(nj+1, nj+2...nk, m, j′) (nj+1, nj+2...nk, m, j′) −µm
j′

(nj+1, nj+2...nk, m, j′) (nj+1, nj+2...nk, m, j′ + 1) µm
j′

(nj+1, nj+2...nk, m, k) {∗} µm
k

(nj+1, nj+2...nk, m, j′) (nj+1 −m′, nj+2...nk, m + m′, j′ + 1) µm
j′

(nj+1, nj+2.nl′ ..nk, m, j′) (nj+1, nj+2.nl′ + 1..nk, m + m′, j′ + 1) λ′l

If k′ = k− (j− 1), then

S0
j =

 ek(k′)⊗ µa+1
k

...
ek(k′)⊗ µb

k

.

Remark 1. If the customer joins for service from stage 1, the service time is phase-type with the
difference that, in state space, the service batch size varies between a and b. If the customer joins
for service from stage k, the service time is exponential, with rate µm

k , provided m customers are
in service.

4.2. Idle Time Analysis

The server is idle until a customers join the queue at phase 1. The probability that
a customer arrival happens in (t, t + dt] is given by eD0tD1dt. LST of idle time, provided
there are h; h < a customers in the queue (the arrival phase changes from i to i′ at the end
of ath arrival) is the (i, i′)th entry of the matrix {(sI − D0)

−1D1}a−h.

4.3. Other System Characteristics

• Expected queue length at node 1, EQ1 = ∑n1
n1(xn1 .e).

• Expected queue length at node j,
EQj = ∑nj

[nj.(∑nl ,l 6=j ∑i x(n1,n2,...,nk ,i)) + (∑nl ,l 6=j ∑m ∑j ∑i x(n1,n2,...,nk ,m,j,i))].

• Probability that the server is idle, PI = ∑n1 ∑n2
.. ∑nk ∑i x(n1,n2,...,nk ,i)

• Probability that the server serves a batch of size ′m′

Pm = ∑n1 ∑n2
.. ∑nk ∑j ∑i x(n1,n2,...,nk ,m,j,i)

• Expected number of customers served in a batch, ES = ∑m m.Pm
• Probability that service at phase 1 starts immediately on completion of current batch

departure at phase k, P = ∑n1≥a ∑n2
.. ∑nk ∑m ∑i x(n1,n2,...,nk ,m,k,i).

5. Numerical Example

To illustrate the applicability of results obtained for the model under consideration,
we present a numerical example. We consider a 4-stage queuing system in which customers
can access service from the beginning of any of these stages. The waiting space at node
1 is of infinite capacity, while the waiting spaces at nodes 2, 3, 4 are of finite capacity,
c2 = 1, c3 = 1, c4 = 2 (These values are taken for the ease of numerical computation).
For the arrival process at Node 1, we consider the following sets of values for D0 and D1:

1. Erlang of order 2, ZCA
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D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
2. MAP with positive correlation, PCA

D0 =

[
−2.1738 0.0072
0.0072 −0.4347

]
, D1 =

[
2.1449 0.0217
0.0072 0.4203

]
3. MAP with negative correlation, NCA

D0 =

[
−9.3844 0.0939
0.0001 −0.5285

]
, D1 =

[
0.0938 9.1967
0.5283 0.0001

]
All of these processes are normalized to have an arrival rate λ1 = 1. The correlation

of the processes labeled ZCA, PCA, NCA are respectively 0, 0.2792,−0.3010. The arrival
process to nodes 2, 3, 4 are assumed to be Poisson with the same rate 1. i.e., λ2 = λ3 =
λ4 = 1.

For the queuing system under study, the service process consists of four stages; in
each stage, the service rate is exponential with the rate depending on both the stage as well
as batch size. The minimum size of the batch is assumed to be 2 and the maximum 4.

For the service rates, we consider three different scenarios based on the stage in which
the process is in:

I Service rate directly proportional to the stage in which the process is in.
II Service rate is constant for all stages.
III Service rate inversely proportional to the stage in which the process is in.

We may consider sub-scenarios based on the service batch size for each of these scenarios:

a Service rate directly proportional to the size of the batch.
b Service rate is constant.
c Service rate inversely proportional to the size of the batch.

For example, in a public transport system, it is common that the server increases or
decreases service rate linearly when the destination is close to sticking to fixed schedules.
However, the service rate is constant for all stages if we consider the example of an elevator.
Again, in a public transport system service, rates usually are independent of batch sizes.
However, one could find instances in real life when the server increases service rate linearly
when the size of the batch increases to reduce customer waiting times or when the server
becomes more stressed due to the presence of a bigger batch, resulting in a proportional
decrease in service rates.

While comparing the performance of queuing systems with different combinations
for arrival and service processes, it is imperative that the weighted average service rate or
the weighted average service time remains the same in all of the scenarios. This is achieved
by normalizing the service rates. Here, we have fixed the weighted average service rates to
be µ∗ = 7 and µ∗ = 10, respectively. The service rates used for various phases and batch
sizes when µ∗ = 10 in Scenario 1, II, and III are as follows in Tables 8–10:

Table 8. Service Rates, µm
j for various size, m and phase, j in Scenario I.

Phase j,↓ a b c
m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

1 0.6207 0.9310 1.2414 1 1 1 1.5 1 0.75
2 1.2414 1.8621 2.4828 2 2 2 3 2 1.5
3 1.8621 2.7931 3.7241 3 3 3 4.5 3 2.25
4 2.4828 3.7241 4.9655 4 4 4 6 4 3
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Table 9. Service Rates, µm
j for various batch size, m and phase, j in Scenario II.

Phase j,↓ a b c
m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

1 1.5517 2.3276 3.1034 2.5 2.5 2.5 3.75 2.5 1.875
2 1.5517 2.3276 3.1034 2.5 2.5 2.5 3.75 2.5 1.875
3 1.5517 2.3276 3.1034 2.5 2.5 2.5 3.75 2.5 1.875
4 1.5517 2.3276 3.1034 2.5 2.5 2.5 3.75 2.5 1.875

Table 10. Service Rates, µm
j for various batch size, m and phase, j in Scenario III.

Phase j,↓ a b c
m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

1 2.9793 4.4690 5.9586 4.8 4.8 4.8 7.2 4.8 3.6
2 1.4897 2.2345 2.9793 2.4 2.4 2.4 3.6 2.4 1.8
3 0.9931 1.4897 1.9862 1.6 1.6 1.6 2.4 1.6 1.2
4 0.7448 1.1172 1.4897 1.2 1.2 1.2 1.8 1.2 0.9

Based on Table 11, the following observations are made:

• Effect of the dependence of service rate on batch size in Scenario 1, on system
characteristics: As can be seen from the above Table 8, when the service rate is directly
proportional to the stage in which the process is in, the service rate is lowest when
the batch size is maximum (for sub-scenario c, service rate is inversely proportional to
batch size) (Ic), and this results in an increase in queue length at node 1, EQ1 compared
to other combinations of arrival and service processes (Ib and Ia). The server will be
serving a bigger batch most of the time as indicated by values of P4 (nearly 1, when
µ∗ = 7).

• Effect of weighted average service rate on system characteristics: As the weighted
average service rate increases (see the rows corresponding to µ∗ = 7 and µ∗ = 10),
the queue length at node 1, EQ1 reduces drastically, and, as a consequence, idle-ness
of server, PI increases significantly. The queue length at other nodes is comparatively
less when the weighted average service rate µ∗ increases (except occasionally for
positively correlated arrivals). This could be attributed to customers accessing on-
going service from intermediate stages, as the maximum service batch size is not
attained in the first stage—or, as the mean number of arrivals to queue 1 during a
service time decreases, the queue length at intermediate nodes decreases and vice
versa. The number of customers served in a batch (ES) and probability that the server
serves a batch immediately upon a departure (P) also decreases with the increase
in µ∗.

• Effect of correlation in arrival process on system characteristics: When the arrival
process is positively correlated (PCA), the queue length at all nodes increases, idle-
ness percentage, PI is maximum, and the server will be serving at its full capacity most
of the time compared to other arrival processes (for the same service process).

• Effect of limited waiting room capacity on system characteristics: It is to be noted
that the expected values of queue length at all nodes, except the first, did not exceed
the waiting room capacity provided at these nodes. The limited waiting room capacity
at intermediate nodes does not have a significant impact on system characteristics
when the traffic intensity to node 1 increases (As µ∗ decreases). However if traffic
intensity to other nodes increases, there is an increased chance of customers not being
able to join the system as maximum waiting room capacity is reached (indicated by
higher values of expected queue length to other nodes when µ∗ = 7 ).

• Whenever the queue length at node 1, EQ1 increases, the higher the chance to initiate
the next batch service immediately (As P increases).

Comparing Table 11 with Tables 12 and 13 the following observations are made:
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• Effect of the dependence of service rate on the stage (in which the process is in):
Comparing Table 9 with Tables 8 and 10, one could see that, when the service rate
remains constant for stages, i.e., in Scenario II, the individual service rates are compar-
atively stable. This is reflected in performance measures given in Table 12 compared to
that given in Tables 11 and 13. The queuing system becomes more stable. The queue
length at node 1 decreases drastically while, at other nodes, it is more or less the same.
Another interesting feature is that the performance measures are more or less the same
in Scenario I and Scenario III (i.e, when the service rate is inversely proportional to the
phase in which the process is in).

• All observations made in the above paragraph regarding the behavior of the system
for various combinations of arrival and service processes in Scenario I remains valid
in Scenarios II and III, as can be seen from tables and graphs plotted in Figure 2.

Table 11. Measures for various combination of arrival and service processes-Scenario I.

EQ1 EQ2 EQ3 EQ4 PI P2 P3 P4 ES P

µ∗ = 7

ZCA Ia 2.7302 0.8138 0.8975 1.9219 0.0589 0.2930 0.1925 0.4556 2.9859 0.1532
PCA Ia 17.1330 0.9223 0.8461 1.8747 0.1405 0.1433 0.0723 0.6440 3.0792 0.5646
NCA Ia 3.2177 0.8476 0.9052 1.9300 0.1079 0.2734 0.1392 0.4794 2.8821 0.3036
ZCA Ib 3.8051 0.8313 0.9021 1.9348 0.0565 0.1729 0.1655 0.6050 3.2626 0.2135
PCA Ib 42.1101 0.9465 0.9597 1.9852 0.1115 0.0656 0.0455 0.7774 3.3772 0.7292
NCA Ib 4.3229 0.8698 0.9142 1.9436 0.0981 0.1529 0.1119 0.6371 3.1898 0.4128
ZCA Ic 112.4099 0.9919 0.9984 1.9972 0.0025 0.0054 0.0082 0.9839 3.9708 1.0000
PCA Ic 1743.2 0.9651 0.9655 1.9335 0.0038 0.0015 0.0015 0.9601 3.8408 1.0000
NCA Ic 191.2653 0.9943 0.9962 1.9977 0.0042 0.0045 0.0049 0.9864 3.9692 1.0000

µ∗ = 10

ZCA Ia 1.6573 0.7223 0.8068 1.8811 0.1409 0.3766 0.2021 0.2803 2.4810 0.0448
PCA Ia 3.1906 0.8398 0.8773 1.9517 0.3234 0.2228 0.1076 0.3462 2.1532 0.1996
NCA Ia 1.7587 0.7701 0.8329 1.8981 0.2126 0.3296 0.1509 0.3069 2.3396 0.1134
ZCA Ib 1.3828 0.6996 0.7763 1.8724 0.1745 0.2795 0.2039 0.3420 2.5388 0.0320
PCA Ib 7.0341 0.8649 0.8887 1.9638 0.3255 0.1270 0.0823 0.4653 2.3619 0.3309
NCA Ib 1.6157 0.7627 0.8181 1.8945 0.2391 0.2294 0.1466 0.3849 2.4383 0.1096
ZCA Ic 1.7493 0.7295 0.7960 1.8910 0.1608 0.1711 0.1832 0.4842 2.8306 0.0846
PCA Ic 26.4670 0.9126 0.9252 1.9793 0.2304 0.0565 0.0519 0.6612 2.9134 0.5756
NCA Ic 2.6251 0.3043 0.8472 1.9147 0.2002 0.1293 0.1212 0.5494 2.8196 0.2440

Table 12. Measures for various combinations of arrival and service processes—Scenario II.

EQ1 EQ2 EQ3 EQ4 PI P2 P3 P4 ES P

µ∗ = 7

ZCA IIa 1.4567 0.7125 0.8017 1.8852 0.1327 0.2440 0.2030 0.4203 2.7784 0.0369
PCA IIa 4.0533 0.8251 0.8839 1.9609 0.3152 0.1274 0.0990 0.4585 2.3856 0.2716
NCA IIa 1.6150 0.7692 0.8319 1.9004 0.2082 0.2085 0, 1562 0.4270 2.5938 0.1120
ZCA IIb 1.4889 0.7233 0.8026 1.9014 0.1321 0.1498 0.1844 0.5337 2.9887 0.0550
PCA IIb 10.8547 0.8853 0.9045 1.9750 0.2765 0.0639 0.0715 0.5882 2.6949 0.4460
NCA IIb 1.8570 0.7874 0.8384 1.9142 0.1976 0.1240 0.1362 0.5422 2.8253 0.1707
ZCA IIc 2.5770 0.8110 0.8720 1.9477 0.0784 0.0635 0.1237 0.7344 3.4356 0.2039
PCA IIc 42.6360 0.9363 0.9463 1.9884 0.1543 0.0235 0.0392 0.7830 3.2966 0.7282
NCA IIc 4.1035 0.8634 0.8960 1.9500 0.1195 0.0522 0.0867 0.7416 3.3310 0.4463

µ∗ = 10

ZCA IIa 0.9518 0.6461 0.7061 1.8455 0.2606 0.2626 0.1907 0.2861 2.2417 0.0072
PCA IIa 1.1372 0.7851 0.8182 1.9375 0.5038 0.1443 0.1074 0.2444 1.5887 0.0478
NCA IIa 0.9330 0.7088 0.7602 1.8658 0.5389 0.2171 0.1505 0.2936 2.0599 0.0330
ZCA IIb 0.8476 0.6390 0.6898 1.8485 0.2876 0.1733 0.1828 0.3562 2.32 0.0083
PCA IIb 1.7284 0.8036 0.8308 1.9470 0.4851 0.0835 0.0915 0.3399 1.8011 0.1133
NCA IIb 0.9021 0.7108 0.7540 1.8675 0.3518 0.1400 0.1416 0.3666 2.1712 0.0427
ZCA IIc 1.0345 0.6658 0.7183 1.8753 0.2462 0.1028 0.1668 0.4847 2.6431 0.0241
PCA IIc 6.8338 0.8593 0.8757 1.9696 0.3811 0.0396 0.0637 0.5156 2.3329 0.3368
NCA IIc 1.2647 0.7450 0.7827 1.8920 0.2971 0.0812 0.1233 0.4978 2.5236 0.1049



Mathematics 2021, 9, 559 13 of 16

Table 13. Measures for various combination of arrival and service processes—Scenario III.

EQ1 EQ2 EQ3 EQ4 PI P2 P3 P4 ES P

µ∗ = 7

ZCA IIIa 2.0173 0.7802 0.8559 1.9318 0.0845 0.1054 0.1452 0.6649 3.3061 0.1397
PCA IIIa 14.3871 0.9022 0.9206 1.9810 0.2176 0.0479 0.0648 0.6697 2.9688 0.5506
NCA IIIa 2.5465 0.8284 0.8744 1.9355 0.1429 0.0931 0.1175 0.6465 3.1248 0.3056
ZCA IIIb 3.0283 0.8445 0.9001 1.9610 0.0547 0.0435 0.0932 0.8087 3.6012 0.2947
PCA IIIb 39.2096 0.9365 0.9477 1.9901 0.1418 0.0190 0.0389 0.8003 3.3559 0.7589
NCA IIIb 4.3710 0.8819 0.9116 1.9610 0.0951 0.0392 0.0751 0.7905 3.4659 0.5518
ZCA IIIc 106.6966 0.9949 0.9971 1.9960 0.0014 0.0008 0.0028 0.9950 3.9901 1.0000
PCA IIIc 1734.5 0.9634 0.9658 1.9345 0.0041 0.0003 0.0012 0.9617 3.8511 1.0000
NCA IIIc 185.6821 0.9961 0.9972 1.9999 0.0027 0.0007 0.0023 0.9941 3.9851 1.0000

µ∗ = 10

ZCA IIIa 1.1550 0.6797 0.7433 1.8911 0.2000 0.1353 0.1726 0.4921 2.7569 0.0326
PCA IIIa 2.4595 0.8254 0.8522 1.9613 0.4115 0.0659 0.0867 0.4359 2.1354 0.1892
NCA IIIa 1.2588 0.7448 0.7899 1.9003 0.2744 0.1137 0.1369 0.4750 2.5381 0.1004
ZCA IIIb 1.3270 0.7076 0.7678 1.9132 0.1741 0.0740 0.1439 0.6080 3.0117 0.0596
PCA IIIb 6.6041 0.8648 0.8823 1.9759 0.3430 0.0313 0.0618 0.5639 2.5037 0.3674
NCA IIIb 1.5882 0.7737 0.8103 1.9194 0.2385 0.0622 0.1127 0.5866 2.8088 0.1742
ZCA IIIc 2.2616 0.7964 0.8506 1.9521 0.0977 0.0303 0.0929 0.7792 3.4559 0.1949
PCA IIIc 25.8120 0.9165 0.9274 1.9884 0.2081 0.0123 0.0370 0.7426 3.1060 0.6457
NCA IIIc 3.1082 0.8479 0.8741 1.9537 0.1445 0.0262 0.0727 0.7567 3.2972 0.4298
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Figure 2. Effect of weighted average service rate on system characteristics in Scenario II.
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6. Cost Analysis

Here, we present cost analysis for the queuing system considered in the above example.
The service rate depends on the stage and the number in service at that time. The objective
of this section is to study the effect of this dependence on cost incurred per unit time.

The server operates from stage 1 to the destination, so we do not attribute a cost with
regard to the phase from which a customer joins. If we are to consider a revenue function,
this has to be taken into account. However, we impose a penalty when the system is not
operating to its full capacity by saying that the cost of offering service is higher when this
happens. Based on the performance measures, we define a cost function, cost per unit
time as

C =
j=4

∑
j=1

CQj × EQj + CPI × PI +
4

∑
m=2

Cm × Pm,

where

CQj : Holding cost for retaining a customer in queue at node j per unit time
CPI : Cost incurred due to server idleness per unit time
Cm : Cost per unit time for offering service to a batch of size m.

Here, we assume CQ1 = 1, CQ2 = CQ3 = CQ4 = 0.5, CPI = 2, C2 = 15, C3 = 12.5,
C4 = 10.

From Tables 14–16, it can be seen that the cost is lower for all combinations of arrival
and service processes in Scenario II (service rate is constant with respect to stages) compared
to corresponding costs in Scenarios I and III. The cost is higher if the arrival process is
positively correlated except in sub-scenario a. (corresponding to µ∗ = 10) i.e., the service
rate is directly proportional to batch size. This could be attributed to a drastic increase
in queue length for positively correlated arrivals. As expected, the increase in weighted
average service rate decreases in cost as the number served per unit time increases. When
arrivals are positively correlated, the cost increases when the rate is inversely proportional
to batch size. (i.e., in sub-scenario c). The minimum cost in each of the Scenarios and
Sub-scenarios are indicated in bold font. Though the costs are input specific, it gives a
general picture.

Table 14. Cost per unit time in Scenario I.

Arrival Process ↓ µ∗ = 7 µ∗ = 10

Ia Ib Ic Ia Ib Ic

ZCA 16.0216 15.7456 124.4203 14.6238 13.5680 13.4861
PCA 28.8277 53.6053 1754.7 13.8211 17.1296 36.9443
NCA 15.9107 16.4458 203.262 13.8339 12.9520 13.7563

Table 15. Cost per unit time in Scenario II.

Arrival Process ↓ µ∗ = 7 µ∗ = 10

Ia Ib Ic Ia Ib Ic

ZCA 13.8224 13.3561 14.3902 11.3508 11.4847 12.2555
PCA 14.2647 21.0234 53.5530 9.8673 10.2841 15.9950
NCA 13.1329 13.0063 15.3906 11.3508 10.8084 11.3076
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Table 16. Cost per unit time in Scenario III.

Arrival Process ↓ µ∗ = 7 µ∗ = 10

Ia Ib Ic Ia Ib Ic

ZCA 14.0155 14.8940 118.6923 12.3201 12.3580 13.6631
PCA 24.9499 49.2046 1746 11.5330 16.0326 36.2175
NCA 13.9819 15.8713 197.666 11.6914 12.0246 14.1749

7. Conclusions

In this paper, we have analyzed a queuing system with k stages of service with the
customer having the choice to join a service from the beginning of any of the stages.
Another key feature of the model is that the service rate at each stage depends on the stage
as well as the number of customers served in a batch. The performance measures for such a
system are computed and an illustrative numerical example is provided. A cost function is
constructed based on performance measures, and an analysis to study the effect of service
rates under various scenarios to this cost function is presented.

Several variants of the queueing model considered in this paper are proposed to be
analyzed in the future. In the introduction, we have indicated two such future directions of
research, directly related to this paper. In addition, we propose to examine the admission of
fresh customers to an on-going service on expiry of a random duration, which is generally
distributed. This could be done at several such realization epochs. Another variant is
the case of customers not only having access to an ongoing service, but also alighting
at intermediate nodes during the transport vehicle moving forward as well as in the
reverse direction.
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Abbreviations

The following notations and abbreviations are used in this manuscript:
e column vector of 1’s of appropriate order
ei(j) column vector of order j with 1 in ith position and 0 elsewhere
e
′

i(j) transpose of ei(j)
0 zero matrix of appropriate order
Ir identity matrix of order r
MAP Markovian Arrival Process
CTMC Continuous Time Markov Chain
LIQBD Level Independent Quasi Birth and Death Process
LST Laplace–Stieltjes Transform
TC Tagged Customer
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