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Abstract: Most existing flexible count distributions allow only approximate inference when used in a
regression context. This work proposes a new framework to provide an exact and flexible alternative
for modeling and simulating count data with various types of dispersion (equi-, under-, and over-
dispersion). The new method, referred to as “balanced discretization”, consists of discretizing
continuous probability distributions while preserving expectations. It is easy to generate pseudo
random variates from the resulting balanced discrete distribution since it has a simple stochastic
representation (probabilistic rounding) in terms of the continuous distribution. For illustrative
purposes, we develop the family of balanced discrete gamma distributions that can model equi-,
under-, and over-dispersed count data. This family of count distributions is appropriate for building
flexible count regression models because the expectation of the distribution has a simple expression
in terms of the parameters of the distribution. Using the Jensen–Shannon divergence measure, we
show that under the equidispersion restriction, the family of balanced discrete gamma distributions
is similar to the Poisson distribution. Based on this, we conjecture that while covering all types of
dispersions, a count regression model based on the balanced discrete gamma distribution will allow
recovering a near Poisson distribution model fit when the data are Poisson distributed.

Keywords: flexible count models; balanced gamma distribution; Jensen–Shannon divergence; latent
equidispersion

1. Introduction

The regression analysis of count responses mostly relies on the Poisson model. How-
ever, the equidispersion (variance equals mean) assumption of the Poisson distribution
makes Poisson regression inappropriate in many situations where data show overdisper-
sion (variance greater than mean) or underdispersion (variance less than mean). More-
over, it has been observed that many data analyzed using overdispersion models (e.g.,
negative binomial [1]), which are as popular as the Poisson regression model, may be mix-
tures of overdispersed and underdispersed or equidispersed counts [2]. The implication
is that appropriate alternatives to the Poisson model should allow variable dispersion,
i.e., full dispersion flexibility [3]. Existing count regression models associated with vari-
able dispersion exhibit some drawbacks. The first is improperly normalized probability
mass functions for underdispersion situations (quasi-Poisson [4], Consul’s generalized
Poisson [5], and extended Poisson–Tweedy regressions [6]), which makes inference approx-
imate with quasi-models. Another drawback is the lack of a simple expression for the
model mean value (Conway–Maxwell–Poisson [7], double Poisson [8,9], gamma count [10],
semi-nonparametric Poisson polynomial [11], and discrete Weibull [12] models). The latter
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drawback motivated some research works where quantities other than the mean were
modeled, leading to hardly interpretable fits [11,13].

The development of discrete analogues of continuous probability distributions, which
has received great attention in the last two decades, provides an attractive route for building
count regression models with variable dispersion. A review by [14] offers a survey of the
different methods with their specific application fields. An appealing characteristic of
discrete analogues of continuous distributions is the generation of discrete pseudo random
values, which only requires basic operations once the continuous distribution can be
simulated. This simulation easiness is especially interesting for simulation based model
evaluation [15] or parametric bootstrapping based inference [16].

Despite the various existing discretization methods, mean parameterizable approaches
necessary to build easily interpretable regression models are rare. For reliability evaluation,
the discretizing approach of [17] attempts to match the mean and the variance of the
discrete and the related continuous variable, but it provides only an approximate solution
at the cost of a tuning parameter. The proposals in [3,18,19] offer solutions for constructing
count variables with a fixed mean value and variable dispersion, but they lack a physical
basis, i.e., a generating mechanism to motivate their use in practice.

This work proposes a discretization procedure to start from continuous probability
distributions and construct count models with (i) properly normalized probability mass
functions for underdispersion, equidispersion, as well as overdispersion situations and
(ii) simple expressions for the model mean values. As a result, the proposal allows full
likelihood inference (as opposed to quasi-likelihood inference) for any dispersion level in
observed data and is thus suited for regression analysis where the estimation of covariate
effects on the mean count is of great interest.

The proposed discretization approach modifies the “discrete concentration” method,
i.e., “Methodology IV” in [14], to preserve the expectation of the continuous distribution.
Our proposal, referred to as “balanced discretization” is based on a probabilistic round-
ing mechanism, which provides a generating mechanism with a simple interpretation.
Interestingly, the probabilistic rounding mechanism, expressed as a simple stochastic repre-
sentation in terms of the continuous distribution, allows easily generating pseudo random
variates from the resulting balanced discrete distribution.

The rest of the paper is organized as follows. Section 2 motivates and presents the
balanced discretization method. The general expressions of the distribution functions and
moments of balanced discrete distributions are given. The method is applied to the gamma
distributions in Section 3 to produce the balanced discrete gamma distribution, which
is compared to the discrete concentration of the gamma distribution and to the Poisson
distribution. Concluding remarks are given in Section 4.

2. The Balanced Discretization Method

This section motivates and describes the balanced discretization method. The general
expressions of the probability mass, the cumulative distribution, the survival and quantile
functions, the moments, and the index of dispersion are presented. The link between balanced
discretization and the mean-preserving discretization approach of [3] is also established. The
proofs of the results are routine and given for completeness in Appendix A.

2.1. Notations

We denote Z the set of integers (Z = {· · · ,−1, 0, 1, · · · }), N the set of non-negative
integers (N = {0, 1, · · · }), N+ the set of natural numbers (N+ = {1, 2, · · · }), R the set
of reals (R = (−∞, ∞)), and R+ the set of positive reals (R+ = (0, ∞)). Let bxc be the
integer part of any real x. Following [14], we denote continuous random variables by X
and discrete random variables by Y. Accordingly, fX(·|θ), FX(·|θ), SX(·|θ), and QX(·|θ)
denote respectively the pdf (probability density function), the cdf (cumulative distribution
function), the suf (survival function), and the quf (quantile function) of X, whereas fY(·|θ),
FY(·|θ), SY(·|θ), and QY(·|θ) denote respectively the pmf (probability mass function), the
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cdf, the suf, and the quf of Y, all indexed by a parameter vector θ. Continuous probability
distributions are assumed to be non-degenerate. A Bernoulli random variable with success
probability p ∈ [0, 1] is denoted BER(p).

2.2. Reminders

First, we recall the discrete concentration method and the mean-preserving approach
of [3]. Let CD(θ) be a continuous probability distribution of interest. The discrete concen-
tration DC(θ) of X ∼ CD(θ) is the count variable Y with the pmf and suf:

fY(y|θ) = FX(y + 1|θ)− FX(y|θ) (1)

SY(y|θ) = SX(y|θ) (2)

for y ∈ Z, i.e., Y has cdf FY(y|θ) = FX(y+ 1|θ) and quf QY(u|θ) = bQX(u|θ)c for u ∈ (0, 1).
Accordingly, the nth moment about zero of Y is:

E[Yn] =
∞

∑
y=−∞

yn[FX(y + 1|θ)− FX(y|θ)]. (3)

Clearly, the discrete concentration of X is simply Y d
= bXc where d

= means “equal in
distribution to”. Thus, Y = X−U, where U is the fractional part of X. Since U ∈ (0, 1), it
satisfies 0 < E

[
U2] < E[U] < 1, providing bounds on the mean and the variance of the

count variable: E[X]− 1 ≤ E[Y] ≤ E[X] and Var[X] ≤ Var[Y] ≤ Var[X] + 1/4 [20].
The mean-preserved discrete version Y of X is the variable with the cdf:

FY(y|θ) =
∫ y+1

y
FX(x|θ)dx for y ∈ N. (4)

and expectation E[Y] = E[X] [3].

2.3. Motivating Example and Definition

Example 1 (Measuring tree diameter). Discretization mechanisms arise when measuring any
continuous quantity. Indeed, no sample can cover a whole continuum since the latter has an
infinite number of points, and only a finite number of decimal places are reported in practice [14,21].
Assume for instance an operator measuring tree diameters X in a forest inventory frame, using a
measurement device scaled to millimeters (mm). Since X is a continuous variable, the probability of
observing X = x mm is zero. When the true value x of the diameter of a tree actually falls between
two consecutive graduations z and z + 1, the operator reports either y = z mm or y = z + 1 mm,
i.e., only a discretized version Y of X is observed. Beyond this example, when direct measures
are taken, only the number of an arbitrary unit is actually counted. Clearly, the closer x is to z,
the higher the probability of reporting y = z, and conversely, the closer x is to z + 1, the higher
the probability of reporting y = z + 1. Balanced discretization results from assuming that given
z ≤ x < z + 1, the probability for reporting y = z + 1 is exactly x− z.

Definition 1 (Balanced discretization). Let us consider an absolutely continuous probability
distribution CD(θ) of interest. A count random variable Y is said to be distributed as the balanced
discrete counterpart denoted BD(θ) of the continuous distribution CD(θ), if it has the stochastic
representation:

Y|U = u, X = x d
= z + u (5)

U|X = x ∼ BER(r)
X ∼ CD(θ)

where z = bxc and r = x− z.
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Let EX(n, y|θ) denote the nth partial moment:

EX(n, y|θ) =
∫ y+1

y
xn fX(x|θ)dx (6)

of X over (y, y + 1), and set:

HX(y|θ) = FX(y + 1|θ)− FX(y|θ). (7)

The balanced discretization mechanism in Equation (5) preserves partial expectations
EX(1, y|θ) of the continuous variable as shown by Equation (10) of the following lemma.

Lemma 1. Let X and Y be defined as in Equation (5). Then, for any y ∈ Z,

P(Y = y and y ≤ X < y + 1) = (y + 1)HX(y|θ)− EX(1, y|θ) (8)

P(Y = y + 1 and y ≤ X < y + 1) = EX(1, y|θ)− yHX(y|θ) (9)

EY[Y|y ≤ X < y + 1] = EX(1, y|θ) (10)

where EY[Y|X ∈ A] is the partial mean of Y for X ∈ A.

2.4. Probability Mass and Distribution Functions

We derive in this section some general distributional properties of balanced discrete
distributions.

Proposition 1 (Distribution function). Let Y ∼ BD(θ). The pmf, the cdf, the suf, and the quf of
Y are given for y ∈ Z and 0 ≤ u ≤ 1 by:

fY(y|θ) = (y− 1)FX(y− 1|θ)− 2yFX(y|θ) + (y + 1)FX(y + 1|θ)
+ EX(1, y− 1|θ)− EX(1, y|θ) (11)

FY(y|θ) = FX(y|θ) + (y + 1)HX(y|θ)− EX(1, y|θ) (12)

SY(y|θ) = SX(y|θ)− (y− 1)HX(y− 1|θ) + EX(1, y− 1|θ) (13)

QY(u|θ) =

{
xo if uo ≥ u
xo + 1 otherwise

(14)

where xo = bQX(u|θ)c and uo = FY(xo|θ).

Note from Equation (11) that BD(θ) assigns less probability mass to zero than the dis-
crete concentration of X ∼ CD(θ) if X has support R+ or (0, M) for M ∈ R+. Equation (13)
emphasizes that the balanced discretization method does not preserve the suf of the contin-
uous distribution, unlike the discrete concentration (see Equation (2)). Nevertheless, the bal-
anced discrete cdf and suf satisfy the inequalities FX(y|θ) ≤ FY(y|θ) ≤ FX(y + 1|θ) (with
equalities when the support of X is upper bounded by y) and SX(y|θ) ≤ SY(y− 1|θ) ≤
SX(y− 1|θ) (with equalities when the support of X is lower bounded by y).

By Equation (14), balanced discretization somewhat preserves the median of the
continuous distribution. Indeed, if X has an integral median mX, then Y has median
mY = mX − 1/2. More generally, we have mY = bmXc + 1/2 if FY(bmXc|θ) < 1/2,
mY = bmXc if FY(bmXc|θ) = 1/2 and mY = bmXc − 1/2 if FY(bmXc|θ) > 1/2.

2.5. Moments and Index of Dispersion

This section presents expressions for the moments of balanced discrete distributions.
We start with the first two moments since they are the most important in a count regression
context.
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Proposition 2 (Mean and variance). Let X ∼ CD(θ) with mean µX(θ) and variance σ2
X(θ).

The balanced discrete counterpart of X, Y ∼ BD(θ), has mean µY(θ) = µX(θ) and variance:

σ2
Y(θ) = σ2

X(θ) + ζ0(θ) (15)

where ζ0(θ) = EX [R(1− R)] with R d
= X − bXc. In addition, ζ0(θ) satisfies the inequality

0 < ζ0(θ) < min{µY(θ), 1/4} and is given by the sum ζ0(θ) = ∑∞
z=−∞ ζ0(z, θ) with:

ζ0(z, θ) = (2z + 1)EX(1, z|θ)− EX(2, z|θ)− z(z + 1)HX(z|θ). (16)

From Proposition 2, it appears that when the variance of a balanced discrete vari-
able Y exists, it satisfies σ2

X(θ) < σ2
Y(θ) < σ2

X(θ) + min{µY(θ), 1/4}. This suggests
the inexpensive approximation σ̂2

Y(θ) = σ2
X(θ) + min{µ̂/2, 1/8} with |σ̂2

Y(θ)− σ2
Y(θ)| <

min{µ̂/2, 1/8}, µ̂ being the mean of Y (exact or estimate). The following corollary infers
the ID (index of dispersion) of a balanced discrete distribution from Proposition 2.

Corollary 1 (Index of dispersion). Let Y ∼ BD(θ) be the balanced discrete counterpart of
X ∼ CD(θ) with cdf FX(·|θ), quf QX(·|θ), expectation µX(θ) 6= 0, and index of dispersion
(variance-to-mean ratio) IDX(θ). The index of dispersion IDY(θ) of Y satisfies:

IDY(θ) = IDX(θ) +
ζ0(θ)

µX(θ)
(17)

|IDX(θ)| < |IDY(θ)| ≤ |IDX(θ)|+
1

4|µX(θ)|
. (18)

Furthermore, ζ0(θ) can be approximated with a tolerance α ∈ (0, 1) by the truncated sum:

ζ̂α(θ) =

z f

∑
z=zi

ζ0(z, θ) (19)

where zi = bQX(α/2|θ)c, z f = bQX(1− α/2|θ)c+ 1 and α controls the precision of ζ̂α(θ) via

|ζ̂α(θ)− ζ0(θ)| < 1− FX

(
z f + 1|θ

)
+ FX(zi|θ).

The next proposition shows the relation between moments of balanced discrete distri-
butions and of discrete concentrations.

Proposition 3. Let Y ∼ BD(θ) be the balanced discrete counterpart of X ∼ CD(θ). The nth
moment of Y satisfies for n ∈ N+:

µ
(n)
Y (θ) = µ

(n)
Z (θ) +

n−1

∑
i=0

(
n
i

)
µ
(i)
ZU(θ) (20)

where µ
(n)
Z (θ) is the nth moment of the discrete concentration Z = bXc (Equation (3)) and

µ
(i)
ZU(θ) is the expectation of the product of Zi and U with U|X ∼ BER(X− Z), given by

µ
(i)
ZU(θ) = −µ

(i+1)
Z (θ) + ∑∞

z=−∞ ziEX(1, z|θ).

2.6. Conditional Distributions of Latent Continuous and Binary Outcomes

Although the balanced discrete distribution was motivated by the need for mean-
parameterizable flexible discrete probability distributions, it may be used to model any
continuous outcome measured to fewer decimal places. In such instances, the conditional
distribution and in particular the conditional mean of the underlying continuous distribu-
tion may be useful for predicting the continuous variable given an observed discrete value.
In addition, since a balanced discrete variable is the observable feature of an underlying
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continuous outcome, a useful tool for maximum likelihood inference in complex models is
the expectation-maximization algorithm [22], which handles any latent class-like model.
In a Bayesian inference framework, the stochastic representation of the balanced discrete
distribution can also be useful for sampling the posterior distribution of model parameters
when draws from the truncated form of the continuous distribution are inexpensive. The
following result provides expressions for these purposes.

Proposition 4. Let X, U, and Y be defined as in Equation (5). Then, for y ∈ Z with probability
mass fY(y|θ) > 0:

fU|Y(u|Y = y, θ) = pu
y
[
1− py

]1−u for u ∈ {0, 1}, (21)

fX|Y(x|Y = y, θ) =
fX(x|θ)
fY(y|θ)

[
(1− y + x)I(y−1,y)(x) + (1 + y− x)I(y,y+1)(x)

]
, (22)

and for n ∈ R such that Xn is well defined in both (y− 1, y) and (y, y + 1),

EX|Y[X
n|Y = y, θ] =

1
fY(y|θ)

[(1− y)EX(n, y− 1|θ) + EX(n + 1, y− 1|θ)

+ (1 + y)EX(n, y|θ)− EX(n + 1, y|θ)] (23)

where py = [ fY(y|θ)]−1[EX(1, y− 1|θ)− (y− 1)HX(y|θ)] is the conditional mean (success
probability) of the Bernoulli variable U given Y = y and IA(x) is the indicator function, which
equals one if x ∈ A and 0 otherwise.

Note from Equation (22) that given the continuous variable, the distribution of the
discrete variable does not depend on the parameter vector θ:

fY|X(y|X = x, θ) = (1− y + x)I(y−1,y)(x) + (1 + y− x)I(y,y+1)(x). (24)

Therefore, in the expectation-maximization algorithm framework, the maximization of the
joint likelihood:

fX,Y(x, y) = fY|X(y|X = x, θ) fX(x|θ) (25)

of Y and X is reduced to the maximization of the likelihood fX(x|θ) of the continuous
variable X. Hence, the expectation-maximization algorithm will be appropriate for fitting
a balanced discrete distribution whenever fitting the underlying continuous distribution
is easy.

2.7. Link with Mean-Preserving Discretization

Recall from Equation (4) that the cdf of the mean-preserved count variable has
the form:

FY(y|θ) =
∫ y+1

y
FX(x|θ)dx.

From the identity
∫

FX(x|θ)dx = xFX(x|θ)−
∫

x fX(x|θ)dx, we have:

FY(y|θ) = (y + 1)FX(y + 1|θ)− yFX(y|θ)− EX(1, y|θ). (26)

Then, using the identity FX(y + 1|θ) = FX(y|θ) + [FX(y + 1|θ)− FX(y|θ)] straightfor-
wardly results in:

FY(y|θ) = FX(y|θ) + (y + 1)[FX(y + 1|θ)− FX(y|θ)]− EX(1, y|θ),
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i.e., the cdf in Equation (12). Therefore, balanced discretization as defined in Equation (5)
provides a generating mechanism for the mean-preserving method of [3].

3. The Balanced Discrete Gamma Family

The class of gamma distributions is a flexible class of distributions encountered in
various statistical applications. This class of distributions includes as special cases the expo-
nential, the one-parameter gamma, and up to rescaling the chi-squared distributions [23].
Chakraborty and Chakravarty [24] studied the discrete concentration of the gamma distri-
bution with applications in biology and socio-economics. In order to allow exact inference
in flexible count regression models, we apply in this section the balanced discretization
method to gamma distributions. We present the balanced discrete gamma distribution un-
der mean parametrization convenient for regression purposes and compare the distribution
to the discrete concentration of the gamma distribution and to the Poisson distribution.

Let G(b, a) denote the gamma distribution with cdf Fg(x|b, a) = γ(ax, b) for x > 0,
where γ(x, a) =

∫ x
0 ua−1e−udu/Γ(a) is the lower incomplete gamma ratio for (a, x) ∈ R2

+

and Γ(a) =
∫ ∞

0 ua−1e−udu is the gamma function. A random variable X ∼ G(b, a) has ex-
pectation b/a, variance b/(a2), and nth order partial moment
Eg(n, y|b, a) = EX [Xn|y ≤ X < y + 1] given by:

Eg(n, y|b, a) =
Γ(b + n)
anΓ(b)

[γ(a(y + 1), b + n))− γ(ay, b + n)]. (27)

The one-parameter gamma distribution is obtained for a = 1 (equidispersion) and is
denoted G(b).

3.1. The Balanced Discrete Gamma Distribution

A count random variable with support N is said to follow a balanced discrete gamma
distribution denoted BG(µ, a) for (µ, a) ∈ R2

+, if it is generated by the discretization
mechanism in Equation (5) with X ∼ G(aµ, a). By Proposition 2, a BG(µ, a) variable has
expectation µ. Using Equation (27), some properties of BG(µ, a) follow as in Corollary 2
hereafter.

Corollary 2 (Balanced discrete gamma distribution). Let Y ∼ BG(µ, a), and set b = aµ.
Then, the pmf and the cdf of Y are respectively given for y ∈ N by:

fdg(y|µ, a) = (y− 1)γ(a(y− 1), b)− 2yγ(ay, b) + (y + 1)γ(a(y + 1), b)
−µ[γ(a(y−1), b +1)−2γ(ay, b +1)+γ(a(y +1), b +1)] (28)

Fdg(y|µ, a) = (y + 1)γ(a(y + 1), b)− yγ(ay, b)
−µ[γ(a(y + 1), b + 1)− γ(ay, b + 1)]; (29)

and the variance and the index of dispersion of Y are respectively given by:

σ2
dg(µ, a) = a−1µ + ζg0(µ, a) (30)

IDdg(µ, a) = a−1 + µ−1ζg0(µ, a) (31)

where:

ζg0(µ, a) =
∞

∑
z=0

ζg0(z, µ, a) with (32)

ζg0(z, µ, a) = −µ
(

µ + a−1
)
[γ(a(z + 1), b + 2)− γ(az, b + 2)]

µ(2z + 1)[γ(a(z + 1), b + 1)− γ(az, b + 1)]

−z(z + 1)[γ(a(z + 1), b)− γ(az, b)]. (33)
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The pmf (28) and the cdf (29) follow by Equations (11) and (12) respectively along with
Equation (27). Note that the computations of the pmf and the cdf of a balanced discrete
gamma distribution only require a routine for the incomplete gamma ratio γ(·, ·), which is
available in most statistical software as the cdf of the continuous gamma distribution (e.g.,
pgamma in the R freeware [25] and gamcdf in MATLAB [26]). The variance (30) and the
index of dispersion (31) follow by Equation (15) along with Equation (27). Note that the
variance term ζg0(µ, a) in Equation (32) can be approximated via the truncation mechanism
in Equation (19) with a tolerance α ∈ (0, 1) as:

ζ̂gα(µ, a) =

z f

∑
z=zi

ζg0(z, µ, a) (34)

where zi =
⌊
γ−1(α/2, b)/a

⌋
, z f =

⌊
γ−1(1− α/2, b)/a

⌋
+ 1 with γ−1(·, b) the inverse

function of the incomplete gamma ratio γ(·, b) (available, e.g., as qgamma in R and gaminv
in MATLAB).

The one-parameter BDG (balanced discrete gamma) distribution, denoted BG(µ)
and obtained by setting a = 1, corresponds to a latent equidispersion mechanism and
is marginally slightly overdispersed as indicated by Equation (31) with a = 1. Setting
a = µ−1 produces the balanced discrete exponential distribution BE(µ), which is close to
the geometric distribution since the latter corresponds to the discrete concentration of the
exponential distribution [27].

Figure 1 displays the probability mass function of the BDG distributions with mean
values µ = 2.5 and µ = 5 (computed using Equation (28) in R). It appears that the scale
parameter a controls the shape of the distribution, allowing both unimodal and reverse J
shapes. It can be observed that the spread of a BDG distribution BG(µ, a) decreases with a
for fixed µ. The boxplots depicted in Figure 2 show that the skewness of the distribution
(as measured by the difference between the mean and the median values) increases with
its spread and thus decreases with a. As expected, both the length of the right tail of the
distribution (Figure 1) and the probability of unusual (far from the mean and the median)
observations (Figure 2) increase with the spread.

The index of dispersion, which can assume any positive value, is computed using
Equation (31) in R and depicted in Figure 3 for a ≥ 1. It can be observed in accordance
with Equation (31) that for large mean values (µ ≥ 10), the variance-to-mean ratio is not
very sensitive to µ for fixed, but not too large scale parameter values (a < 50). This also
holds for very low scales (a < 0.5) for any mean value. Very large scales (a ≥ 50) induce, in
addition to severe underdispersion (ID < 0.2), an oscillating index of dispersion with an
amplitude approaching zero as µ increases. Indeed, for large-scale values (as a→ ∞) and
finite µ, the continuous gamma distribution converges to a point mass at µ. The balanced
discrete gamma distribution thus converges to a binary variable, which takes the values
y = bµc with the probability 1− (µ− bµc) and y = bµc+ 1 with the probability (µ− bµc)
and has variance σ2

dg(µ, ∞) = (µ− bµc)(1− µ + bµc). The oscillating pattern in Figure 3
accordingly shows that the variance is minimal when µ is an integer and maximal when
µ is a half integer. When both µ and a are large, the amplitude of the oscillations of ID
decreases, and ID approaches zero, in accordance with Equation (31).
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Figure 1. Probability mass plots for the balanced discrete gamma distributions with mean values
µ = 2.5 (left panel) and µ = 5 (right panel) and scales a selected to yield an index of dispersion (ID,
variance-to-mean ratio) of ID = 4 (bottom row), ID = 1 (central row), and ID = 0.5 (top row).

Figure 2. Box plots for the balanced discrete gamma distributions with mean values µ = 2.5 and
µ = 5 and an index of dispersion (ID, variance-to-mean ratio) of ID = 4, ID = 1, and ID = 0.5. The
thick vertical bar inside the interquartile range (i.e., the rectangular box that has sides that are 25%
(left side) and 75% (right side) quartiles) is the median of the distribution.
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Figure 3. Index of dispersion (ID, variance-to-mean ratio) of the balanced discrete gamma distribution
against the mean value (µ) for selected scale parameter (a) values in the range [1, 1000] mostly
corresponding to equidispersion and underdispersion (0 < ID ≤ 1).

3.2. Comparison with Some Alternatives

The balanced discretization approach results from a light modification of the discrete
concentration method. This section assesses on the one hand to what extent the two dis-
cretization approaches differ, considering the balanced discrete gamma (BDG) distribution
case. On the other hand, the difference between the Poisson and the BDG distributions is
evaluated under both latent and marginal equidispersion restrictions.

Among the miscellaneous measures proposed to assess the similarities between prob-
ability distributions, the Jensen–Shannon divergence (JSD) [28] has many desirable proper-
ties that support its use in statistics [29]. The JSD is an information theory measure given
for two pmfs q1(·) and q2(·) by [28]:

JSD(q1, q2) = K(q1, q2) + K(q2, q1) (35)

where K(q1, q2) =
∞

∑
y=−∞

q1(y) log2

(
q1(y)

0.5q1(y) + 0.5q2(y)

)
(36)

with the convention q1(y) log2(q1(y)/(0.5q1(y) + 0.5q2(y))) = 0 if q1(y) = 0. The JSD mea-
sures the discrepancy between q1(·) and q2(·) in bits. It is bounded as 0 ≤ JSD(q1, q2) ≤ 2
and is zero only if q1(y) = q2(y) ∀ y ∈ Z. The JSD values presented in this section are
computed using Equation (35) using the R freeware.

3.2.1. Balanced Discretization Versus Discrete Concentration

Figure 4 illustrates the balanced discretization method using the continuous gamma
distribution with parameters a = 1, b = 5. Unlike the discrete concentration whose cdf
lies above the continuous cdf, the balanced discrete distribution is constructed so that the
continuous cdf interpolates the cdf of the balanced discrete distribution.
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Figure 4. Comparison of the cumulative distribution functions of the balanced discrete gamma and
discrete concentration of gamma distributions based on a continuous gamma distribution with scale
a = 1 and shape b = 5.

The curves in Figure 5A show the JSD measure between the balanced discrete gamma
and the corresponding discrete concentrations for mean count values µ ≤ 30. The selected
scale values allow a wide range for the index of dispersion (ID), which roughly runs from
0.04 to 10. It can be observed that the JSD measure is relatively low (JSD < 0.80 bit) and
decreases overall with the mean count (but not monotonically). In other words, the discrete
concentration and balanced discretization methods produce similar discrete analogues of
the considered continuous gamma distributions for large mean values. The JSD measure
is especially low (JSD ≤ 0.10 bit) for equidispersed and overdispersed balanced discrete
gamma distributions (a ≤ 1). High discrepancy (JSD ≥ 0.5 bit) actually appears between
the discrete analogues from the two discretization methods generally in underdispersion
situations with a very low mean count (µ < 1) or large scale parameter (a > 5, implying
ID < 0.45). For very large scale values (a ≥ 30), JSD becomes erratic, oscillating between
minima right before the integer values of µ and maxima right after the integer values of µ.

Figure 5. Jensen–Shannon divergence (JSD in bit) measured between the balanced discrete gamma
(BDG) distribution and the corresponding discrete concentration (A) and between the Poisson and the
BDG distributions under both latent equidispersion (one-parameter BDG distribution) and marginal
equidispersion (unit variance-to-mean ratio) restrictions (B), against the mean value (µ).
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3.2.2. Distance to the Poisson Distribution under Equidispersion

The Poisson regression is the most common count regression model, which is appro-
priate for equidispersed count data. Although the BDG distribution does not include the
Poisson distribution as a special case, the distribution can be restricted to allow equidis-
persion. This can be achieved by solving the nonlinear equation σ2

dg(µ, a) = µ for a using
Equation (30) (marginal equidispersion). However, the one-parameter BDG distribution
BG(µ) offers a conceptually insightful alternative (latent equidispersion), which is analyti-
cally tractable (a = 1).

In order to determine which equidispersion balanced discrete gamma model (marginal
vs. latent equidispersion) is the most appropriate when seeking the parsimonious flexible
count regression model, the JSD measure was computed for fixed mean count µ between
the Poisson distribution and the BDG distribution under marginal, as well as latent equidis-
persion restrictions. The results displayed in Figure 5B against the mean count indicate
that when restricted to be equidispersed, the BDG distribution becomes similar to the
Poisson distribution as per the low JSD values (JSD < 0.015 bit). It can be observed that
the marginally equidispersed BDG distribution is the closest to the Poisson distribution
only for a very low mean count (µ ≤ 1.1176). For a larger mean count (µ > 1.1176), the
one-parameter BDG distribution is closer to the Poisson distribution than the marginally
equidispersed BDG distribution, although the difference becomes unnoticeable for µ > 10.

It appears that the one-parameter BDG distribution based count regression model will
be an effective parsimonious (few parameters and more tractable) model [30] that can be
fit to observed data to check the appropriateness of an equidispersion model. Therefore,
while a BDG regression model will allow exact inference in flexible count modeling, testing
for latent equidispersion will allow recovering a near Poisson regression model when
supported by observed data.

4. Conclusions

With a view toward allowing exact inference in flexible count regression models, this
work describes balanced discretization, a method for simulating and modeling integer
valued data starting from a continuous random variable, through the use of a probabilistic
rounding mechanism. Most of the existing alternatives were built to conserve a specific
characteristic of the continuous variable, e.g., the failure rate [31] and the survival [14]
functions for modeling reliability data. Our proposal preserves expectation and is thus
appropriate for count regression. The method is very close to the discretizing approach
of [17], which also preserves the mean value, but requires an a priori double truncation
of the continuous variable and introduces a tuning parameter. Physical interpretation is
an important selection criterion for choosing an appropriate discretization method [32].
As such, our proposal is motivated by a real-world generating mechanism and provides a
physical interpretation for the mean-preserving method of [3]. Although balanced discrete
distributions can model any count data, it may not be appropriate for aging data for which
the integer part or the ceil is generally used [14] so that discrete concentrations are a
better choice.

The flexibility of the balanced discrete gamma family developed from the continuous
gamma distribution illustrates the potential of the balanced discretization method for
capturing any level of dispersion in observed count data. In addition to flexibility, the
balanced discrete gamma family turns out to be similar to the Poisson distribution when
restricted to be equidispersed (marginal equidispersion) and when constructed using an
equidispersed continuous gamma distribution (latent equidispersion). Based on this, we
conjecture that while covering all types of dispersion, a flexible count regression model
based on the balanced discrete gamma distribution will allow recovering a near Poisson
distribution model when the data are Poisson distributed. Future research will target the
use of the balanced discrete distribution in count regression analysis. The extension of
balanced discretization to a multivariate setting is also considered to handle count data
grouped by some sampling units and mixtures of count and continuous responses.
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Appendix A. Proofs of Lemmas and Propositions

Appendix A.1. Proof of Lemma 1

Proof of Lemma 1. By the definition in Equation (5), the probability of observing Y = y
given that X = x with y ≤ x < y + 1 is 1− r = 1− x + y with r = x − y. Thus, the
probability of observing Y = y and y ≤ X < y + 1 is the integral of [(y + 1)− x] fX(x|θ)
with respect to x over (y, y + 1), i.e.,

P(Y = y and y ≤ X < y + 1) =
∫ y+1

y
[(y + 1)− x] fX(x|θ)dx

= (y + 1)
∫ y+1

y
fX(x|θ)dx−

∫ y+1

y
x fX(x|θ)dx

which proves Equation (8). Using the same argument on the probability of observing
Y = y + 1 given that y ≤ X < y + 1 leads to P(Y = y + 1 and y ≤ X ≤ y + 1) equaling the
integral of (x− y) fX(x|θ) with respect to x over (y, y + 1) yields Equation (9). Next, since
Y is discrete and takes one of the two values y and y + 1 when y ≤ X < y + 1, the partial
expectation of Y is:



Mathematics 2021, 9, 555 14 of 17

EY[Y|y ≤ X < y + 1] = yP(Y = y and y ≤ X < y + 1)

+ (y + 1)P(Y = y + 1 and y ≤ X < y + 1)

= P(Y = y + 1 and y ≤ X < y + 1)

+ y[P(Y = y and y ≤ X < y + 1)

+ P(Y = y + 1 and y ≤ X < y + 1)].

Replacing P(Y = y and y ≤ X < y + 1) + P(Y = y + 1 and y ≤ X < y + 1) by the equiv-
alent probability P(y ≤ X < y + 1) = FX(y + 1|θ) − FX(y|θ) and using Equation (9) to
obtain P(Y = y + 1 and y ≤ X < y + 1) result in Equation (10).

Appendix A.2. Proof of Proposition 1

Proof of Proposition 1. It follows from the defining mechanism in Equation (5) that the
unique ways to obtain Y = y are (U = 1 and y− 1 ≤ X < y) and (U = 0 and y ≤ X < y+ 1).
In other words, Y = y is equivalent to y− 1 ≤ X < y or y ≤ X < y + 1. Since the two
instances are mutually exclusive, this gives:

fY(y|θ) = P(Y = y and y− 1 ≤ X < y) + P(Y = y and y ≤ X < y + 1)

= EX(1, y− 1|θ)− (y− 1)[FX(y|θ)− FX(y− 1|θ)]
+ (y + 1)[FX(y + 1|θ)− FX(y|θ)]− EX(1, y|θ)

where the second equality follows from replacing y by y− 1 in Equation (9) to compute the
probability P(Y = y and y−1 ≤ X < y) and using Equation (8) to obtain
P(Y = y and y ≤ X < y + 1). Rearranging the right-hand side of the last equation as
fY(y|θ) = (y − 1)FX(y − 1|θ) + [−(y− 1)− (y + 1)]FX(y|θ) + (y + 1)FX(y + 1|θ) +
EX(1, y− 1|θ) − EX(1, y|θ) yields Equation (11). Again, using the defining mechanism
in Equation (5), it follows that Y ≤ y is equivalent to X < y or {Y = y and y ≤ X < y + 1}.
Since the two instances are mutually exclusive, this results in using Equation (8) in:

FY(y|θ) = P(X < y) + P(Y = y and y ≤ X < y + 1)

= FX(y|θ) + (y + 1)[FX(y + 1|θ)− FX(y|θ)]− EX(1, y|θ)

which proves Equation (12) and implies that (a) FX(y|θ) < FY(y|θ) < FX(y + 1|θ). The
suf is obtained as SY(y|θ) = P(X ≥ y) + P(Y = y and y− 1 ≤ X < y) from the defini-
tion SY(y|θ) = P(Y ≥ y), which straightforwardly results in Equation (13) on replacing
P(X ≥ y) = SX(y|θ) and using Equation (9) properly to compute
P(Y = y and y− 1 ≤ X < y). From the definition of the quantile function for 0 ≤ u ≤ 1
as QY(u|θ) = inf{y ∈ Z|FY(y|θ) ≥ u}, y = QY(u|θ) implies the inequality FY(y− 1|θ) <
u ≤ FY(y|θ). Let qo = QX(u|θ), and set xo = bqoc and uo = FY(xo|θ). By the inequality
(a), we have on the one hand, (b) if u = FY(y− 1|θ), then qo ∈ (y− 1, y), and on the other
hand, (c) if u = FY(y|θ), then qo ∈ (y, y + 1). Since FY(·|θ) is increasing, (b) and (c) result
in qo ∈ (y− 1, y + 1), and thus, xo ∈ {y− 1, y} or equivalently y ∈ {xo, xo + 1}. Hence,
QY(u|θ) = xo if uo ≥ u and QY(u|θ) = xo + 1 otherwise.

Appendix A.3. Proof of Proposition 2

Proof of Proposition 2. Applying the law of iterated expectations [33] (Equation (2)) to
the representation in Equation (5), we have µY(θ) = EX

[
EU|X [Y]

]
. However, EU|X [Y] =

EU|X [Z + U] = Z + EU|X [U] with Z = bXc. Then, from EU|X [U] = R = X − Z, we get
EU|X [Y] = X, which results in µY(θ) = EX [X] and proves that µY(θ) = µX(θ). Using

Equation (3) in [33], we have σ2
Y(θ) = VarX

[
EU|X [Y]

]
+ EX

[
VarU|X [Y]

]
. Equation (15) then

follows from using VarX

[
EU|X [Y]

]
= VarX [X] and VarU|X [Y] = R(1− R). Moreover, R
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satisfies 0 ≤ R < 1 and VarU|X[Y] > 0 so that 0 < R(1− R) < 1/4, but also R(1− R) <
R ≤ X; hence, 0 < ζ0(θ) < 1/4 and ζ0(θ) < E[X], and 0 < ζ0(θ) < min{E[X], 1/4}
follows. Using R = X− Z gives R(1− R) = R− R2 = (2Z + 1)X− X2 − Z(Z + 1). Then,
with fX(·|θ), the pdf of X,

ζ0(θ) = EX [R(1− R)]

=
∫ ∞

−∞

[
(2z + 1)x− x2 − z(z + 1)

]
fX(x|θ)dx with z = bxc

=
∞

∑
z=−∞

∫ z+1

z

[
(2z + 1)x− x2 − z(z + 1)

]
fX(x|θ)dx

=
∞

∑
z=−∞

{
(2z + 1)

∫ z+1

z
x fX(x|θ)dx−

∫ z+1

z
x2 fX(x|θ)dx

− z(z + 1)
∫ z+1

z
fX(x|θ)dx

}
;

hence, Equation (16) follows.

Appendix A.4. Proof of Proposition 3

Proof of Proposition 3. Using Equation (5), Yn can be represented as Yn = (Z + U)n,
which expands as Yn = ∑n

i=0 (
n
i )ZiUn−i giving Yn = Zn + ∑n−1

i=0 (n
i )ZiU since U j = U

for j ∈ N+, and Equation (20) follows. Next, using the law of iterated expectations, we
have µ

(i)
ZU(θ) = EZ

[
ZiEU|Z[U]

]
. Since Z = bXc, Z = z is equivalent to z ≤ X < z + 1,

hence EZU [U|Z = z] = EX,U [U|z ≤ X < z + 1]. However, we have by Equation (9) the
identity EX,U [U|z ≤ X < z + 1] = −z[FX(z + 1|θ)− FX(z|θ)] + EX(1, z|θ) so that we get
the identity ZiEZ,U [U|Z = z] = −zi+1[FX(z + 1|θ)− FX(z|θ)] + ziEX(1, z|θ). Summing

the latter partial expectations for z ∈ Z yields µ
(i)
ZU(θ) = −µ

(i+1)
Z (θ) + ∑∞

z=−∞ ziEX(1, z|θ)
since FX(z + 1|θ)− FX(z|θ) is the probability mass of the discrete concentration of X (see
Equation (1)).

Appendix A.5. Proof of Proposition 4

Proof of Proposition 4. Given Y = y, U remains Bernoulli distributed. Moreover, Y = y
and U = 1 are equivalent to Y = y and y − 1 ≤ X < y. The success probability of U
given Y = y is thus py = [ fY(y|θ)]−1[P(Y = yand y−1 ≤ X < y)] by Bayes’s rule. Note
the identity P(Y = yand y−1 ≤ X < y) = EX(1, y− 1|θ)− (y− 1)[FX(y|θ)− FX(y− 1|θ)],
which follows by Equation (9) on using y− 1 instead of y. The expression of py then follows
as given in Equation (21). From Equation (5), the conditional density of Y given X = z
and U = u is fY|X,U(y|X = x, U = u) = I(z,z+1)(x) with z = y− u. The likelihood (joint
density and probability mass) of X, U, and Y is thus:

fX,U,Y(x, u, y) = fU|X(u|X = x) fX(x|θ)I(y−u,y−u+1)(x)

= (x− bxc)u(1 + bxc − x)1−u fX(x|θ)I(y−u,y−u+1)(x)

= (x− y + u)u(1 + y− u− x)1−u fX(x|θ)I(y−u,y−u+1)(x)

where the first line follows by Bayes’ rule, and the last line follows on using y = bxc+ u.
Summing fX,U,Y(x, u, y) over u ∈ {0, 1}, we get:

fX,Y(x, y) = (1− y + x) fX(x|θ)I(y−1,y)(x) + (1 + y− x) fX(x|θ)I(y,y+1)(x)
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The pdf in Equation (22) then follows by Bayes’ rule as fX|Y(x|Y = y, θ) = fX,Y(x, y)/ fY(y|θ).
Finally, Equation (23) follows from a direct integration as:

EX|Y[X
n|Y = y, θ] =

1
fY(y|θ)

[∫ y

y−1
xn(1− y + x) fX(x|θ)dx

+
∫ y+1

y
xn(1 + y− x) fX(x|θ)dx

]
=

1
fY(y|θ)

[
(1− y)

∫ y

y−1
xn fX(x|θ)dx +

∫ y

y−1
xn+1 fX(x|θ)dx

+ (1 + y)
∫ y+1

y
xn fX(x|θ)dx−

∫ y+1

y
xn+1 fX(x|θ)dx

]
.
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