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Abstract: In this paper, we compare three methods for deriving a priority vector in the theoretical
framework of pairwise comparisons—the Geometric Mean Method (GMM), Eigenvalue Method
(EVM) and Best–Worst Method (BWM)—with respect to two features: sensitivity and order violation.
As the research method, we apply One-Factor-At-a-Time (OFAT) sensitivity analysis via Monte Carlo
simulations; the number of compared objects ranges from 3 to 8, and the comparison scale coincides
with Saaty’s fundamental scale from 1 to 9 with reciprocals. Our findings suggest that the BWM is, on
average, significantly more sensitive statistically (and thus less robust) and more susceptible to order
violation than the GMM and EVM for every examined matrix (vector) size, even after adjustment
for the different numbers of pairwise comparisons required by each method. On the other hand,
differences in sensitivity and order violation between the GMM and EMM were found to be mostly
statistically insignificant.

Keywords: Best–Worst Method; Eigenvalue Method; Geometric Mean Method; Monte Carlo simula-
tions; pairwise comparisons; sensitivity

1. Introduction

Pairwise comparisons constitute a fundamental part of sophisticated multiple-criteria
decision-making frameworks, such as the analytic hierarchy/network process (AHP/ANP),
PROMETHEE, ELECTRE, PAPRIKA, and many others [1–9]. In addition, hundreds of
successful applications of pairwise comparisons in almost all domains of human activity
have been published in the literature [10].

The objective of a pairwise comparison method is to assign weights to compared
objects corresponding to their preference/importance and to rank objects from the most
preferred/important to the last. The Geometric Mean Method (GMM) proposed by Craw-
ford [11] and the Eigenvalue (eigenvector) Method (EVM) proposed by Saaty [7] are the
most popular methods for deriving weights from pairwise comparisons arranged in the
form of a pairwise comparison (PC) matrix. The Best–Worst Method (BWM) proposed by
Jafar Rezaei in 2015 (see Rezaei [12]) is one of the latest contributions to the field of pairwise
comparisons. It is based on the pairwise comparisons of all objects (in the original paper,
the objects were criteria) with the best object and the worst object (known a priori) only.
Therefore, it belongs in the family of pairwise comparison methods with missing elements
and/or incomplete pairwise comparison matrices (with additional information). Since its
introduction, the BWM has attracted the attention of many researchers and practitioners
and has been applied to various problems in areas such as waste management, tourism,
sustainability or biochemistry [13–18].

The appeal of the BWM lies in its obvious simplicity; however, until now, numerical
comparisons of the BWM with other methods, the GMM and EVM (AHP) in particular, have
rarely been covered in the literature. The studies of Ajrina et al. [19] and Haseli et al. [20]
compared the BWM and the AHP via one and two numerical examples, respectively.
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The original paper on the BWM [12] provided a comparison of the results of the BWM
with the AHP in only one particular example based on an experiment with 46 respondents
(university undergraduate students) and 322 PC matrices (and pairs of vectors) of the order
n = 4. The work came to the conclusion that the BWM performs better than the AHP,
and the weights derived by the BWM are highly reliable. Other comparison studies of the
BWM and AHP/GMM are not known to the authors.

Therefore, the aim of this paper is to bridge this gap and provide a comprehensive
numerical comparison of the BWM, EVM (AHP), and GMM with respect to two crucial
method properties: sensitivity and the violation of the order of preferences (order violation
in short). Sensitivity analysis is a well-established tool for assessing how the input of a
model/method affects the output (or vice-versa) and is widely used in natural sciences,
in particular in climatology [21–24]. To assess sensitivity, we apply One-Factor-At-a-Time
(OFAT) methodology [25]. The second feature we focus on, order violation, describes
how often a unit change in the input leads to a change in the final ranking (ordering) of
compared objects, therefore providing useful information on the robustness of rankings.
As a research method, we apply Monte Carlo simulations, where pairwise comparisons
are selected from Saaty’s fundamental scale from 1 to 9 (with reciprocals) and where the
number n of compared objects ranges from 3 to 8, as real-world multiple criteria problems
usually do not involve large numbers of criteria. Then, we perform a statistical analysis of
the acquired results, enabling a final comparison of all three methods.

This paper is organized as follows: preliminaries on pairwise comparison methods,
prioritization, sensitivity, and order violation are provided in Section 2, while Monte Carlo
simulations are described in Section 3 followed by a discussion in Section 4. Conclusions
close the article.

2. Preliminaries

The input data for the PC method is a PC matrix C = [cij], where cij ∈ R+ and
i, j ∈ {1, . . . , n}. The values of cij and cji indicate the relative importance (or preference) of
the objects i and j.

In the context of the BWM, the compared objects are criteria. The set of n criteria to be
compared and ranked is denoted as F = {F1, . . . , Fn}.

Definition 1. The matrix C = [cij] is said to be reciprocal if ∀i, j ∈ {1, . . . , n} : cij = c−1
ji and

C = [cij] is said to be consistent if ∀i, j, k ∈ {1, . . . , n} : cij · cjk · cki = 1.

Note that if C = [cij] is consistent, then it is also reciprocal, but not vice versa. In this
paper, it is assumed that a PC matrix is always reciprocal. The reciprocity condition seems
to be natural in many decision-making situations. For instance, if an element cij of a PCM
C = [cij] expresses that the i-th criterion is cij times more important than the j-th criterion,
then it is evident that the j-th criterion is 1/cij times more important than the i-th one; thus,
cij = 1/cji. In particular, for each criterion i, we obtain cii = 1, which corresponds to the
fact that the importance of each criterion with respect to itself is equal to one.

2.1. The Eigenvalue Method and the Geometric Mean Method

The result of a pairwise comparison method is a priority vector (vector of weights) w.
According to one of the most popular prioritization methods, the EVM (the Eigenvalue

Method) proposed by Saaty [7], the vector w is determined as the rescaled principal
eigenvector of the matrix C. Thus, assuming that Cw̄ = λmaxw̄, the priority vector w is
w = [w(F1), . . . , w(Fn)]T = γ[w̄1, . . . , w̄n]T, where γ is a scaling factor, γ =

[
∑n

i=1 w̄i
]−1, so

that ‖w‖ = 1.
In the Geometric Mean Method (GMM) (see Crawford [11]) the weight of the ith al-

ternative is given by the geometric mean of the ith row of the matrix C = [cij]. Thus,
the priority vector is given as follows:
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w =
[
w(F1), . . . , w(Fn)

]T
= γ

[( n

∏
r=1

c1r

) 1
n

, . . . ,
( n

∏
r=1

cnr

) 1
n
]T (1)

where γ =
[
∑n

i=1 ∏n
r=1 cir

]−1 is the scaling factor again.
Several aspects of these methods are discussed in more detail, e.g., in Ramík [26].

2.2. The Best–Worst Method

In the Best–Worst method (see Rezaei [12]), each criterion is pairwise compared only
with the best criterion and the worst criterion.

The Best–Worst method proceeds as follows [12]:

Step 1. A set of criteria is determined.
Step 2. The decision maker identifies the best (most desirable, most important) criterion

and the worst (least desirable, least important) criterion.
Step 3. Preferences of the best criterion with respect to all other criteria are determined

on a scale from 1 (equal importance) to 9 (absolute preference).
Step 4. Preferences of all other criteria with respect to the worst criterion are determined

onathe scale from 1 to 9.
Step 5. bOptimal weights of all criteria are found by solving a corresponding non-linear

programming problem; see Equation (2).

Let cBj denote the preference of the best criterion (B) over the criterion Fj, and let ciW
denote the preference of the criterion Fi over the worst criterion (W). Let wB and wW be
the weights of the best and worst criterion, respectively. The goal is to find the vector of
criteria weights (a priority vector) w = (w1, w2, . . . , wn).

Rezaei [12] suggested finding the priority vector by solving the following optimiza-
tion problem:

min
(

max
j

{∣∣wB
wj
− cBj

∣∣, ∣∣ wj

wW
− cjW

∣∣}) (2)

s.t.
n

∑
j=1

wj = 1 (3)

wj ≥ 0, ∀j = 1, . . . , n. (4)

The problem can equivalently be stated as follows:

min ξ (5)

s.t. ∣∣wB
wj
− cBj

∣∣ ≤ ξ, ∀j = 1, . . . , n, (6)

∣∣ wj

wW
− cjW

∣∣ ≤ ξ, ∀j = 1, . . . , n, (7)

n

∑
j=1

wj = 1, (8)

wj ≥ 0, ∀j = 1, . . . , n. (9)

Further, it is assumed that for all j, the following inequalities hold:

cBW ≥ cjW ≥ 1; cBW ≥ cBj ≥ 1. (10)
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A linear version of the BWM was introduced by Brunelli & Rezaei [27] and Rezaei [28],
where the letter “L” denotes linear:

min ξL (11)

s.t. ∣∣wB − cBjwj
∣∣ ≤ ξL, ∀j = 1, . . . , n, (12)∣∣wj − cjWwW
∣∣ ≤ ξL, ∀j = 1, . . . , n, (13)

n

∑
j=1

wj = 1, (14)

wj ≥ 0, ∀j = 1, . . . , n. (15)

Notice that the solution to the linear version of the BWM differs from the solution to
the non-linear version in general. In addition, in this case, the value of ξ∗L should not be
divided by CI.

When comparing n objects (criteria, alternatives, etc.) pairwise, the EVM and GMM
require n(n − 1)/2 comparisons to be made. The BWM requires only comparisons (of
criteria) with the best and worst criterion, and the reduced number of comparisons amounts
to 2n− 3. This reduction might be very important when dealing with a large number of
compared objects.

2.3. Order Violation

First, let us explain the concept of order violation.

Definition 2. Let C = [cij] be a pairwise comparison matrix of n objects, let cij ∈
{ 1

9 , 1
8 , . . . ,

1, . . . , 8, 9
}

, and let w = (w1, . . . , wn) be a corresponding vector of weights (a priority vector).
The order violation occurs when for some pair of objects (i, j), i, j ∈ {1, . . . , n}, with the weights wi
and wj, respectively, it holds that after a change of one element ckl , k, l ∈ {1, . . . , n}, by one unit of
the scale, the relation wi ≥ wj changes into wi < wj.

Remark 1. By a unit change in Definition 2, we mean the change to an adjacent point of a given
discrete scale; e.g., a change from 6 to 7 (and reciprocal values change as well), or from 1

6 to 1
7 (and

reciprocal values also change again). In addition, other scales than Saaty’s fundamental scale can be
used for comparisons, but we decided to adhere to the scale of the original study of Rezaei [12].

Order violation means that after a change of only one pairwise comparison by just one
unit (which is a minimal possible change) the order (ranking) of compared objects provided
by the given PC method changes as well. Thus, it can be considered an undesirable feature,
as it indicates that the order of objects is unstable and a minimal change or error is sufficient
to disturb it.

2.4. Sensitivity

To evaluate the sensitivity of the BW, EV, and GM methods, we applied One-Factor-
At-a-Time (OFAT) methodology. We define sensitivity as a change in the priority vector
(output) when one preference (input) is changed by one unit:

Definition 3. Let w = (w1, . . . , wn) be the vector of weights obtained by a generic prioritization
method PM. Let w∗ = (w∗1 , . . . , w∗n) be the vector of weights after one preference was changed by
one unit. Then, the sensitivity4w is defined as follows:

4 w(PM)
(n) =

100
n

n

∑
i=1
|wi − w∗i |. (16)
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The sensitivity 4w expresses, in a percentage, a per-weight change in the original
priority vector w. If, for instance, 4w(GMM)

(n) = 2, this means that each component of
the original weight vector w = (w1, ..., wn) changed by 2% on average when the GMM
was applied.

The following example illustrates the use of order violation and sensitivity.

Example 1 (Best Worst Method [29]). Consider buying a car according to five criteria: quality,
price, comfort, safety, and style. The best criterion is price, and the worst criterion is style. The buyer
provides the following pairwise comparisons:

Best to all preferences: (2, 1, 4, 3, 8). All to worst preferences: (4, 8, 4, 2, 1).
By using the linear BWM model and the MS Excel Solver from Best Worst Method [29], we

obtain the following weights of criteria:

w = (0.246, 0.431, 0.123, 0.154, 0.046).

Now, we change one preference by one unit (in bold) in the best to all preferences: (2, 1, 3, 3, 8).
The weights of criteria are now

w∗ = (0.233, 0.427, 0.155, 0.136, 0.048).

The sensitivity4w(BWM)
(5) isthere f ore 100

5 ∑5
i=1 |wi − w∗i | = 1.4.

Thus, the weights of the criteria changed, on average, by 1.4%.
As for the order violation, initially the criterion of comfort’was ranked fourth and the criterion

of safety was ranked third. After the unit change in one PC comparison, the criterion of comfort was
ranked third and the criterion of safety was ranked fourth. Therefore, an order violation occurred.

3. Monte Carlo Simulations

Simulations of the EVM and GMM were performed in C#; simulations of the BWM
were carried out via the MS Excel Solver [29].

The procedure for a full PC matrix, the GMM (EVM), and Saaty’s scale was as follows:

Step 1. A random PC (reciprocal) matrix C of the order n with entries from Saaty’s scale
(from 1 to 9) was generated.

Step 2. The priority vector w was derived by the GMM (EVM).
Step 3. A randomly chosen element cij of a PC matrix C was randomly changed by one

unit of a scale up or down, and the reciprocal element cji was changed accordingly.
Step 4. The priority vector w∗ was derived by the GMM (EVM).
Step 5. Sensitivity (16) was calculated and order violation was checked.
Step 6. The procedure was repeated 500–1000 times for each matrix size n ∈ {3, 4, 5, 6,

7, 8}.
The EVM and GMM were performed on the same set of random PC matrices.

The procedure for the BWM and Saaty’s scale was as follows:

Step 1. Pairwise comparisons of all n objects with respect to the best and the worst object
(in the form of two vectors) were randomly generated with the use of Saaty’s
scale while preserving relations (10).

Step 2. The priority vector w was calculated by the linear version of the BWM according
to Equation (11).

Step 3. A randomly chosen element from one of the two vectors generated in Step 1
was changed by one unit (up or down, again randomly), while preserving
Saaty’s scale.

Step 4. The priority vector w∗ was derived by the linear BWM according to Equation (11).
Step 5. Sensitivity (16) was calculated and order violation was checked.
Step 6. The procedure was repeated 500–1000 times for each matrix size n ∈ {3, 4, 5, 6,

7, 8}
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Table 1 provides the average values of sensitivity along with standard deviations
and the frequency of the order violation. As can be seen, the least sensitive (thus, the most
robust) method was the GMM followed by the EVM. The Best–Worst method performed
significantly worse. In the case of order violation, again, the GMM performed best and the
BWM worst.

Table 1. Simulation results: mean sensitivity and average order violation occurrence (for
each method separately). BWM: Best–Worst Method; GMM: Geometric Mean Method; EVM:
Eigenvalue Method.

Method n Mean Sensitivity (st. dev.) Order Violation (%)

BWM

3 2.801 (2.7771) 0
4 2.161 (2.170) 31.4
5 1.621 (1.687) 38.9
6 1.273 (1.276) 50.8
7 0.966 (1.031) 53.8
8 0.741 (0.831) 97.2

GMM

3 1.942 (1.475) 10.6
4 0.919 (0.681) 12.2
5 0.465 (0.364) 12.3
6 0.263 (0.212) 15.2
7 0.185 (0.148) 19.1
8 0.113 (0.081) 61.0

EVM

3 1.790 (1.444) 10.9
4 0.932 (0.619) 14.8
5 0.474 (0.314) 16.6
6 0.304 (0.178) 22.0
7 0.196 (0.094) 24.3
8 0.134 (0.059) 64.7

Figures 1 and 2 provide graphical illustrations of the sensitivity and order violation
for all examined matrix sizes.

Figure 3 shows a comparison of the GMM and EVM with the BWM adjusted for the
lower number of pairwise comparisons.

Figures 4–6 show the sensitivity distribution of all three methods for n ∈ {4, 6, 8}.
Figures 7–9 provide frequency diagrams of the sensitivity for all three methods and

n = 6.

Figure 1. Average order violation: BWM, EVM, and GMM.
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A discussion of the results is provided in the next section. The data are available in
the Mendeley repository [30].

Figure 2. Mean sensitivity: BWM, EVM, and GMM.

Figure 3. Mean sensitivity: BWM adjusted, EVM, and GMM.

Figure 4. Sensitivity distribution: all methods, n = 4.
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Figure 5. Sensitivity distribution: all methods, n = 6.

Figure 6. Sensitivity distribution: all methods, n = 8.

Figure 7. Sensitivity of the BWM: frequency distribution, n = 6.
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Figure 8. Sensitivity of the GMM: frequency distribution, n = 6.

Figure 9. Sensitivity of the EVM: frequency distribution, n = 6.

4. Discussion

Our results, summarized in Table 1, indicate that the mean sensitivity decreases with
the matrix size for all three prioritization methods; however, the sensitivity of the BWM
is markedly larger than that of the GMM and EVM. In Figures 7–9, it can be seen that
while the sensitivity of more than 1% is rare for the GMM and EVM (for n = 6), it is quite
common for the BWM. A standard statistical tool for testing the equality of three or more
means is the ANOVA (analysis of variance). However, the ANOVA requires an equality of
variances, and from Table 1 and Figures 4–6, it is clear that this assumption was violated.
Bartlett’s test confirmed that variances in the sensitivity of all three methods were not
equal (at p = 0). Therefore, we applied Welch’s test instead, and the null hypothesis of
sensitivity equality was rejected at the p = 0 level (p was so small that MS Excel rounded
the value to 0) for all 3 ≤ n ≤ 8. Since the BWM is “handicapped” by the lower number
of pairwise comparisons required, we also performed Welch’s test for sensitivity equality
of all three methods, where the sensitivity of the BWM was adjusted (decreased) by the
factor 2n−3

n(n−1)/2 , corresponding to the number of pairwise comparisons required by the
BWM and EVM/GMM, respectively; see also Figure 3. Even after the adjustment, the null
hypothesis of equal sensitivity was rejected at p = 0 for all examined n again. Interestingly,
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the two-sample t-test revealed that differences in the sensitivity of the GMM and EVM
were statistically significant at the p = 0.01 level only for n ∈ {6, 8}.

As for order violation, its occurrence increased for all three methods as the matrix
size n increased. In the case of n = 8, the order violation occurrence was more likely
(above 50%) than not, and in the case of the BWM, it was almost certain to happen (above
97%). This result for n = 8 means that even the smallest possible deviation (or error) in
one pairwise comparison on the input leads to a different ranking of objects in more than
50% cases. It is likely that for greater matrix sizes, this phenomenon will happen even
more often; this therefore implies that the robustness of rankings of objects derived from
pairwise comparisons by the BWM, EVM, and GMM is rather low, and the decision maker
should take this into account. Differences in order violation occurrence (considered to be a
binomial variable where either order violation happened or not) between all three methods
were again tested for statistical significance. The null hypothesis that there is no difference
between the BWM and GMM, and the BWM and EVM, was rejected at p < 10−10 for all n.
Differences between the GMM and EVM were statistically significant at the p = 0.01 level
for n ∈ {5, 6, 7}, but not statistically significant at p = 0.01 for n ∈ {3, 4, 8}.

5. Illustrative Application of Our Approach to Order Violation Evaluation

The study of Zabihi et al. [31] focused on developing a global information system
(GIS)-based multiple-criteria decision making model for a citrus land suitability assessment.
The authors selected five relevant criteria: elevation, maximum temperature, minimum
temperature, slope angle, and rainfall. To determine the importance of criteria, the authors
pairwise compared all criteria with the Saaty’s scale. The resulting pairwise comparison
matrix is shown in Table 2. By using the EVM, we obtained the vector of the weights
of all criteria, and we ranked them from the most important to the least important as
follows: elevation (weight 0.497), minimum temperature (0.242), rainfall (0.132), maximum
temperature (0.087), and slope angle (0.041). (Notice that the weights in parentheses slightly
differ from the study of Zabihi et al. [31], perhaps due to numerical errors in [31].)

Table 2. A pairwise comparison matrix for the calculation of criteria weights for the citrus site
selection (Table 4, Zabihi et al. [31]).

Sustainability
Criterion

Elevation Maximum
Temperature

Minimum
Temperature

Slope Angle Rainfall

elevation 1 5 3 7 5
maximum 1/5 1 1/3 3 1/2temperature
minimum 1/3 3 1 5 3temperature

slope angle 1/7 1/3 1/5 1 1/5
rainfall 1/5 2 1/3 5 1

Since measurements or judgments are usually associated with errors, the question
arises as to how stable the obtained ranking of the criteria is, or, in other words, is there an
element (the so called critical element) in the PC matrix in Table 2 such that the minimal
change of this matrix element leads to an order violation; i.e., a change in the ranking of
all criteria?

Without loss of generality, we can examine all matrix elements in Table 2 (we denote
the matrix as C = [cij]) larger than or equal to 1 (with the exception of
diagonal elements):

• Let us start with c12 = 5. We change the value of 5 down by 1 scale unit (to 4), apply
the EVM to find the priority vector and the ranking of all five criteria, and we get the
following result: the ranking of elevation, minimum temperature, rainfall, maximum
temperature, and slope angle remains unchanged. Next, we change the value of
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c12 = 5 up by 1 unit (to 6), repeat the procedure, and find that the final ranking is
unchanged again.

• We take another matrix element larger than or equal to 1, namely c13 = 3, and change
it by 1 scale unit up and down. Again, the final ranking obtained by the EVM is
unchanged in both cases.

• We proceed with the remaining elements larger than or equal to 1, namely c14, c15,
c24, c32, c34, c35, c52, and c54, and change each of them by 1 scale unit up and down.
The final ranking obtained by the EVM remains unchanged in all cases.

We thus conclude that the pairwise comparison matrix given in Table 2 is “robust” in
the sense that the ranking of the alternatives (elevation, minimum temperature, rainfall,
maximum temperature, and slope angle) remains the same if one element of the matrix is
changed by 1 scale unit up or down.

The pairwise comparisons presented in Table 2 were obtained by an expert team,
and the EVM yielded the priority vector w = (0.497, 0.087, 0.242, 0.041, 0.132). Taking
these weights of the criteria into account, another expert team may pairwise compare the
criteria’s importance as presented in Table 3. Notice that Saaty’s consistency ratio of the
PC matrix presented in Tables 2 and 3 is CR = 0.055 and CR = 0.007, respectively; i.e., the
PC matrix presented in Table 3 appears to be much more consistent than the original PC
matrix presented in Table 2.

Table 3. A pairwise comparison matrix for the calculation of criteria weights for the citrus site
selection by another expert team.

Sustainability
Criterion

Elevation Maximum
Temperature

Minimum
Temperature

Slope Angle Rainfall

elevation 1 6 2 9 4
maximum 1/6 1 1/3 2 1temperature
minimum 1/2 3 1 6 2temperature

slope angle 1/9 1/2 1/6 1 1/3
rainfall 1/4 1 1/2 3 1

By applying the EVM to the PC matrix found in Table 3, we obtain the vector of the
weights of the criteria. The ranking of the criteria is the same as above: elevation (0.486),
minimum temperature (0.256), rainfall (0.119), maximum temperature (0.093), and slope
angle (0.045).

Although the new pairwise comparison matrix, denoted as C′ = [c′ij], shown in Table 3
is more consistent, a critical element can be found in it. In particular, by changing the
value of the element c′25 = 1 by 1 scale unit up (to 2) and by using the EVM, we obtain the
following weights and ranking of the criteria: elevation (0.483), minimum temperature
(0.255), maximum temperature (0.112), rainfall (0.106), and slope angle (0.045). We can see
that the change of the critical element c′25 by 1 scale unit, which is the smallest possible
change of a PC matrix, caused order violation; i.e., it led to a different ranking of the criteria
for citrus land suitability assessment. The sensitivity 4w(EVM)

(5) = 0.749 was above the
mean value 0.474 (see Table 1) in this case. Knowing this, the decision maker should pay
special attention to this particular PC comparison (or a measurement in general) to ensure
its accuracy and to avoid a distortion of the final ranking. Our Monte Carlo simulations
revealed that the frequency occurrence of critical elements increased with the increasing
matrix size for all three priority deriving methods; see Table 1.
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6. Conclusions

The aim of this paper was to provide a comparison of the sensitivity and order
violation of three popular prioritization methods in pairwise comparisons: the Geometric
Mean Method, the Eigenvalue Method, and the Best–Worst Method.

Our results suggest that the Best–Worst Method is statistically significantly more
sensitive and more susceptible to order violation than the Geometric Mean Method and
the Eigenvalue Method for 3 ≤ n ≤ 8 compared objects. On the other hand, the difference
in sensitivity of the Geometric Mean Method and the Eigenvalue Method was found to be
statistically insignificant in most cases.

Since both the GMM and EVM outperformed the BWM, and the differences in the
GMM and EVM were rather small, both “standard” methods can equally be recommended
as a suitable prioritization method with regard to sensitivity and order violation.

Further, we demonstrated how our approach can be used in practice for the evaluation
of the stability of a ranking obtained by a given PC method. We came across a surprising
finding that, with the increasing size of the PC matrix, the relative frequency of critical
elements also increases.

Future research may focus on a comparison of extensions of the aforementioned
methods aiming at interval pairwise comparisons or fuzzy pairwise comparisons.
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