
mathematics

Article

On the Similarity and Dependence of Time Series

Vilém Novák * and Soheyla Mirshahi

����������
�������

Citation: Novák, V.; Mirshahi, S. On

the Similarity and Dependence of

Time Series. Mathematics 2021, 9, 550.

https://doi.org/10.3390/

math9050550

Academic Editor: Ewa Roszkowska

Received: 1 February 2021

Accepted: 3 March 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, NSC IT4Innovations,
30. dubna 22, 701 03 Ostrava 1, Czech Republic; Soheyla.Mirshahi@osu.cz
* Correspondence: Vilem.Novak@osu.cz

Abstract: In this paper, we undertake the problem of evaluating interrelation among time series.
Interrelation is measured using a similarity index. In this paper, we suggest a new one based on
the known fuzzy transform (F-transform), which has been proven to remove higher frequencies
than a given threshold and reduce the random noise significantly. The F-transform also provides an
estimation of the slope of time series in a given imprecisely delineated time. We prove some of the
suggested index properties and show its ability to measure similarity (and thus the interrelation) on
a selection of several real financial time series. The method is well interpretable and easy to adjust.

Keywords: fuzzy transform; F-transform; evaluative linguistic expressions

1. Introduction

Time series form a topic of research that has been widely studied for many years (for
some recent references, see [1–5]). In 2006, Yang and Wu [6] rated mining information from
time series as one of the top ten challenging data mining problems due to its particular
properties. One of its subareas is assessing similarity between time series, i.e., the degree to
which a given time series resembles another one is the core of many tasks, such as retrieval
and clustering, classification, and even forecasting [7].

Analysis of time series in theoretical and practical aspects is an crucial part of the study
of stock markets. Empirical research started in 1933 [8] and was focused on the analysis
of the stock market as a single independent time series, often referred to as a univariate
time series analysis. The financial time series consists, in this case, of single observations
recorded sequentially over equal time increments. However, in recent decades, worldwide
economies have become increasingly related to each other. Various phenomena such as
politics, social media platforms, and even pandemics can influence a set of financial time
series similarly. Nowadays, there are likely to be groups of stocks that follow similar
time-based patterns behavior simultaneously or with some time delay; Therefore, a crucial
question is raised: “what are all the stocks that behave similarly to given stock A? ”.
Nevertheless, devising a proper similarity measure to find a similar behavior among time
series is a non-trivial task [3].

Besides Euclidean distance measures, many others can be found in the
literature [9–15]. In 1999, Mantegna suggested a methodology known as the standard
one adopted and followed by many researchers in different areas. As of 2020, his paper
and his book, Ref. [16] have been cited several thousand times. To calculate the distance
(similarity) among assets, Mantegna recommends the use of correlation among returns.
Many researchers aim to improve his method concerning the clustering algorithm or the
distance measure itself in continuation of his work. This can be briefly described as follows.

Let N be the number of assets, Pi(t) be the price at time t of asset i, 1 ≤ i ≤ N, then the
log-return of an asset ri(t), is calculated as follows:

ri(t) = log Pi(t)− log Pi(t− 1).
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To determine the distance (similarity) between each pair (i, j) of assets, he suggests to
compute the correlation of returns and then correlation coefficients (pij) into distance using
the following equation:

dij =
√

2(1− pij).

He employs a minimum spanning tree (MST) to cluster the most similar assets in the
form of a tree. A distinctive indexed hierarchy is another product of the resulting MST,
corresponding to the one given by the dendrogram obtained using the single linkage clus-
tering algorithm. However, there are few concerns regarding this standard methodology.
The biggest problem is instability, which can be partially caused by the MST algorithm or
by the correlation coefficient. Note that the correlation is not applied to the financial time
series but to their returns; therefore, the price values’ dependence might be lost. Moreover,
it is known that Pearson linear correlation is sensitive towards outliers and generally not
suitable for other probability distributions except for the Gaussian one. It is also challeng-
ing to interpret linkage changes during the time since there is a high level of statistical
uncertainty associated with the correlation estimation [17]. Interestingly, as one might ex-
pect, the higher the correlation coefficient between an asset pair, the more reliable their link
should be. However, in [18], the authors show that this hypothesis is not always satisfied
in practice. Mantegna [19] concludes that a better approach is needed to use a distance
measure other than the expected square deviation and one that is distribution-free. Thus,
researchers have investigated different measures of distance from specific viewpoints.

The similarity between two-time series should not be computed based on their values
only but also based on the corresponding slopes. This is important specifically in the stock
market because relative variations in the price values affect the trading performance. A pos-
itive slope indicates an uptrend, and a negative slope indicates a downtrend. However,
a question is raised, how we can include the slopes. A possible and very reasonable solution
is provided by the fuzzy transform (F-transform). Recall that we distinguish degrees of
the F-transform: the zero-degree F-transform provides components giving information
about the given function’s average values in a specified area. The first-degree F-transform
provides an estimation of the tangent of the given function in a specified area.

This paper aims to suggest a new similarity index between two time series that
combines both values of time series and their slopes. We prove some of its properties of
this index and demonstrate its behavior on a selection of several real financial time series.

The structure of this paper is as follows. Section 2 is an overview of the main principles
of the fuzzy transform and its properties. In Section 3, we introduce the new similarity
index and prove some of its properties. In Section 4, we demonstrate our index on several
financial time series.

2. Preliminaries
2.1. The Principle of F-Transform

The fuzzy (F-)transform is a universal approximation technique which was introduced
by I. Perfilieva in [20,21]. Its fundamental idea consists in two steps:

(i) Direct F-transform: Transform a bounded real continuous function f : [a, b] −→ R to
a finite vector F[ f ] of components. This is realized using a fuzzy partition which is a
finite set of fuzzy sets distributed over the domain [a, b].

(ii) Inverse F-transform: Transform the vector F[ f ] back into a function f̂ that approximates
the original function f .

The F-transform has the following properties:

• it is a universal approximator,
• it has ability to filter out high frequencies and to reduce noise [22],
• it provides estimation of average values of derivatives over an imprecisely specified

area [23],
• its computational complexity is polynomial.
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The parameters of the F-transform can be set in such a way that the approximating
function f̂ has the desired properties.

These properties make the F-transform suitable for applications in various tasks when
processing time series. More about F-transform and its applications can be found in [24].

2.1.1. Fuzzy Partition

Recall that by a fuzzy set, we understand a function A : U −→ [0, 1] where U is a set
(a universe) and [0, 1] is the interval of reals understood as a set of truth degrees. The element
A(u) ∈ [0, 1] is called membership degree of u ∈ U in the fuzzy set A. In general, it is a
support of a certain algebra (cf. Section 2.3) whose operations induce operations with
fuzzy sets ( We refer the reader to the extensive literature on fuzzy set theory and fuzzy
logic, for example [24] and the citations therein). The support of a fuzzy set A is the set
Supp(A) = {u ∈ U | A(u) > 0}.

The fundamental step of the F-transform procedure is forming a fuzzy partition of the
domain [a, b], which is a finite set of fuzzy sets

A = {A0, . . . , An}, n ≥ 2, (1)

defined over nodes c0, . . . , cn ∈ [a, b] such that

a = c0, . . . , cn = b (2)

and for each k = 0, . . . , n, Ak(ck) = 1. Furthermore, each fuzzy set Ak, k = 1, . . . , n− 1, has
the support (ck−1, ck+1), which implies that Ak(x) = 0 for all x ∈ [a, ck−1] ∪ ck+1, b] (We
formally put c−1 = c0 = a and cn+1 = cn = b). The fuzzy sets Ak are often called basic func-
tions. Note that A1, . . . , An−1 cover the whole domain (a, b), i.e., (a, b) =

⋃n−1
k=1 Supp(Ak)

(since A1(a) = An−1(b) = 0). For k = 0 and k = n, we consider only halves of the functions
Ak, i.e., A0 has the support (c0, c1) and An the support (cn−1, cn). A typical h-uniform
triangular fuzzy partition is depicted in Figure 1.

Figure 1. A typical h-uniform triangular fuzzy partition.

Remark 1. In general, the fuzzy sets from Ak ∈ A must fulfill five axioms, namely: normality,
locality (bounded support), continuity, unimodality, and orthogonality, where the latter is
formally defined as ∑n

i=0 Ai(x) = 1, x ∈ [a, b]. For precise formulation of these axioms see [20,24].

A fuzzy partition A is called h-uniform if the nodes c0, . . . , cn are h-equidistant, i.e., for
all k = 0, . . . , n− 1, ck+1 = ck + h, where h = (b− a)/n and the fuzzy sets A1, . . . , An−1 are
shifted copies of a generating function A : [−1, 1] −→ [0, 1] such that for all k = 1, . . . , n− 1

Ak(x) = A
(

x− ck
h

)
, x ∈ [ck−1, ck+1].
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2.1.2. Zero Degree Fuzzy Transform

After determining the fuzzy partition A0, . . . , An ∈ A, we construct a direct F-transform
of a continuous function f as a vector F0[ f ] = (F0

0 [ f ], . . . , F0
n [ f ]), where each k-th component

F0
k [ f ] is equal to

F0
k [ f ] =

∫ b
a f (x)Ak(x) dx∫ b

a Ak(x) dx
, k = 0, . . . , n. (3)

One can see that each F0
k [ f ] component is a weighted average of the functional values f (x),

where weights are the membership degrees Ak(x). The inverse F-transform of f with respect
to F0[ f ] is a continuous function f̂ : [a, b] −→ R such that

f̂ (x) =
n

∑
k=0

F0
k [ f ] · Ak(x), x ∈ [a, b].

Theorem 1. The inverse F-transform f̂ has the following properties:

(a) It coincides with f if the latter is a constant function.
(b) The sequence of inverse F-transforms { f̂n} determined by a sequence of uniform fuzzy parti-

tions based on uniformly distributed nodes with h = (b− a)/n uniformly converges to f for
n→ ∞.

(c) The F-transform is linear, i.e., if f (x) = αu(x) + βv(x) then f̂ (x) = αû(x) + βv̂(x) for all
arguments x.

(d) Let f (x) = q ∈ R for all x ∈ [a, b]. Then, F0
k [ f ] = q for any k = 1, . . . , n− 1.

All the details and full proofs can be found in [20,21].

2.1.3. Higher Degree Fuzzy Transform

The components F0
k [ f ] of the zero degree F-transform are real numbers (in the sequel,

we will write F0-transform). If we replace F0
k [ f ] by polynomials of m-th degree, m ≥ 0,

we obtain a higher degree F-transform (Fm transform). A detailed description of this
F-transform including full proofs of its properties can be found in [21]. It is important to
note that the F1 transform enables us to also estimate derivatives of the given function f
over a non-precisely specified area.

The direct F1-transform of f with respect to A is a vector F1[ f ] = (F1
1 [ f ](x), . . . ,

F1
n−1[ f ](x)) linear functions

F1
k [ f ](x) = β0

k + β1
k(x− ck), k = 0, . . . , n (4)

with the coefficients β0
k, β1

k given by

β0
k =

∫ ck+1
ck−1

f (x)Ak(x)dx∫ ck+1
ck−1

Ak(x)dx
, (5)

β1
k =

∫ ck+1
ck−1

f (x)(x− ck)Ak(x)dx∫ ck+1
ck−1

(x− ck)2 Ak(x)dx
. (6)

Note that β0
k = F0

k [ f ], i.e., the coefficients β0
k are just the components F0

k [ f ] given in (3).
The F1-transform enjoys the properties stated in Theorem 1 (see [21]). In comparison with
the F0 transform, it is more precise. Let us remark that in general, we can define n-th degree
F-transform. Of course, for higher n, it is more complex but also more precise. In practice,
it is sufficient to consider only n ∈ {0, 1, 2}.

The following theorem is important for mining information from time series [24].
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Theorem 2. If f is four-times continuously differentiable on [a, b], then for each k = 1, . . . , n− 1,

β0
k = f (ck) + O(h2), (7)

β1
k = f ′(ck) + O(h2). (8)

Thus, each F1-transform component provides a weighted average of values of the
function f in the area around the node ck (7), and also a weighted average of slopes (22) of
f in the same area.

Lemma 1. If A is an h-uniform fuzzy partition and each basic function Ak ∈ A has a triangular
shape, then the following can be proved:∫ ck+1

ck−1

Ak(x)dx = h, (9)

β0
k =

1
h

∫ ck+1

ck−1

f (x)Ak(x)dx, (10)

β1
k =

12
h3

∫ ck+1

ck−1

f (x)(x− ck)Ak(x)dx. (11)

Lemma 2. Let A be an h-uniform fuzzy partition with triangular membership functions and let
| f (x)| ≤ 1 for all x ∈ [a, b]. Then,

(a) |β0
k| ≤ 1.

(b) If h ≥ 12 then |β1
k| ≤ 1.

Proof. (a) Using (10) we have:

|β0
k| =

1
h

∣∣∣∣∫ ck+1

ck−1

f (x)Ak(x)dx
∣∣∣∣ ≤ 1

h

∫ ck+1

ck−1

| f (x)|Ak(x)dx ≤ 1
h

∫ ck+1

ck−1

Ak(x)dx =
h
h
= 1.

(b) Using (11) we have:

|β1
k| =

12
h3

∣∣∣∣∫ ck+1

ck−1

f (x)(x− ck)Ak(x)dx
∣∣∣∣ ≤ 12

h3

∫ ck+1

ck−1

| f (x)| |(x− ck)|Ak(x)dx ≤

12
h3

∫ ck+1

ck−1

hAk(x)dx =
12
h

2.2. Time Series and F-Transform

A time series is a stochastic process (see [25,26])

X : T×Ω −→ R

where Ω is a set of elementary random events and T = {0, . . . , p} ⊂ N is a finite set whose
elements are interpreted as time moments. Statistical models assume that each X(t), t ∈ T
is a random variable having a specific distribution function.

Fuzzy techniques are based on the following decomposition model:

X(t, ω) = TC(t) + S(t) + R(t, ω), t ∈ T, (12)

where TC(t) is a trend-cycle that can be further decomposed into trend and cycle, i.e., TC(t) =
Tr(t) + C(t). The S(t) is a seasonal component that is a mixture of r periodic functions

S(t) =
r

∑
j=1

Pje
iλjt (13)
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where λ1, . . . , λr are frequencies and Pj, j = 1, . . . , r are constants. Without loss of generality,
we can assume that the frequencies are ordered λ1 < · · · < λr.

Note that TC and S are ordinary non-stochastic functions. Only R is a random
noise, i.e., a stationary stochastic process such that the mean E(R(t, ω)) = 0 and vari-
ance Var(R(t, ω)) < σ, t ∈ T.

In practice, we always have only one realization of time series at disposal. Formally,
this means that we fix ω ∈ Ω. Then, we write

X = {X(t) | t ∈ T} (14)

and understand that X is an ordinary real (or complex) valued function.
Let us now assume that inside (14), the real time series is hidden

Z(t) = TC(t) +
r−s

∑
j=1

Pje
iλjt + R′(t, ω), t ∈ T, (15)

where 0 < s < r and R′ ≤ R. In other words, we assume that the time series X is “spoiled”
by some frequencies that are too high λr−s+1, . . . , λr (they may correspond, e.g., to a certain
unwelcome volatility) that are removed in Z.

The following theorem demonstrates the power of the F-transform for time series analysis.

Theorem 3. Let X(t) be realization of the stochastic process (4) and Z be its smoothed version (15).
Let A be a fuzzy partition over the set of equidistant nodes (2) with the distance h. Let the fuzzy
sets Ak ∈ A be N-times differentiable and put d = hλr−s.

(a) The corresponding inverse F-transform X̂ of X(t) gives the following estimation of Z:

|X̂(t)− Z(t)| ≤ ω(2h, Z) + O(d−N) + |R̂(t)| (16)

for t ∈ T, where ω(2h, Z) is a modulus of continuity of Z w.r.t. 2 h (The modulus of continuity
of a function f : [a, b] −→ R w.r.t. h is ω(h, f ) = max{| f (x)− f (y)| | |x− y| < h, x, y ∈
[a, b]}).

(b) E(R(t)) = E(R̂(t)) = 0 and Var(R̂(t)) ≤ Var(R(t)) < σ.

The details for the proof of this theorem can be found in [20,27–29]. The theorem
holds both for the F0- as well as for F1-transform. It follows from this theorem that the
F-transform filters out frequencies higher than a given threshold and reduces the noise
R. In [27], it was even proved that if the correlation function of R has a quick decay, then
limh→∞ Var(R̂(t)) = 0.

Remark 2. The fuzzy partition A is not constructed over the discrete set of natural numbers
T = {1, . . . , p} but over the interval of real numbers [0, p].

It follows from Theorem 3 that X̂ ≈ Z; we can estimate the real time series Z with high
fidelity. First, we set a proper fuzzy partition and and compute the F0-transform of X(t):

F0[X] = (F0
0 [X](t), . . . , F0

n [X](t)).

Then, we compute the inverse X̂, which approximates the real time series Z. According
to [22], we should set

h = q
2π

λr−s
(17)

for some natural number q (in practice, it is sufficient to put q ∈ {1, 2}). The frequencies
λ1, . . . , λr can be found using the well known periodogram—see [25,26].
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Remark 3. The edge components F0[X], Fn[X] are distorted because only half of the corresponding
basic functions are used. This problem can be solved in two ways: either we confine only to the
complete components Fk[X] for k = 1, . . . , n− 1, or we artificially prolong T to the left and right
by h and extrapolate the corresponding values X(t−i) = X(ti) for i = 1, . . . , h, and similarly in
the right side of T.

2.3. Fuzzy Equality

Let 〈[0, 1],∨,∧,⊗,→, 0, 1〉 be an algebra of truth values where ∨ = max, ∧ = min,
a⊗ b = max{0, a + b− 1}, a → b = min{1, 1− a + b}, a, b ∈ [0, 1]. This algebra is called
Łukasiewicz standard algebra (Of course, there are also other algebras used as algebras of
truth values for fuzzy set theory and fuzzy logic. However, the Łukasiewicz algebra, has
a prominent position because of its good properties in many respects and, therefore, we
confine our theory to it only). It serves us as the algebra of truth values. The operations
with fuzzy sets are defined using the operations on it [30,31].

A binary fuzzy relation is a fuzzy set R : U × V −→ [0, 1]. If u ∈ U, v ∈ V, then we
often write the membership degree R(u, v) of the couple (u, v) in R as (uRv) ∈ [0, 1].

Definition 1. Let .
=: U ×U −→ [0, 1] be a binary fuzzy relation.

(i) It is reflexive if (u .
= u) = 1 for all u ∈ U.

(ii) It is symmetric if (u .
= v) = (v .

= u) for all u, v ∈ U.
(iii) It is transitive if (u .

= v)⊗ (v .
= w) ≤ (u .

= w) for all u, v, w ∈ U.
(iv) It is separated if for all u, v ∈ U

(u .
= v) = 1 iff u = v

(fuzzy equality in the degree 1 reduces to the classical equality).

Definition 2.

(i) A binary fuzzy relation .
= on U is a fuzzy symmetry if it is reflexive and transitive.

(ii) A fuzzy symmetry is a fuzzy equality if it is also transitive.

3. Similarity of Time Series

As already mentioned, there are many kinds of similarity indexes introduced. Most
of them are based on the distance between the values of time series (cf., e.g., [2,32–34]).
The problem is that all such indexes are necessarily distorted by random noise. Conse-
quently, the real shape of time series is hidden. Solution of these difficulties can be given
by the fuzzy transform.

Let us consider two time series X, Y with the same time domain T. Since the time
series values can fall within very different ranges, we first normalize both time series to
make their values comparable. The normalization will be done w.r.t. maximal values
X = max{|X(t)| | t ∈ T}, Y = max{|Y(t)| | t ∈ T}. Then, we put

XN =

{
X(t)

X

∣∣∣∣ t ∈ T
}

, (18)

YN =

{
Y(t)

Y

∣∣∣∣ t ∈ T
}

. (19)

Let us choose two numbers h0, h1 > 0, compute n0 = |T|
h0

and n1 = |T|
h1

and form two
h0, h1-uniform fuzzy partitions A, B of the time domain T.

Let us compute components of zero- and first-degree F-transforms of the time series (18)
and (19):
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F0[XN ] = (F0
1 [X

N ](t), . . . , F0
n0−1[X

N ](t)), F1[XN ] = (F1
1 [X

N ](t), . . . , F1
n1−1[X

N ](t)) (20)

F0[YN ] = (F0
1 [Y

N ](t), . . . , F0
n0−1[Y

N ](t)), F1[YN ] = (F1
1 [Y

N ](t), . . . , F1
n1−1[Y

N ](t)) (21)

where the zero-degree components are computed on the basis of the fuzzy partition A,
and the first-degree ones on the basis of B. Note that in the direct F-transforms above,
we omitted the first and the last components. For further processing, we need only the
coefficients β0

k, k = 1, . . . , n0 − 1, and β1
k, k = 1, . . . , n1 − 1 defined in (5) and (6).

Based on that, we form to each time series XN , YN , two new reduced time series,
namely a time series of values and that of tangents:

β0
X = {β0

X,k | k = 1, . . . , n0 − 1}, (22)

β1
X = {β1

X,k | k = 1, . . . , n1 − 1}, (23)

β0
Y = {β0

Y,k | k = 1, . . . , n0 − 1}, (24)

β1
Y = {β1

Y,k | k = 1, . . . , n1 − 1}. (25)

Hence, β0
X and β0

Y are time series of average values of the respective time series XN , YN

over the imprecisely specified areas Ak ∈ A, k = 1, . . . , n− 1, and β1
X and β1

Y are time
series of average values of tangents of the time series XN , YN over the imprecisely specified
areas Bk ∈ B, k = 1, . . . , n− 1.

Definition 3. Let X, Y be time series (14). Then the index of similarity of two time series is
the number

S(X, Y) = max

{
0, 1− κ0

n0 − 1

n0−1

∑
k=1
|β0

X,k − β0
Y,k|+

κ1

n1 − 1

n1−1

∑
k=1

|β1
X,k − β1

Y,k|
ϕ

}
(26)

where ϕ is a common normalization factor assuring that both |β1
X,k|, |β

1
Y,k| ≤ 1 for all

k = 1, . . . , n1 − 1 and κ0, κ1 are sensitivity constants.

The suggested similarity index thus considers not only distances between average
values of time series but also distances between average values of tangents in the same
areas. The constants κ0, κ1 increase or decrease sensitivity of values and slopes of the
compared time series. Clearly, if κ0 > 1 then S(X, Y) is more sensitive to differences
between the corresponding values of X, Y, while κ1 > 1 does the same for their slopes.

The normalization factor ϕ can be specified, e.g., as follows. Let X, Y, Z be time
series (14) and put

β1
X = max{|β1

X,k| | k = 1, . . . , n1 − 1},

β1
Y = max{|β1

Y,k| | k = 1, . . . , n1 − 1},

β1
Z = max{|β1

Z,k| | k = 1, . . . , n1 − 1}.

Then,
ϕ = max{β1

X , β1
Y} (27)

is a normalization factor common for X, Y and

ϕ = max{β1
X , β1

Y, β1
Z} (28)

is a normalization factor common for X, Y, Z.
The following is immediate.
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Lemma 3.
S(X, Y) ∈ [0, 1].

Theorem 4. Let X, Y be time series (14).

(a) The similarity index S(X, Y) is a separated fuzzy symmetry.
(b) If S(X, Y) 6= 0 then, the transitivity property S(X, Z)⊗ S(Z, Y) ≤ S(X, Y) holds for any

time series Z.

Proof. (a) If X = Y then, obviously, S(X, Y) = 1. The symmetry follows immediately from
the properties of absolute value.

(b) Let ϕ be a common normalization factor for X, Y, Z. After rewriting, we obtain

max

{
0, 1− κ0

n0 − 1

n0−1

∑
k=1
|β0

X,k − β0
Y,k|+

κ1

n1 − 1

n1−1

∑
k=1

|β1
X,k − β1

Y,k|
ϕ

+ 1− κ0

n0 − 1

n0−1

∑
k=1
|β0

Y,k − β0
Z,k|+

κ1

n1 − 1

n1−1

∑
k=1

|β1
Y,k − β1

Z,k|
ϕ

− 1

}
≤ 1− κ0

n0 − 1

n0−1

∑
k=1
|β0

X,k − β0
Z,k|+

κ1

n1 − 1

n1−1

∑
k=1

|β1
X,k − β1

Z,k|
ϕ

.

If the left-hand side is equal to 0, then the inequality is trivially fulfilled. By the assumption,
we have to verify that

n0−1

∑
k=1
|β0

X,k − β0
Z,k| ≤

n0−1

∑
k=1
|β0

X,k − β0
Y,k|+

n0−1

∑
k=1
|β0

Y,k − β0
Z,k|,

n1−1

∑
k=1

|β1
X,k − β1

Z,k|
ϕ

≤
n1−1

∑
k=1

|β1
X,k − β1

Y,k|
ϕ

+
n1−1

∑
k=1

|β1
Y,k − β1

Z,k|
ϕ

which holds using the triangular inequality and the properties of ordered groups.
Finally, let S(X, Y) = 1. Then, it follows from (26) that β0

X,k = β0
Y,k for all k =

1, . . . , n0 − 1, as well as β1
X,k = β1

Y,k for all k = 1, . . . , n1 − 1. Since all the fuzzy sets
A1, . . . , An0−1 as well as B1, . . . , Bn1−1 cover the whole time domain T, we conclude that
X = Y.

Proposition 1. Let X ≡ q1 and X ≡ q2 be two constant time series. Then,

S(X, Y) = 1.

Proof. It follows from (18) and (19) that XN = YN ≡ 1. Then, β0
X,k = β0

Y,k = 1 by
Theorem 1(d), and β1

X,k = β1
Y,k = 0 by the properties of tangent.

It follows from this proposition that if both time series X, Y are constant then they are
fully similar.

4. Demonstration

In this section, we will apply the similarity index (26) to real data. In all cases, we
used F0-transform with h = 3 and the sensitivity constant κ0 = 2.5, and F1-transform with
h = 5 and the sensitivity constant κ2 = 2. These parameters were estimated according to
the expert opinion based on practical experience. Setting h = 3 is determined so as to not
harm the real course of the time series too much, since longer h leads to greater smoothing.
Similarly, h = 5 is determined by the idea that the slope should be evaluated over a larger
area since otherwise, it can be non-convincing. The parameters κ1, κ2 are estimated by
testing the behavior of the index. The conditions for the setting of all four parameters are
still a topic of further investigation.
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For demonstration, we are inspired by a study [35]. In this paper, Junior et al. provide a
view of which indices are the strongest influencers between 83 international market indices.
Their results suggest that France and Germany were among the top index to send out the
information to other markets. Based on the correlation dependency, the Czech Republic
was among the top information receivers. Therefore, we chose these international stock
exchange indices with the Russian market as a sample for demonstration. The data contain
daily adjusting closing prices for 2016 ( Four international stock exchange indices, namely,
Prague (PX), Paris (FCHI), Frankfurt (GDAXI), and Moscow (MOEX), were obtained from
Yahoo finance). Several exciting events, such as the falling of oil prices and the Brexit
announcement and voting, heavily affected the stock market in 2016 and its interrelations.
Therefore, it is valuable to investigate the underlying relations. Figure 2 demonstrates the
daily closing price of the above-mentioned four markets. Due to different national holidays,
each market contains some missing values, which were omitted for similarity measurement.

Figure 2. Closing price of four stocks.

Using the suggested similarity index, we evaluate pairwise similarities between the
stocks and compare them with the known correlation coefficients based on rank correlations,
namely Spearman, Kendall and Hoeffing D. The results are summarized in Table 1.

Table 1. Comparison of the similarity index with the known statistical correlation coefficients.

X Prague Prague Prague B Prague Prague
Y Moscow Paris Frankfurt Frankfurt Moscow Prague

Distorted Inverted

S(X, Y) 0.77 0.9 0.84 0.93 0 0.34
ine Spearman 0.16 0.6 0.33 0.86 0.04 −1
Kendall 0.12 0.42 0.23 0.69 0.04 −1
Hoeffding D 0.01 0.11 0.03 0.36 −0.002 1

The results reveal several interesting relations. The most similar stock to Prague is the
Paris market, while Moscow has the lowest similarity. Another exciting relation is with
regard to the Frankfurt market. The pair (Paris–Frankfurt) has a higher similarity in com-
parison with (Prague–Frankfurt). These relations are also visible in Figure 2. In Figures 3–6,
we demonstrate the behavior of the normalized prices for the mentioned similarity indices.

To see whether the similarity index (26) reacts on very dissimilar time series, we
artificially distorted the Moscow market and also artificially inverted the Prague market’s
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price values. The comparison (Prague–Moscow distorted) and (Prague–Prague inverted) is
in Figures 7 and 8. As one expects, there is zero similarity between Prague and distorted
Moscow. However, the similarity between Prague and its inverted version remained non-
zero, which is caused mainly by the found similarities between their corresponding slopes.

Figure 3. Comparison of graphs of normalized prices for Prague and Moscow; S(Prague, Moscow) = 0.77.

Figure 4. Comparison of graphs of normalized prices for Prague and Paris; S(Prague, Paris) = 0.9.

Figure 5. Comparison of graphs of normalized prices for Frankfurt and Prague; S(Prague, Frankfurt) = 0.84.

Figure 6. Comparison of graphs of normalized prices for Frankfurt and Paris; S(Paris, Frankfurt) = 0.93.
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The rank correlation coefficients are a measure of a monotonic relationship. We chose
them because they are less sensitive to outliers. Hoeffding’s D correlation is a measure of
a non-linear and non-monotonous relationship. Note, that the sign of the Hoeffding’s D
coefficient has no interpretation.

If the Spearman (and Kendall) coefficient is close to 0 and the Hoeffding coefficient
is high, then the relationship is probably non-monotonic and non-linear. In our case,
this did not happen. According to the statistical tests, all the correlation coefficients are
non-zero (the p-values are practically zero) if the similarity index (26) is high. In the
case S(Prague, Moscow-distorted) = 0, the correlation coefficients are statistically zero.
However, when comparing (Prague–Prague inverted), the statistical tests show negative
dependence, while S(Prague, Prague artificial inverse) = 0.34. This is correct because the
correlation coefficients measure dependence, while (26) measures similarity. The slopes of
both time series have opposite signs and so, they decrease the value of the similarity (26).
However, when inspecting Figure 7, one can see similarity in values of both time series
and, therefore, the index still has non-zero value.

Figure 7. Comparison of graphs of Prague and its artificial inverse stock prices; S(Prague, Prague inverse) = 0.34.

Figure 8. Comparison of graphs of Prague and artificially distorted Moscow stock prices; S(Prague, Moscow-distorted) = 0.

5. Conclusions

In this paper, we developed a new method for measuring similarity between time
series. The method is based on the application of the fuzzy transform. The index compares
F0-transform and F1-transform components. While the former measures similarity between
time series values after the highest frequencies were removed and noise reduced, the former
measures similarity between slopes of time series in short local periods.

We demonstrated the application of our index to four real financial time series and two
artificial ones. Experimental results confirm its ability to measure the similarity between
time series.

Further work will focus on the extension of the method to time series of various
lengths. Another direction is to judge the evolution of the similarity throughout the years.
We also plan to extend this idea to measuring dependence between time series.
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28. Nguyen, L.; Holčapek, M. Suppression of High Frequencies in Time Series Using Fuzzy Transform of Higher Degree. In
Information Processing and Management of Uncertainty in Knowledge-Based Systems: 16th International Conference, IPMU 2016;
Carvalho, J., Lesot, M.J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; Volume 2, pp. 705–716.

29. Nguyen, L.; Novák, V. Filtering out high frequencies in time series using F-transform with respect to raised cosine generalized
uniform fuzzy partition. In Proceedings of the International Conference FUZZ-IEEE 2015, Istanbul, Turkey, 2–5 August 2015.

30. Gottwald, S. Fuzzy Sets and Fuzzy Logic. The Foundations of Application—From a Mathematical Point of View; Vieweg: Braun-
schweig/Wiesbaden and Teknea: Toulouse, France, 1993.
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