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Abstract: In this manuscript, we introduce the higher-order optimal derivative-free family of
Chebyshev–Halley’s iterative technique to solve the nonlinear equation having the multiple roots.
The designed scheme makes use of the weight function and one parameter α to achieve the fourth-
order of convergence. Initially, the convergence analysis is performed for particular values of multiple
roots. Afterward, it concludes in general. Moreover, the effectiveness of the presented methods are
certified on some applications of nonlinear equations and compared with the earlier derivative and
derivative-free schemes. The obtained results depict better performance than the existing methods.

Keywords: nonlinear equations; Kung–Traub conjecture; multiple roots; optimal iterative methods;
efficiency index

1. Introduction

Most scientific and engineering problems involve nonlinear equations. For the
evaluation of the roots of such nonlinear equations, analytical methods are almost non-
existent. This leads to the inspiration for the solution of nonlinear equations with iter-
ative techniques. The well-known iterative techniques for solving nonlinear equations
are Newton’s method and Chebyshev–Halley. The order of convergence of Newton’s
method is quadratic whereas Chebyshev–Halley methods have cubic order of conver-
gence. Later on, many higher-order variants of Newton’s method and Chebyshev–Halley
family were developed to solve nonlinear equations. In literature, plenty of iterative
techniques [1–9] involving first-order derivative are available to find the roots of nonlinear
equation g(x) = 0 with multiplicity m ≥ 2 that is satisfying the conditions g′(x) = g′′(x) =
· · · = gm−1(x) = 0 and gm(x) 6= 0. One of the established technique is modified Newton’s
method [10–12] which is defined as

xλ+1 = xλ −m
g(xλ)

g′(xλ)
. (1)

The order of convergence of modified Newton’s method is quadratic for m ≥ 1
and requires the computation of first-order derivative. Some of the other techniques like
Schröder iterative method [11], Chebyshev-Halley method [13] consists of the second-
order derivative of a function which increases the computation cost. On the other hand,
a few literature is investigated to the construction of derivative free methods to find the
multiple zeros of nonlinear equations. To reduce the derivative computation of a function,
authors have used the well known Traub-Steffensen method [11] for multiple roots which
is defined as:

xλ+1 = xλ −m
g(xλ)

g[µλ, xλ]
, (2)
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where µλ = xλ + γg(xλ), γ ∈ R and g[µλ, xλ] =
g(µλ)−g(xλ)

µλ−xλ
.

In 2015, Hueso et al. [14] introduced the fourth-order derivative free technique to
solve nonlinear equations with multiple roots. In this scheme first order derivative is
approximated with divided difference operator shown as:

g′(x) ≈ g[µλ, xλ], (3)

where µλ = xλ + g(xλ)
q, q ∈ R.

Presently, Kumar et al. [15] and Sharma et al. [16–18] developed derivative-free meth-
ods of second-order, fourth-order, and eighth-order convergence respectively. Moreover,
these methods are optimal as it satisfies the Kung–Traub conjecture [19] means the order of
convergence is 2n−1 where n represents the number of function evaluations per iteration.
Inspired from this, we have constructed an optimal derivative-free Chebyshev–Halley
family for multiple roots of a nonlinear equation. Our method consists of three functional
evaluations, one weighted function H(τ), and one parameter α to accomplish better com-
putational efficiency and fourth-order convergence. Further, with different choices of the
weighted function H(τ), and parameter α many methods can be generated.

The summary of the sections is as follows. In Section 2, the construction of the
higher-order method is elaborated. The convergence analysis of the designed method
is presented in Section 2. Some special cases of the proposed method are highlighted in
Section 3. In Section 4, numerical experiments are performed. Finally, Section 5 concludes
the presented work.

2. Construction of Higher-Order Scheme

Here, we construct an optimal fourth-order family of iterative method for multiple
zeros m ≥ 2 with simple and compact body structure, which is defined by

yλ = xλ −m
g(xλ)

g[µλ, xλ]
,

xλ+1 = xλ + m
g(xλ)

g[µλ, xλ]

(
1 +

ζ

1− 2αζ

)[
1
2

ζ − H(τ)

]
, α ∈ R,

(4)

where µλ = xλ + γg(xλ), γ ∈ R is any finite real number and m ≥ 2 is the known
multiplicity of the required zero. In addition, the function H : C → C is analytic in the

neighborhood of origin (0). Moroever, we considered τ =
(

g(yλ)
g(µλ)

) 1
m and ζ =

(
g(yλ)
g(xλ)

) 1
m

two multi-valued functions. Suppose their principal analytic branches (see [7,20]), ν

as a principal root given by τ = exp
[

1
m log

(
g(yλ)
g(µλ)

)]
, with log

(
g(yλ)
g(µλ)

)
= log

∣∣∣ g(yλ)
g(µλ)

∣∣∣ +
i arg

(
g(yλ)
g(µλ)

)
for −π < arg

(
g(yλ)
g(µλ)

)
≤ π. The choice of arg(z) for z ∈ C agrees with that of

log(z) to be employed later in numerical experiments of Section 4. We have an analogous

way ζ =
∣∣∣ g(yλ)

g(xλ)

∣∣∣ 1
m . exp

[
1
m arg

(
g(yλ)
g(xλ)

)]
= O(eλ).

In Theorem 1, we illustrate that the constructed Scheme (4) attains maximum fourth-
order of convergence for multiplicity m = 2 zeros and for all α, γ ∈ R, without adopting
any supplementary evaluation of function or its derivative.

Theorem 1. Suppose η is a solution of multiplicity m = 2 of function g. Consider that function
g : D ⊂ C → C is an analytic in D surrounding the required zero η. Then, the presented
Scheme (4) has fourth-order convergence, provided

H(0) = 1, H′(0) =
1
2

, H′′(0) = 4(1− α) (5)
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and satisfies the following error equation

eλ+1 =− (γg′′(η) + 2a1)

384

[
γ2(g′′(η))2

(
24α2 + 36α + θ − 42

)
+ 4γg

′′
(η)
(

12
(

2α2 + g′′(η)− 2
)
+ θ
)

a1

+ 4
(

3(8α2 − 4α− 7) + θ
)

a2
1 + 48a2

]
e4

λ + O(e5
λ),

where θ = H′′′(0) ∈ R.

Proof. Let eλ = xλ − η and ak = 2!
(2+k)!

g(2+k)(η)

g(2)(η)
, k = 1, 2, 3, 4 be the error in λ-th iteration

and asymptotic error constant numbers, respectively. We use the Taylor’s series expansions
for g(xλ) and g(µλ) around x = η with the assumption g(η) = g′(η) = 0 and g′′(η) 6= 0,
which are given by

g(xλ) =
g
′′
(η)

2!
e2

λ

(
1 + a1eλ + a2e2

λ + a3e3
λ + a4e4

λ + O(e5
λ)

)
(6)

and

g(µλ) =
g
′′
(η)

2!
e2

λ

[
1 +

(
γg
′′
(η) + a1

)
eλ +

1
4

{
γ2(g′′(η))2

+ 10γg
′′
(η)a1 + 4a2

}
e2

λ

+
1
4

{
5γ2(g′′(η))2a1 + 6γg

′′
(η)a2

1 + 12γg
′′
(η)a2 + 4a3

}
e3

λ

+
1
8

{
γ3(g′′(η))3a1 + 14γ2(g′′(η))2a2

1 + 16γ2(g′′(η))2a2 + 28γg
′′
(η)a1a2

+ 28γg
′′
(η)a3 + 8a4

}
e4

λ + O(e5
λ)

]
,

(7)

respectively.
We obtain the following expression by adopting (6) and (7) in the Scheme (4)

yλ − η =
1
4

(
γg
′′
(η) + 2a1

)
e2

λ −
1

16

[
γ2(g′′(η))2 − 8γg

′′
(η)a1 + 12a2

1 − 16a2

]
e3

λ

+
1
64

[
γ3(g′′(η))3 − 10a1

(
γ2(g′′(η))2

+ 16a2

)
− 20γg

′′
(η)a2

1 + 64γg
′′
(η)a2

+ 72a3
1 + 96a3

]
e4

λ + O(e5
λ).

(8)

We have the following g(yλ) by using Taylor series expansion and expression (8)

g(yλ) =
g
′′
(η)

2!
e2

λ

[
1

16

(
γg

′′
(η) + 2a1

)2
e2

λ −
1

32

(
γg

′′
(η) + 2a1

)
×
(

γ2(g′′ (η))2 − 8γg
′′
(η)a1 + 12a2

1 − 16a2

)
e3

λ +
1

256

{
3γ4(g′′ (η))4

− 4a1

(
7γ3(g′′ (η))3 − 48γg

′′
(η)a2 − 96a3

)
+ 96γ2(g′′ (η))2a2 − 80γg

′′
(η)a3

1

+ 32a2
1

(
γ2(g′′ (η))2 − 32a2

)
+ 192γg

′′
(η)a3 + 464a4

1 + 256a2
2

}
e4

λ + O(e5
λ)

]
.

(9)

From the Equations (6)–(9), we further deduce

ζ =

(
g(yλ)

g(xλ)

) 1
2
=

1
4

(
γg
′′
(η) + 2a1

)
eλ + ν1e2

λ + ν2e3
λ + O(e4

λ) (10)

and

τ =

(
g(yλ)

g(µλ)

) 1
2
=

1
4

(
γg
′′
(η) + 2a1

)
eλ + ν3e2

λ + ν4e3
λ + O(e4

λ), (11)
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where

ν1 =
−γ3(g′′ (η))3

+ 4γ2(g′′ (η))2a1 − 4γg
′′
(η)a2

1 + 16γg
′′
(η)a2 − 32a3

1 + 32a1a2

16
(
γg′′ (η) + 2a1

) ,

ν2 =
1

64

(
γ3(g′′ (η))3 − 6γ2(g′′ (η))2a1 − 22γg

′′
(η)a2

1 + 56γg
′′
(η)a2 + 116a3

1 − 208a1a2 + 96a3

)
,

ν3 =
−3γ3(g′′ (η))3 − 4γ2(g′′ (η))2a1 − 12γg

′′
(η)a2

1 + 16γg
′′
(η)a2 − 32a3

1 + 32a1a2

16
(
γg′′ (η) + 2a1

) ,

ν4 =
1

64

(
7γ3(g′′ (η))3 − 22γ2(g′′ (η))2a1 − 14γg

′′
(η)a2

1 + 24γg
′′
(η)a2 + 116a3

1 − 208a1a2 + 96a3

)
.

The expression (11) demonstrates that the τ is of order one (τ = O(eλ)). Then, we can
expand the weight function H(τ) in the neighborhood of origin in the following way:

H(τ) = H(0) + H′(0)τ +
1
2!

H′′(0)τ2 +
1
3!

H′′′(0)τ3. (12)

We have the following expression by inserting Equations (6)–(12) in the Scheme (4)

eλ+1 =
(

1− H(0)
)

eλ +
3

∑
i=1

Ωiei+1
λ + O(e5

λ), (13)

where Ωi = Ωi(g
′′
(η), α, γ, a1, a2, a3, a4, H(0), H′(0), H′′(0), H′′′(0)). For Example, Ω1 =

− 1
8 (2H′(0)− 1)

(
γg
′′
(η) + 2a1

)
, etc.

From the expression (13), we deduce that the Scheme (4) reaches at least second-order
convergence, if

H(0) = 0. (14)

Adopting the expression (14) and Ω1 = 0, we obtain

− 1
8
(
2H′(0)− 1

)(
γg
′′
(η) + 2a1

)
= 0, (15)

which further gives

H′(0) =
1
2

. (16)

By inserting expressions (14) and (16) in Ω2 = 0, we have

− 1
32

(
4α + H′′(0)− 4

)(
γg
′′
(η) + 2a1

)2
= 0, (17)

which further leads us to
H′′(0) = 4(1− α). (18)

Next, by inserting (14), (16) and (18) in (13), we get

eλ+1 =− (γg′′(η) + 2a1)

384

[
γ2(g′′(η))2

(
24α2 + 36α + θ − 42

)
+ 4γg

′′
(η)
(

12
(

2α2 + g′′(η)− 2
)
+ θ
)

a1

+ 4
(

3(8α2 − 4α− 7) + θ
)

a2
1 + 48a2

]
e4

λ + O(e5
λ),

(19)

where θ = H′′′(0) ∈ R. Hence, the Scheme (4) has fourth-order convergence for m = 2.

Theorem 2. Adopting the same hypotheses of Theorem 1, the scheme given by (4) is of fourth-order
convergence for m = 3. It satisfies the following error equation

eλ+1 = − b1

162

[
(24α2 − 12α + θ − 24)b2

1 +
9
2

γg
′′′
(η) + 18b2

]
e4

λ + O(e5
λ),
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where bj =
3!

(3+j)!
g(3+j)(η)

g(3)(η)
, j = 1, 2, 3, 4.

Proof. We use the Taylor’s series expansions for g(xλ) and g(µλ) around x = η with the
assumption g(η) = g′(η) = g′′(η) = 0 and g′′′(η) 6= 0, which are defined as follow:

g(xλ) =
g
′′′
(η)

3!
e3

λ

(
1 + b1eλ + b2e2

λ + b3e3
λ + b4e4

λ + O(e5
λ)

)
(20)

and

g(µλ) =
g
′′′
(η)

3!
e3

λ

[
1 + b1eλ +

1
2

(
γg
′′′
(η) + 2b2

)
e2

λ +

(
7
6

γg
′′′
(η)b1 + b3

)
e3

λ

+
1

72

(
γ2(g′′′(η))2

+ 8γg
′′′
(η)T2

1 + 16γg
′′′
(η)T2 + 12T4

)
e4

λ + O(e5
λ)

]
.

(21)

Adopting expressions (20) and (21) in the Scheme (4), we get

yλ − η =
b1

3
e2

λ +
1

18

(
3γg

′′′
(η)− 8b2

1 + 12b2

)
e3

λ +
{1

9
b1

(
2γg

′′′
(η)− 13b2

)
+

16b3
1

27
+ b3

}
e4

λ + O(e5
λ).

(22)

We have the following g(yλ) by using the Taylor series expansion and expression (22)

g(yλ) =
g
′′′
(η)

3!
e3

λ

[
b3

1
27

e3
λ +

1
54

b2
1

(
3γg

′′′
(η)− 8b2

1 + 12b2

)
e4

λ + O(e5
λ)

]
. (23)

The expressions (20), (21) and (23), leads us to

ζ =

(
g(yλ)

g(xλ)

) 1
3
=

b1

3
eλ +

1
18b2

1

(
3γg

′′′
(η)b2

1 − 10b4
1 + 12b2b2

1

)
e2

λ +
1
54

(
9γg

′′′
(η)b1

+ 46b3
1 − 96b2b1 + 54b3

)
e3

λ + O(e4
λ)

(24)

and

τ =

(
g(yλ)

g(µλ)

) 1
3
=

b1

3
eλ +

1
18b2

1

(
3γg

′′′
(η)b2

1 − 10b4
1 + 12b2b2

1

)
e2

λ

+
1

27

(
3γg

′′′
(η)b1 + 23b3

1 − 48b2b1

+ 27b3

)
e3

λ + O(e4
λ).

(25)

Clearly, the expression (25) is of order one (τ = O(eλ)). Then, we have

H(τ) = H(0) + H′(0)τ +
1
2!

H′′(0)τ2 +
1
3!

H′′′(0)τ3. (26)

Adopting (20)–(26) in the Scheme (4), we obtain

eλ+1 =
(

1− H(0)
)

eλ +
3

∑
i=1

Γiei+1
λ + O(e5

λ), (27)

where Γi = Γi(g
′′′
(η), α, γ, b1, b2, b3, b4, H(0), H′(0), H′′(0), H′′′(0)) i.e., Γ1 = 1

6

(
1− 2H′(0)

)
b1, etc.
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From the expression (27), we deduce that the Scheme (4) attains minimum second-
order convergence, if

H(0) = 1. (28)

By using expression (28) and Γ1 = 0, we get

1
6
(1− 2H′(0))b1 = 0, (29)

which further leads us to
H′(0) =

1
2

. (30)

Adopting the expressions (28) and (30) in Γ2 = 0, we obtain

− 1
18

(
4α + H′′(0)− 4

)
b2

1 = 0, (31)

that further yields
H′′(0) = 4(1− α). (32)

Next, by using (28), (30) and (32) in (27), we yields

eλ+1 = − b1

162

[
(24α2 − 12α + θ − 24)b2

1 +
9
2

γg
′′′
(η) + 18b2

]
e4

λ + O(e5
λ). (33)

Hence, the Scheme (4) has fourth-order convergence for m = 3.

Error for the General Form of the Scheme (4)

Theorem 3. Adopting the same hypotheses of Theorem 1, the scheme given by (4) is of fourth-order
convergence for m ≥ 4. It converges to the following error equation

eλ+1 = − c1

6m3

[(
24α2 − 12α + θ − (3m + 15)

)
c2

1 + 6mc2

]
e4

λ + O(e5
λ).

Proof. Let eλ = xλ − η and ck =
m!

(m+k)!
g(m+k)(η)

g(m)(η)
, k = 1, 2, 3, 4 be the errors in λth iteration

and asymptotic error constant numbers, respectively. We use the Taylor’s series expansions
for the functions g(xλ) and g(µλ) around x = η, which are given by respectively

g(xλ) =
g(m)(η)

m!
em

λ

(
1 + c1eλ + c2e2

λ + c3e3
λ + c4e4

λ + O(e5
λ)

)
(34)

and

g(µλ) =
gm(η)

m!
em

λ

[
1 +

3

∑
i=1

∆iei+1
λ + O(e5

λ)

]
, (35)

with the assumption g(η) = g′(η) = g(m−1)(η) = 0 and g(m)(η) 6= 0 and
∆i = ∆i(m, g(m)(η), γ, c1, c2, c3, c4). For Example, ∆1 = c1, ∆2 = c2 and

∆3 =


g(4)(η)

6

(
γg(4)(η) + 6c3

)
, m = 4

c3, m ≥ 5

, etc.

We obtain the following expression by adopting (34) and (35) in the Scheme (4)

eyλ
= yλ − η =

c1

m
e2

λ +
1

m2

(
2mc2 − (1 + m)c2

1

)
e3

λ +
1

m3

(
3m2c3

+ (m + 1)2c3
1 −m(3m + 4)c2c1

)
e4

λ + O(e5
λ).

(36)
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We have the following g(yλ) by using expression (36) and Taylor series expansion

g(yλ) =
g(m)(η)

m!
em

yλ

[
1 + c1eyλ

+ c2e2
yλ

+ c3e3
yλ

+ c4e4
yλ

+ O(e5
λ)

]
. (37)

From the expressions (34), (35) and (37), we further deduce

ζ =

(
g(yλ)

g(xλ)

) 1
m
=

c1

m
eλ +

(
2
m

c2 −
(m + 2)

m2 c2
1

)
e2

λ

+
1

2m3

[
(2m2 + 7m + 7)c3

1 − 2m(3m + 7)c1c2 + 6m2c3

]
e3

λ

+
1

3m4

[
−
(

11m2

2
+

33m
2

+ 14
)

c4
1 − 12m2c3c1 − 6m2c2

2

+ 3m(6m + 11)c2c2
1

]
e4

λ + O(e5
λ)

(38)

and

τ =

(
g(yλ)

g(µλ)

) 1
m
=

c1

m
eλ +

1
m2

(
2mc2 − (m + 2)c2

1

)
e2

λ +
1

2m3

(
(2m2 + 7m + 7)c3

1

− 2m(3m + 7)c1c2 + 6m2c3

)
e3

λ + O(e4
λ).

(39)

Clearly the expression (39), is of order one (τ = O(eλ)), that leads us to

H(τ) = H(0) + H′(0)τ +
1
2!

H′′(0)τ2 +
1
3!

H′′′(0)τ3. (40)

We have by inserting (34)–(40) in the Scheme (4)

eλ+1 =
(

1− H(0)
)

eλ +
3

∑
i=1

φiei+1
λ + O(e5

λ), (41)

where φi = φi(m, g(m)(η), γ, α, c1, c2, c3, c4, H(0), H′(0), H′′(0), H′′′(0)) i.e., φ1 = 1
2m

(
1−

2H′(0)
)

, etc.
From the expression (41), we deduce that the Scheme (4) attains at least second-order

convergence, if
H(0) = 1. (42)

Adopting the expression (42) and φ1 = 0, we get

1
2m

(
1− 2H′(0)

)
= 0, (43)

that further gives

H′(0) =
1
2

. (44)

We obtain the following expression by adopting (42) and (44) in φ2 = 0

− 1
2m2

(
4α + H′′(0)− 4

)
c2

1 = 0, (45)

which further provides
H′′(0) = 4(1− α). (46)
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Finally, the following asymptotic error constant term is obtained if we insert (42), (44)
and (46) in (41)

eλ+1 = − c1

6m3

[(
24α2 − 12α + θ − (3m + 15)

)
c2

1 + 6mc2

]
e4

λ + O(e5
λ), (47)

where θ = H′′′(0) ∈ R. The expression (47) demonstrates maximum fourth-order conver-
gence for all α, θ, γ ∈ R with three different evaluations of function. Hence, our Scheme (4)
has an optimal convergence order as stated in the conjecture given by Kung–Traub.

3. Some Special Cases of Proposed Scheme

Here, some of the special cases are generated from proposed scheme, (4) by using
different weight functions H(τ) that satisfies the conditions of Theorems 1–3.

1. Consider H(τ) = 1 + τ
2 + 2(1− α)τ2, then we have following new method denoted

as PM1

yλ = xλ −m
g(xλ)

g[µλ, xλ]
,

xλ+1 = xλ + m
g(xλ)

g[µλ, xλ]

(
1 +

ζ

1− 2αζ

)[
1
2

ζ −
(

1 +
τ

2
+ 2(1− α)τ2

)]
, α ∈ R.

(48)

2. Consider H(τ) =
1+ τ

2
1+ 1

2 (−4+4α)τ2 , then the new method denoted as PM2 is obtained

as follows:

yλ = xλ −m
g(xλ)

g[µλ, xλ]
,

xλ+1 = xλ + m
g(xλ)

g[µλ, xλ]

(
1 +

ζ

1− 2αζ

)[
1
2

ζ −
( 1 + τ

2

1 + 1
2 (−4 + 4α)τ2

)]
, α ∈ R.

(49)

3. Consider H(τ) =
1+ 3

2 τ+ 1
2 (5−4α)τ2+τ3

1+τ , then we have following new method denoted
as PM3

yλ = xλ −m
g(xλ)

g[µλ, xλ]
,

xλ+1 = xλ + m
g(xλ)

g[µλ, xλ]

(
1 +

ζ

1− 2αζ

)[
1
2

ζ −
(1 + 3

2 τ + 1
2 (5− 4α)τ2 + τ3

1 + τ

)]
, α ∈ R.

(50)

Similarly, many more methods can be created by adopting the following H(τ) weight
functions.

4. H(τ) =
(

1
2 + eτ

2 + (7−8α)τ2

4

)
.

5. H(τ) = cos(τ) + τ2

2 + 2(1− α)τ2 + τ
2 .

4. Numerical Illustration

In this section, derivative-free proposed Schemes (48)–(50) are verified on some nu-
merical problems. Here, we have made two types of comparisons. Firstly, the results are
compared with other existing derivative methods developed by Soleymani et al. [21], and
Fiza et al. [22], respectively. Secondly, we compare them with derivative free techniques
presented by Hueso et al. [14], Sharma et al. [16], and Sharma et al. [17] respectively. In
Hueso et al. technique, we have used the parameter q = 1 if m ≥ 4, otherwise q = 2. All
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the above mentioned existing schemes are listed below:
Soleymani et al. Scheme(SLM):

yλ =xλ −
2m

m + 2
g(xλ)

g′(xλ)
,

xλ+1 =xλ −
g(xλ)g′(yλ)

s1(g′(yλ))
2 + s2g′(xλ)g′(yλ) + s3(g′(xλ))

2 ,

where s1 = 1
16 m3−m(m + 2)m, s2 =

8−m(m+2)(m2−2)
8m , s3 = 1

16 (m− 2)mm−1(m + 2)3−m.
Fiza et al. Scheme(FM1):

yλ =xλ −m
g(xλ)

g′(xλ)
,

xλ+1 =yλ −m
uλ(4uλ + 1)
(uλ + 1)2

g(xλ)

g′(xλ)
.

Fiza et al. Scheme(FM2):

yλ =xλ −m
2g(xλ)

2g′(xλ) + mg(xλ)
,

xλ+1 =xλ −muλ

(
1 + 2uλ +

11
2

u2
λ

)
g(xλ)

g′(xλ) + mg(xλ)
,

where

uλ =

(
g(yλ)

g(xλ)

)
1
m .

Hueso et al. Scheme(HMD):

yλ =xλ −
2m

m + 2
g(xλ)

g[xλ, µλ]
,

xλ+1 =xλ −
(

s1 + s2H(xλ, yλ) + s3H(yλ, xλ) + s4(H(xλ, yλ)
2
) g(xλ)

g[xλ, µλ]
,

where
µλ =xλ + (g(xλ))

q, q ∈ R,

H(xλ, yλ) =
g[xλ, yλ]

g[xλ, µλ]
,

s1 =− 1
4

m
(

m3 + 3m2 + 2m− 4
)

s2 =
1
8

m
(

m
m + 2

)m
(m + 2)3

s3 =
1
8

m4
(

m
m + 2

)−m

s4 =0.

Sharma et al. Scheme(SM1):

yλ =xλ −m
g(xλ)

g[xλ, µλ]
,

xλ+1 =yλ −
(m

2
hλ(1 + 3hλ)

)(
1 +

1
vλ

)
g(xλ)

g[xλ, µλ]
,
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where
µλ =xλ + γg(xλ), γ ∈ R,

uλ =

(
g(yλ)

g(xλ)

)
1
m ,

vλ =

(
g(µλ)

g(xλ)

)
1
m ,

hλ =
uλ

1 + uλ
.

Sharma et al. Scheme(SM2):

yλ =xλ −m
g(xλ)

g[xλ, µλ]
,

xλ+1 =xλ − hλ
g(xλ)

g[xλ, µλ]
,

where
µλ =xλ + γg(xλ), γ ∈ R,

rλ =

(
g(yλ)

g(xλ)

)
1
m ,

sλ =

(
g(yλ)

g(µλ)

)
1
m ,

hλ =rλ + m(rλ)
2 + (m− 1)sλ + mrλsλ.

In all the numerical problems, the initial parameter γ = −0.01, is considered. The
numerical problems have been performed on software Mathematica 10 using 5000 multiple
precision digits of mantissa with stopping criterion |xλ − xλ−1|+ |g(xλ)| ≤ 100. To check
the better performance of proposed method, we have displayed the errors between two
consecutive iterations eλ = |xλ − xλ−1|, absolute residual error |g(xλ)| at (λ)th iteration,
approximate computational order of convergence (ACOC) denoted as ρ, and the number
of iterations of each method that satisfies the stopping criterion in the Tables 1–4. The
following formula is used to evaluate the approximate computational order of conver-
gence (ACOC)

ρ =
ln |xλ+1−xλ |
|xλ−xλ−1|

ln |xλ−xλ−1|
|xλ−1−xλ−2|

, for each λ = 2, 3, . . . (51)

Further, the iterative procedure is stopped after three iterations and each problem
is tested on different initial values. Notice that the meaning of b(±a) is b× 10±a in all
the tables.

Example 1. Consider the Van der waal equation of ideal gas [23]

(P +
an2

V2 )(V − nb) = nRT

which explains the nature of real gas by taking parameters a, b of a particular gas. Other parameters
n, R, and T are obtained with parameters a, and b. So, we have the following nonlinear equations
in terms of volume of gas(V) which is represented as x by

g1(x) = x3 − 5.22x2 + 9.0825x− 5.2675.

The desired root is η = 1.75 of multiplicity m = 3. Table 1 depicts the performance of
different iterative schemes with initial guess x0 = 1.9. The number of iterations utilized by different
methods are shown in Table 5. The proposed methods PM1, PM2 and PM3 converges to root much
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faster than the derivative methods SLM, FM1 and FM2 and derivative-free methods HMD, SM1
and SM2.

Table 1. Numerical results of Example 1.

Schemes |e2| |e3| |e4| |g(e4)| ρ

SLM 1.4(−2) 1.4(−4) 5.5(−12) 4.6(−84) 4.000

FM1 1.9(−2) 5.7(−4) 4.6(−9) 1.4(−59) 4.000

FM2 1.4(−2) 7.1(−5) 1.2(−14) 7.3(−55) 4.000

HMD 1.5(−2) 1.8(−4) 1.8(−11) 1.1(−79) 4.000

SM1 1.9(−2) 5.7(−4) 4.6(−9) 1.3(−59) 4.000

SM2 1.6(−2) 2.81(−4) 1.5(−10) 5.0(−72) 4.000

PM1(α = 0) 1.5(−2) 1.8(−4) 1.5(−11) 1.9(−80) 4.000
α = 1

2 1.5(−2) 1.6(−4) 1.0(−11) 8.8(−82) 4.000
α = 1 1.2(−2) 4.9(−5) 4.1(−14) 1.2(−101) 4.000

PM2(α = 0) 1.3(−2) 9.9(−5) 1.1(−12) 7.5(−90) 4.000
α = 1

2 1.4(−2) 1.3(−4) 3.5(−12) 1.4(−85) 4.000
α = 1 1.2(−2) 4.9(−5) 4.1(−14) 1.2(−101) 4.000

PM3(α = 0) 1.6(−2) 2.2(−4) 5.1(−11) 5.9(−76) 4.000
α = 1

2 1.5(−2) 1.6(−4) 1.0(−11) 8.8(−82) 4.000
α = 1 1.1(−2) 2.9(−5) 1.6(−15) 5.4(−114) 4.000

Example 2. Consider the planck’s radiation equation that determines the spectral density of
electromagnetic radiations released by a black-body at a given temperature, and at thermal equilib-
rium [24] as

G(y) =
8πchy−5

e
ch

ykT − 1
,

where T, y, k, h, and c denotes the absolute temperature of the black-body, wavelength of radiation,
Boltzmann constant, Plank’s constant, and speed of light in the medium (vacuum), respectively. To
evaluate the wavelength y which results to the maximum energy density G(y), set G′(y) = 0. We
obtained the following equation:

( ch
ykT )e

ch
ykT

e
ch

ykT − 1
= 5.

Further, the nonlinear equation is formulated by setting x = ch
ykT as follows:

g2(x) =
(

e−x − 1 +
x
5

)m
.

The exact root is η = 4.96511423174427630369 of multiplicity m = 4 and with this root one
can easily find the wavelength y form the relation x = ch

ykT . Planck’s problem was tested with initial
guess x0 = 5.5 and results are demonstrated in Table 2. Table 5 represents the comparison analysis
of iterations vs schemes for this Example.



Mathematics 2021, 9, 546 12 of 19

Table 2. Numerical results of Example 2.

Schemes |e2| |e3| |e4| |g(e4)| ρ

SLM 4.9(−5) 5.7(−21) 1.1(−84) 2.1(−1359) 4.000

FM1 6.3(−6) 2.7(−25) 9.3(−103) 3.4(−1651) 4.000

FM2 9.6(−3) 9.5(−5) 3.9(−17) 8.1(−135) 6.022

HMD 1.1(−3) 1.7(−14) 1.1(−57) 2.3(−922) 4.000

SM1 6.4(−6) 2.7(−25) 9.4(−103) 3.9(−1651) 4.000

SM2 5.6(−6) 1.3(−25) 4.4(−104) 9.3(−1673) 4.000

PM1(α = 0) 5.3(−6) 9.7(−26) 1.1(−104) 2.0(−1682) 4.000
α = 1

2 5.3(−6) 9.7(−26) 1.1(−104) 1.8(−1682) 4.000
α = 1 4.9(−6) 6.8(−26) 2.5(−105) 4.7(−1693) 4.000

PM2(α = 0) 5.1(−6) 8.1(−26) 5.3(−105) 1.1(−1687) 4.000
α = 1

2 5.2(−6) 8.9(−26) 7.7(−105) 4.8(−1685) 4.000
α = 1 4.9(−6) 6.8(−26) 2.5(−105) 4.7(−1693) 4.000

PM3(α = 0) 5.4(−6) 1.1(−25) 2.2(−104) 1.7(−1677) 4.000
α = 1

2 5.3(−6) 9.7(−26) 1.1(−104) 1.8(−1682) 4.000
α = 1 4.8(−6) 5.7(−26) 1.1(−105) 1.4(−1698) 4.000

Example 3. Finding the eigenvalues of a large matrix whose order is greater than 4, we need to
solve its characteristic equation. The determination of roots of such higher-order characteristic
equations is a difficult task if we apply the linear algebra approach. So, one of the best ways is to use
numerical techniques. Now, consider the following square matrix of order 9:

A =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


,

whose characteristic equation is modeled into nonlinear equation as 6

g3(x) = x9− 29x8 + 349x7− 2261x6 + 8455x5− 17663x4 + 15927x3 + 6993x2− 24732x + 12960.

The root of this equation is η = 3 with multiplicity m = 4. Table 3 depicts the better
performance of proposed schemes in comparison of existing techniques by taking an initial guess
x0 = 2.8. The total number of iterations required to converge the roots are shown in Table 5.
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Table 3. Numerical results of Example 3.

Schemes |e2| |e3| |e4| |g(e4)| ρ

SLM 1.3(−5) 4.4(−17) 6.5(−67) 6.4(−1061) 4.000

FM1 9.9(−5) 1.7(−17) 1.4(−68) 9.4(−1088) 4.000

FM2 3.4(−2) 6.9(−8) 2.5(−15) 3.4(−237) 1.330

HMD 5.1(−2) 8.7(−3) 3.9(−6) 6.5(−74) 4.000

SM1 7.7(−5) 6.2(−18) 2.6(−70) 4.2(−1115) 4.000

SM2 6.2(−5) 1.6(−18) 7.8(−73) 2.1(−1156) 4.000

PM1(α = 0) 6.5(−5) 1.4(−18) 3.4(−73) 1.3(−1162) 4.000
α = 1

2 6.6(−5) 1.5(−18) 4.6(−73) 1.2(−1160) 4.000
α = 1 6.4(−5) 9.1(−19) 3.8(−74) 1.2(−1178) 4.000

PM2(α = 0) 6.3(−5) 1.1(−18) 9.1(−74) 3.9(−1172) 4.000
α = 1

2 6.5(−5) 1.3(−18) 2.4(−73) 3.5(−1165) 4.000
α = 1 6.4(−5) 9.1(−19) 3.8(−74) 1.2(−1178) 4.000

PM3(α = 0) 6.6(−5) 1.8(−18) 1.1(−72) 1.9(−1154) 4.000
α = 1

2 6.6(−5) 1.5(−18) 4.6(−73) 1.2(−1160) 4.000
α = 1 6.3(−5) 6.2(−19) 6.2(−75) 1.1(−1191) 4.000

Example 4. Consider another standard academic problem as follows:

g4(x) =

(
tan−1

(√
5

2

)
− tan−1

(√
x2 − 1

)
+
√

6

(
tan−1

(√
x2 − 1

6

)
− tan−1

(
1
2

√
5
6

))
− 11

63

)4

,

which has root η = 1.8411027704926161 of multiplicity 4. The results are obtained on initial
guess x0 = 1.5 and shown in Table 4. Table 5 shows the iteration comparison for this standard
nonlinear equation.

Table 4. Numerical results of Example 4.

Schemes |e2| |e3| |e4| |g(e4)| ρ

SLM 1.1(−3) 1.1(−14) 1.2(−58) 3.2(−917) 4.000

FM1 2.7(−5) 1.0(−20) 2.3(−82) 8.0(−1315) 4.000

FM2 2.3(−1) 3.7(−4) 1.1(−7) 5.5(−116) 1.328

HMD 9.3(−3) 4.1(−9) 1.6(−34) 1.4(−543) 4.000

SM1 2.7(−5) 1.1(−20) 2.7(−82) 6.3(−1314) 4.000

SM2 2.7(−5) 7.4(−21) 4.4(−83) 4.7(−1327) 4.000

PM1(α = 0) 2.7(−5) 6.1(−21) 1.7(−83) 6.4(−1334) 4.000
α = 1

2 2.7(−5) 6.1(−21) 1.7(−83) 6.4(−1334) 4.000
α = 1 2.7(−5) 4.9(−21) 5.5(−84) 3.2(−1342) 4.000

PM2(α = 0) 2.7(−5) 5.5(−21) 9.9(−84) 7.6(−1338) 4.000
α = 1

2 2.7(−5) 5.8(−21) 1.3(−83) 7.8(−1336) 4.000
α = 1 2.7(−5) 4.9(−21) 5.5(−84) 3.2(−1342) 4.000

PM3(α = 0) 2.7(−5) 6.8(−21) 2.8(−83) 2.3(−1330) 4.000
α = 1

2 2.7(−5) 6.1(−21) 1.7(−83) 6.4(−1334) 4.000
α = 1 2.7(−5) 4.3(−21) 2.8(−84) 3.7(−1347) 4.000
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Table 5. Iterations comparison of different schemes.

Schemes Example 1 Example 2 Example 3 Example 4

SLM 6 5 5 5

FM1 6 4 5 5

FM2 6 6 6 7

HMD 6 5 7 5

SM1 6 4 5 5

SM2 6 4 5 5

PM1(α = 0) 6 4 5 5
α = 1

2 6 4 5 5
α = 1 6 4 5 5

PM1(α = 0) 6 4 5 5
α = 1

2 6 4 5 5
α = 1 6 4 5 6

PM1(α = 0) 6 4 5 5
α = 1

2 6 4 5 5
α = 1 6 4 5 5

It seems that the number of iterations is equal as compared with earlier methods in
Table 5 for each example. Tables 1–4 demonstrates the less residual functional error of
the constructed methods in the comparison of existing schemes with the same number of
iterations. Moreover, the order of convergence in each numerical except Example 1 is not
attained by FM2 method, so it is denoted as −.

5. Dynamical Planes of (48) and (49)

In this section, we will show some dynamical planes, as it appears in different studies
such as [25–30], associated with the families (48) and (49), but applied to the polynomial

p(z) = (z− 1)2(z + 1)

with a double root z = 1 and a simple one z = −1 for different values of α and γ.
We paint in red and blue the convergence after 100 iteration to the roots of the polyno-

mial with a tolerance of 10−3 in another case the point is painted in black.
We see in Figures 1 and 2 the dynamical behavior of Method (48) for different values

of α and γ.
As a consequence, it is clear that depending on the values of α and γ the convergence

to the simple root can be lost but the convergence to the double one is not lost with
family (48).

We see in Figures 3 and 4 the dynamical behavior of Method (48) for different values
of α and γ.
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(a) Method (48) with α = 1, γ = 0.1
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(b) Method (48) with α = 0.1, γ = 0.5
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(c) Method (48) with α = 1, γ = 0.5

Figure 1. Basins of attraction associated to the method (48) applied to polynomial p(z) = (z− 1)2(z +
1) with different values for tolerance.
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(a) Method (48) with α = 0.1, γ = 0.1
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(b) Method (48) with α = 1, γ = 0.01

Figure 2. Cont.
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(c) Method (48) with α = 1, γ = 1

Figure 2. Basins of attraction associated to the method (48) applied to polynomial p(z) = (z− 1)2(z +
1) with different values for tolerance.
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(a) Method (49) with α = 1, γ = 0.1
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(b) Method (49) with α = 0.1, γ = 0.5
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(c) Method (49) with α = 1, γ = 0.5

Figure 3. Basins of attraction associated to the method (49) applied to polynomial p(z) = (z− 1)2(z +
1) with different values for tolerance.
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(a) Method (49) with α = 1, γ = 1
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(b) Method (49) with α = 2, γ = 0.1
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(c) Method (49) with α = 2, γ = 0.5

Figure 4. Basins of attraction associated to the method (49) applied to polynomial p(z) = (z− 1)2(z +
1) with different values for tolerance.

Consequently, from Figures 3 and 4, it is clear that depending on the values of α and γ
the convergence to the simple root can be lost but the convergence to the double one is not
lost with family (49) and also for α = 0.1 and γ = 0.5 each point of the plane converge to
one of the roots.

6. Conclusions

The higher-order optimal derivative -free family of Chebyshev-Halley’s iterative
method have been introduced to solve the nonlinear equations of multiple roots. The
fourth-order convergence method has been constructed with one parameter α and one
weight function. The convergence of proposed techniques is analyzed. To verify the
theoretical efficiency of the suggested method some numerical illustrations are performed
and obtained results represent the better results vs earlier methods. Finally, dynamical
planes of proposed methods are discussed which shows better stability.
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