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Abstract: The Pell numbers, named after the English diplomat and mathematician John Pell, are
studied by many authors. At this work, by inspiring the definition harmonic numbers, we define
harmonic Pell numbers. Moreover, we construct one type of symmetric matrix family whose elements
are harmonic Pell numbers and its Hadamard exponential matrix. We investigate some linear
algebraic properties and obtain inequalities by using matrix norms. Furthermore, some summation
identities for harmonic Pell numbers are obtained. Finally, we give a MATLAB-R2016a code which
writes the matrix with harmonic Pell entries and calculates some norms and bounds for the Hadamard
exponential matrix.

Keywords: harmonic pell number; spectral norm; hadamard inverse; permanent; determinant

1. Introduction

The Pell numbers [1] which are defined by the recurrence relation, for n ≥ 0:

Pn+2 = 2Pn+1 + Pn

with P0 = 0, P1 = 1, provide the mathematical community with their magnificent beauty,
ubiquity and applicability, offering great opportunities to experiment, explore and solve
problems, and their delightful applications appear widely in the literature. In [2], the
author considers a k-circulant matrix whose first row is (P1, P2, ..., Pn), where Pn is the
nth Pell number, and obtain the formulae for the eigenvalues of such matrix. In [3], the
authors introduce a new type of matrix called circulant-like matrix whose entries are
written as functions of Horadam, Fibonacci, Jacobsthal and Pell numbers. Furthermore,
they investigate some algebraic properties. It is known that the nth harmonic number Hn,
ref. [4] has the usual definition

Hn =
n

∑
k=1

1
k
=

∞

∑
j=1

n
j(j + n)

=

1∫
0

1− xn

1− x
dx (H0 = 0)

for n ∈ N, where N denotes the set of natural numbers without zero. The harmonic
numbers and their generalizations have been studied for many years and cover a wide
range of fields, such as computer science, number theory, physics, and matrix theory.
In [5], the authors define n by n matrices associated with harmonic numbers, they obtain
some properties for their norms. In [6], some spectral bounds for the harmonic matrix are
obtained. Furthermore, the circulant and r−circulant matrices whose entries are harmonic
and hyperharmonic Fibonacci numbers are studied [7].

Matrix theory and linear algebra are fundamental tools in many mathematical disci-
plines. One can find a lot of basic topics for a variety of these areas in [8–10], in details. In
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the literature, it is quite common to construct different matrix types from past to present
and to examine the properties of those matrices such as norms and permanents, etc. In [11],
Hadamard exponential Hankel matrix is defined and its eigenvalues and some norms are
examined. In [12], the spectral norms of the matrices connected integer numbers sequences
are stated. In [13], the authors investigate the spectral norms of Toeplitz matrices with
Fibonacci and Lucas numbers. In [14], the authors study on permanents of the matrices.
Furthermore, Brualdi et al. define a new method to compute permanents for some type
of matrices, in [15]. It is known that there are a lot of relationships between determinants
or permanents of matrices and well-known number sequences. In [16], the authors study
on Fibonacci and related sequences in periodic tridiagonal matrices. In [17], the authors
investigate relationships between permanents of one type of Hessenberg matrix and the
Pell and Perrin numbers. Petroudi et al. define a special symmetric matrix form and its
Hadamard exponential matrix. Furthermore, they give inverses and some norms for the
matrices, in [18].

In this paper, by inspiring the definition of harmonic numbers, we define harmonic
Pell numbers. Firstly, we construct a new type of symmetric matrix whose entries are
the harmonic Pell numbers and its Hadamard exponential matrix. Secondly, we give the
determinants of these matrices. Furthermore, we find the leading principle minors and
inverses of them. Then, some bounds for the norm of these matrices are obtained. Moreover,
we give an illustrative example for all results. Finally, we present a MATLAB-R2016a code
which writes the matrix with harmonic Pell entries and calculates some norms and bounds
for the Hadamard exponential matrix.

2. Preliminaries

The norm of a matrix is a non-negative real number which is a measure of the magni-
tude of the matrix. There are several different ways of defining a matrix norm but they all
share the same certain properties. Let A = (aij) be an n by n matrix, then the maximum
column norm is

‖A‖c1 = maxj

√
∑

i
|aij|2, (1)

and the maximum row norm is

‖A‖r1 = maxi

√
∑

j
|aij|2. (2)

The `p norm of A is defined by

‖A‖p = (
n

∑
i=1

n

∑
j=1
|aij|p)

1
p . (3)

For p = 2, the `p norm is defined as Euclidean (Frobenius) norm and is denoted by ‖A‖E.
Let AH be the conjugate transpose of matrix A and λi be the eigenvalue of matrix AAH ,
then the spectral norm of the matrix A is

‖A‖2 =
√

max
1≤i≤n

λi. (4)

If the matrix A equals to the Hadamard product of the matrices B and C, (i.e., A = B ◦ C =
(bijcij)), then the following relation is satisfied

‖A‖2 ≤ ‖B‖r1‖C‖c1 . (5)

The Frobenius and spectral norm of the matrix A satisfy the following inequality:

1√
n
‖A‖E ≤ ‖A‖2 ≤ ‖A‖E. (6)
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Additionally, the Hadamard exponential matrix of the matrix A = (aij)m×n is defined by
e◦A = (eaij) [10]. Assume that M is a square matrix as below:

M =

[
A b
bT c

]
, (7)

where A is an n by n non-singular matrix and b is an n× 1 matrix, also c is a real number.
Then, the inverse of M is

N =

[
A−1 + 1

l A−1bbT A−1 − 1
l A−1b

− 1
l bT A−1 c

]
, (8)

where l = c− bT A−1b [18]. Moreover, the permanent of an n by n matrix A is defined as

perA = ∑
σ∈Sn

n

∏
i=1

ai,σ(i) (9)

the sum here extends over all elements σ of the symmetric group Sn over all permutations
of the numbers 1, 2, ..., n, [14].

3. Harmonic Pell Numbers and Some Symmetric Matrices

Let us define the nth harmonic Pell number by

Pn =
n

∑
k=1

1
Pk

,

where Pk is the kth Pell number. Additionally, let us construct two symmetric n by n
matrix denoted by P = [Pki,j

]ni,j=1 and the Hadamard exponential matrix denoted by

e◦P = [e
Pki,j ]ni,j=1 of the matrix P, respectively, as below:

P =


P1 P1 P1 · · · P1
P1 P2 P2 · · · P2
P1 P2 P3 · · · P3
...

...
...

...
...

P1 P2 P3 · · · Pn

 =


1 1 1 · · · 1
1 3

2
3
2 · · · 3

2
1 3

2
17
10 · · · 17

10
...

...
...

...
...

1 3
2

17
10 · · · ∑n

k=1
1
Pk

 (10)

and

e◦P =


eP1 eP1 eP1 · · · eP1

eP1 eP2 eP2 · · · eP2

eP1 eP2 eP3 · · · eP3

...
...

...
...

...
eP1 eP2 eP3 · · · ePn

, (11)

where ki,j = min{i, j} and Pk is the kth harmonic Pell number. We give some values of the
harmonic and harmonic Pell numbers in Table 1.

Table 1. Some harmonic and harmonic Pell numbers.

n 1 2 3 4 5 6 7 8 9 10

Hn 1 3
2

11
6

25
12

137
60

49
20

363
140

761
280

7129
2520

83,711
27,720

Pn 1 3
2

17
10

107
60

449
247

251
137

261
142

173
94

151
82

501
272
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Theorem 1. Let P be an n by n matrix given in (10). Then,

det(P) =
1

P1P2...Pn
,

where Pn is the nth Pell number.

Proof. By applying the elementary row operations on the matrix (10), in other words by
multiplying each row with −1 and adding it to the consecutive row, we obtain:

det(P) = det


P1 P1 P1 · · · P1
0 P2 − P1 P2 − P1 · · · P2 − P1
0 0 P3 − P2 · · · P3 − P2
...

...
...

...
...

0 0 0 · · · Pn − Pn−1

.

So, we get the following equation:

det(P) = P1

n

∏
i=2

(Pi+1 − Pi) =
n

∏
i=1

1
Pi

=
1

P1P2...Pn
.

Theorem 2. The leading principal minor ∆n of the matrix P which is given in (10) satisfies the
followings:

i. ∆n = 1
Pn

∆n−1,
ii. ∆1∆2∆3 · · ·∆n = 1

Pn
1 Pn−1

2 ...P2
n−1Pn

.

Proof. By exploiting Theorem 1 and the equations given below:

∆1 = 1, ∆2 =
1
2

, ∆3 =
1

10
, · · · , ∆n =

1
P1P2...Pn

,

the proof is clear.

Corollary 1. Let P be a matrix which is given in (10), then P is a positively defined matrix. All
eigenvalues of P are positive.

Theorem 3. Let P be a matrix as in the matrix (10), then the inverse of P is calculated as

P−1 =



P1 + P2 −P2 0 0 0 · · · 0 0
−P2 P2 + P3 −P3 0 0 · · · 0 0

0 −P3 P3 + P4 −P4 0 0 · · · 0
0 0 −P4 P4 + P5 −P5 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · 0 −Pn−1 Pn−1 + Pn −Pn
0 0 0 · · · 0 0 −Pn Pn


·

Proof. By Theorem 1, it is known that P is invertible. Note that the determinant of the
inverse of P is

det(P−1) = P1P2...Pn.

The inverse of the matrix P can be calculated by principle mathematical induction (PMI),
on n. It verifies for n = 2, i.e., if

P =

[
1 1
1 3

2

]
,
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then we find

P−1 =

[
3 −2
−2 2

]
.

Suppose that the hypothesis is provided for n, that is, A = P = [Pki,j
]n×n, and there exists

A−1 = [Pki,j
]−1
n×n. So, we have b = (P1,P2, · · · ,Pn)T , bT = (P1,P2, · · · ,Pn). By taking

c = Pn+1 and by the help of the Equation (8), the proof is completed for n + 1.

Let us define a second order recurrence relation, for i ≥ 2, as below:

v[i] = v[i−1](Pi+3 + Pi+4) + v[i−2]P2
i+3

where v[1] = v[0](P4 + P5) + AP2
4 , v[0] = A(P3 + P4) + P2

3 (P1 + P2) and A = 25. The first
few values of the sequence can be given as following:

v[1] = v[0](P4 + P5) + AP2
4

v[2] = v[1](P5 + P6) + v[0]P2
5

v[3] = v[2](P6 + P7) + v[1]P2
6

...

where i = 2, 3, 4, . . .. Here, we construct a new recurrence relation whose permanents are
related to inverse of the matrix P−1.

Theorem 4. For n ≥ 5, the permanents of the matrix P−1 are:

per(P−1) = Pn(v[n−4] + v[n−5]Pn).

For, 2 ≤ n < 5 the permanent of P−1 is calculated as follows:

n = 2, per(P−1) = 10,

n = 3, per(P−1) = 200,

n = 4, per(P−1) = 18100.

Proof. Let us consider A = 25 and v[0] = A(P3 + P4) + P2
3 (P1 + P2), then by using a new

method which is called as contraction method, we get

[
P−1

](1)
=



A −P3(P1 + P2)
−P3 (P3 + P4) −P4

−P4 (P4 + P5)
. . .

. . . . . . −Pn−1
−Pn−1 (Pn−1 + Pn) −Pn

−Pn Pn


(n−1)×(n−1)

and going on with this method, we obtain

[
P−1

](2)
=



v[0] −AP4

−P4 (P4 + P5)
. . .

. . . . . . −Pn−1
−Pn−1 (Pn−1 + Pn) −Pn

−Pn Pn


(n−2)×(n−2)
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and we can mention these steps with a general statement, for n− 2 > r ≥ 3, as below:

[
P−1

](r)
=


v[r−2] −v[r−3]Pr+2
−Pr+2 (Pr+2 + Pr+3) −Pr+3

. . . . . . . . .
−Pn−1 (Pn−1 + Pn) −Pn

−Pn Pn


(n−r)×(n−r)

Consequently, we get

[
P−1

](n−2)
=

[
v[n−4] −v[n−5]Pn
−Pn Pn

]
.

So, the permanent of P−1 is

per(P−1) = Pn(v[n−4] + v[n−5]Pn).

Similarly, for the special cases 2 ≤ n < 5, the permanent of P−1 can be easily found by
using the same method.

Let us define the Hadamard inverse of a matrix P, as follows:

P◦(−1) =



1
P1

1
P1

1
P1
· · · 1

P1
1
P1

1
P2

1
P2
· · · 1

P2
1
P1

1
P2

1
P3
· · · 1

P3
...

...
...

...
...

1
P1

1
P2

1
P3
· · · 1

Pn

,

where Pn is the nth harmonic Pell number.

Theorem 5. Assume that P is a matrix which is given in (10). Then,

det(P◦(−1)) =
(−1)n−1

n−1
∏
i=1

PiP2
i Pn

.

Proof. By multiplying each row with −1 and adding it to the consecutive row, we obtain:

det(P◦(−1)) = det



1
P1

1
P1

1
P1

· · · 1
P1

0 1
P2
− 1

P1
1
P2
− 1

P1
· · · 1

P2
− 1

P1

0 0 1
P3
− 1

P2
· · · 1

P3
− 1

P2
...

...
...

...
...

0 0 0 · · · 1
Pn
− 1

Pn−1


.

Thus, we find

det(P◦(−1)) =
1
P1

n

∏
k=2

(
1
Pk
− 1

Pk−1
).

So, we get

det(P◦(−1)) =
(−1)n−1

n−1
∏
i=1

PiP2
i Pn

.
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Theorem 6. Let P be a matrix which is given in (10), then the Euclidean norm of P is

‖P‖E =

√
(n + 1)2P2

n+1 − (2n + 1) +
n

∑
k=1

(k + 1)(k− (2n + 1))
Pk+1

(Pk + Pk+1).

Proof. By the Euclidean norm of P, we get

‖P‖2
E =

[
(

n

∑
i=1

n

∑
j=1
|Pkij
|2)

1
2

]2

.

Thus, we calculate

‖P‖2
E =

n

∑
k=1

(2n− 2k + 1)P2
k = (2n + 1)

n

∑
k=1

P2
k − 2

n

∑
k=1

kP2
k .

Furthermore, by the help of the reference [4], we get

n

∑
k=1

P2
k = P2

n+1(n + 1)− 1−
n

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1), (12)

and

∑ k=1
nkP2

k = P2
n+1

n(n + 1)
2

−∑ k=1
n (k + 1)k

2Pk+1
(Pk + Pk+1). (13)

According to (12) and (13), we obtain

‖P‖E =
√
(n + 1)2P2

n+1 − (2n + 1) + ∑n
k=1

(k+1)(k−(2n+1))
Pk+1

(Pk + Pk+1).

Corollary 2. Let P be a matrix which is given in (10), then the following inequality is obtained:

1√
n

√
(n + 1)2P2

n+1 − (2n + 1) +
n

∑
k=1

(k + 1)(k− (2n + 1))
Pk+1

(Pk + Pk+1) ≤ ‖P‖2

≤
√
(n + 1)2P2

n+1 − (2n + 1) +
n

∑
k=1

(k + 1)(k− (2n + 1))
Pk+1

(Pk + Pk+1).

Proof. The proof can be seen easily by using the proof above and the Inequality (6).

Theorem 7. Let P be a matrix as in the matrix form (10). Then, we have the upper bound for the
spectral norm of P as follows:

‖P‖2 ≤

√√√√[(n + 1)P2
n+1 − 1−

n

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1)

][
nP2

n −
n−1

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1)

]
.

Proof. We can write
P = A ◦B,

where

A =


P1 1 1 · · · 1
P1 P2 1 · · · 1
P1 P2 P3 · · · 1
...

...
...

...
P1 P2 P3 · · · Pn
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and

B =


1 P1 P1 · · · P1
1 1 P2 · · · P2
1 1 1 · · · P3
...

...
...

...
1 1 1 · · · 1

.

Therefore, we get

‖A‖r1 =

√
n

∑
i=1

P2
i =

√
(n + 1)P2

n+1 − 1−
n

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1),

‖B‖c1 =

√√√√n−1

∑
i=1

P2
i + 1 =

√√√√nP2
n −

n−1

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1).

Consequently, by using the inequality given in (5), we find

‖P‖2 ≤

√√√√[(n + 1)P2
n+1 − 1−

n

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1)

][
nP2

n −
n−1

∑
k=1

(k + 1)
Pk+1

(Pk + Pk+1)

]
.

Theorem 8. Assume that e◦P is a matrix as in the form (11), then we calculate

det(e◦P) = eP1
n

∏
k=2

(ePk − ePk−1).

Proof. The proof can be done easily by applying the elementary row operations.

Theorem 9. Let e◦P be a matrix which is given in (11) and assume that the leading principal
minor of e◦P is denoted by ∆n, then we have for n > 1

i. ∆n = (ePn − ePn−1)∆n−1,
ii. ∆1∆2∆3 · · ·∆n = (eP1)n(eP2 − eP1)n−1(eP3 − eP2)n−2...(ePn − ePn−1).

Proof. It can be calculated by using Theorem 8 and the following equations

∆1 = e, ∆2 = e(e
3
2 − e), ∆3 = e(e

3
2 − e)(e

17
10 − e

3
2 ),

· · · , ∆n = eP1(eP2 − eP1)(eP3 − eP2)...(ePn − ePn−1).

Corollary 3. Let e◦P be a matrix which is given in (11), then e◦P is a positively defined matrix
and all eigenvalues of e◦P are positive.
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Theorem 10. Suppose that e◦P is a matrix as in the matrix form (11), then the inverse of the
matrix e◦P is denoted by (e◦P)−1 and calculated as

eP2

eP1 (eP2−eP1)
1

eP3−eP2
− 1

eP2−eP1
( eP3−eP1

eP3−eP2
) · · · 0 0 0

1
eP1−eP2

1
eP2−eP1

( eP3−eP1

eP3−eP2
)

. . . 0 0 0

0 1
eP2−eP3

. . . 0 0 0
...

...
. . . . . .

...
...

0 0
. . . . . . α 0

0 0 · · · 1
ePn−2−ePn−1

β 1
ePn−1−ePn

0 0 · · · 0 1
ePn−1−ePn

1
ePn−ePn−1


,

where

α =
1

ePn − ePn−1
− 1

ePn−1 − ePn−2
(

ePn − ePn−2

ePn − ePn−1
),

and

β =
1

ePn−1 − ePn−2
(

ePn − ePn−2

ePn − ePn−1
).

Proof. By following the same way in Theorem 3, the proof can be seen easily.

Theorem 11. Assume that eP is a matrix which is given in (11). Then,

det(eP◦(−1)) =
1

eP1

n

∏
k=2

1
ePk−1

(1− e
1

Pk )

e
1

Pk

Proof. By the definition of the Hadamard inverse matrix, we define

eP◦(−1) =



1
eP1

1
eP1

1
eP1

· · · 1
eP1

1
eP1

1
eP2

1
eP2

· · · 1
eP2

1
eP1

1
eP2

1
eP3

· · · 1
eP3

...
...

...
...

...
1

eP1
1

eP2
1

eP3
· · · 1

ePn


.

By the elementary row operations, we get

det(eP◦(−1)) = 1
eP1

(∏k=2)
n( 1

ePk
− 1

ePk−1
) = 1

eP1
∏k=2

n 1
ePk−1

(1−e
1

Pk )

e
1

Pk

.

Theorem 12. Let us consider the matrix e◦P given by (11), then

‖e◦P‖E =

√
(2n + 1)

n

∑
k=1

e2Pk − 2
n

∑
k=1

ke2Pk .

Proof. By exploiting the definition of Euclidean norm,∥∥∥e◦P
∥∥∥2

E
=

n

∑
k=1

(2n− 2k + 1)e2Pk = (2n + 1)
n

∑
k=1

e2Pk − 2
n

∑
k=1

ke2Pk .

So, the proof is clear.
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Corollary 4. Let e◦P be a matrix as in the matrix form (11). Then, the following inequalities are
hold:

1√
n

√
(2n + 1)

n

∑
k=1

e2Pk − 2
n

∑
k=1

ke2Pk ≤ ‖e◦P‖2 ≤
√
(2n + 1)

n

∑
k=1

e2Pk − 2
n

∑
k=1

ke2Pk .

Proof. The proof can be seen easily by using Theorem 12 and the Inequality (6).

Theorem 13. Assume that e◦P is a matrix as in the matrix form (11). Then, we have an upper
bound for the spectral norm of the matrix e◦P as follow:

‖e◦P‖2 ≤

√
(

e2Pn+1 − e2

2(e− 1)
)(

e2Pn − e2

2(e− 1)
+ 1).

Proof. We can write
e◦P = A ◦B,

where

A =


eP1 1 1 · · · 1
eP1 eP2 1 · · · 1
eP1 eP2 eP3 · · · 1

...
...

...
...

...
eP1 eP2 eP3 · · · ePn


and

B =


1 eP1 eP1 · · · eP1

1 1 eP2 · · · eP2

1 1 1 · · · eP3

...
...

...
...

...
1 1 1 · · · 1

.

So,

‖A‖r1 =

√
n

∑
k=1

e2Pk

and

‖B‖c1 =

√√√√n−1

∑
k=1

e2Pk + 1.

Thus, according to (5) we obtain

‖e◦P‖2 ≤

√√√√(
n

∑
k=1

e2Pk )(
n−1

∑
k=1

e2Pk + 1).

4. Numerical Examples

In this section, we present an illustrative example that we calculate all results for the
symmetric 5× 5 matrix whose entries are the harmonic Pell numbers.
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Example 1. Let P be a matrix as in matrix form (10) for n = 5. Then, the matrix P is

P =


1 1 1 1 1
1 3

2
3
2

3
2

3
2

1 3
2

17
10

17
10

17
10

1 3
2

17
10

107
60

107
60

1 3
2

17
10

107
60

449
247

,

which can be found from the MATLAB code in Table 2. From the Theorem 1, the determinant of P
can be calculated as

det(P) =
1

P1P2P3P4P5
=

1
3480

.

The inverse of the matrix P and the Hadamard inverse of P can be written as

P−1 =


P1 + P2 −P2 0 0 0
−P2 P2 + P3 −P3 0 0

0 −P3 P3 + P4 −P4 0
0 0 −P4 P4 + P5 −P5
0 0 0 −P5 P5

 =


3 −2 0 0 0
−2 7 −5 0 0
0 −5 17 −12 0
0 0 −12 41 −29
0 0 0 −29 29


and

P◦(−1) =



1
P1

1
P1

1
P1

1
P1

1
P1

1
P1

1
P2

1
P2

1
P2

1
P2

1
P1

1
P2

1
P3

1
P3

1
P3

1
P1

1
P2

1
P3

1
P4

1
P4

1
P1

1
P2

1
P3

1
P4

1
P5

 =


1 1 1 1 1
1 2

3
2
3

2
3

2
3

1 2
3

10
17

10
17

10
17

1 2
3

10
17

60
107

60
107

1 2
3

10
17

60
107

247
449

,

respectively. By exploiting the contraction method from Theorem 4, we obtain the permanent of the
matrix P−1 as follows:

[
P−1

](1)
=


A −P3(P1 + P2) 0 0
−P3 P3 + P4 −P4 0

0 −P4 P4 + P5 −P5
0 0 −P5 P5

 =


25 −15 0 0
−5 17 −12 0
0 −12 41 −29
0 0 −29 29

.

Going on with the method:

[
P−1

](2)
=

 v(0) −AP4 0
−P4 P4 + P5 −P5

0 −P5 P5

 =

 500 −6000 0
−12 41 −29

0 −29 29

,

where v(0) = P2
3 (P1 + P2) + A(P3 + P4). Finally, we get:

[
P−1

](3)
=

[
v(1) −P5v(0)

−P5 P5

]
=

[
24100 −14500
−29 29

]
where v(1) = AP2

4 + v(0)(P4 + P5). So, the permanent of the matrix P−1 is

per(P−1) = P5(v(1) + P5v(0)) = 1119400.

From Theorem 5, the determinant of P◦(−1) is

det(P◦(−1)) =
80000

10465611043
≈ 7.644× 10−6.
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By the light of Theorem 6, one can calculate the Euclidean norm of the matrix P as

||P||E ≈ 7.214.

For the spectral norm of P, we can write the following inequality from Corollary 2:

3.226 ≤ ||P||2 ≤ 7.214.

Moreover, an upper bound for the spectral norm can be found from Theorem 7 as follows:

||P||2 ≤
√

11205
86

≈ 11.414.

For finding this bound, we use two auxiliary matrices via Theorem 7. These matrices are

A =


P1 1 1 1 1
P1 P2 1 1 1
P1 P2 P3 1 1
P1 P2 P3 P4 1
P1 P2 P3 P4 P5

 =


1 1 1 1 1
1 3

2 1 1 1
1 3

2
17
10 1 1

1 3
2

17
10

107
60 1

1 3
2

17
10

107
60

449
247


and

B =


1 P1 P1 P1 P1
1 1 P2 P2 P2
1 1 1 P3 P3
1 1 1 1 P4
1 1 1 1 1

 =


1 1 1 1 1
1 1 3

2
3
2

3
2

1 1 1 17
10

17
10

1 1 1 1 107
60

1 1 1 1 1

.

The maximum row norm of the matrix A is

‖A‖r1 =

√
2509239697
219632400

≈ 3.38

and the maximum column norm of the matrix B is

‖B‖c1 =

√
40033
3600

≈ 3.33.

By using the definition of it, the Hadamard exponential matrix of P is constructed as

e◦P =


e e e e e
e e

3
2 e

3
2 e

3
2 e

3
2

e e
3
2 e

17
10 e

17
10 e

17
10

e e
3
2 e

17
10 e

107
60 e

107
60

e e
3
2 e

17
10 e

107
60 e

449
247

.

So, the determinant of e◦P can be calculated from Theorem 8 as

det(e◦P) =
613

1298
≈ 0.472.

The inverse of the matrix e◦P and the Hadamard inverse of e◦P can be written as

(e◦P)−1 =


115
123 − 93

164 0 0 0
− 93

164
326
207 − 129

128 0 0
0 − 129

128
877
282 − 494

235 0
0 0 − 494

235
4694
681 − 206

43
0 0 0 − 206

43
206
43
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and

eP◦(−1) =


e e e e e
e e−

3
2 e−

3
2 e−

3
2 e−

3
2

e e−
3
2 e−

17
10 e−

17
10 e−

17
10

e e−
3
2 e−

17
10 e−

107
60 e−

107
60

e e−
3
2 e−

17
10 e−

107
60 e−

449
247

,

respectively. From Theorem 11, the determinant of eP◦(−1) can be stated as follows:

det(eP◦(r−1)) ≈ 1.792× 10−7.

By the light of Theorem 12 or by using the MATLAB code in Table 2, one can calculate the Euclidean
norm of the matrix e◦P as

‖e◦P‖E ≈ 22.384.

For the spectral norm of e◦P, we can write the following inequality from Corollary 4:

10.011 ≤ ‖e◦P‖2 ≤ 22.384.

Moreover, an upper bound for the spectral norm can be found from Theorem 13 or the MATLAB
code in Table 2 as follows:

‖e◦P‖2 ≤ 110.772.

For finding this bound, we use two auxiliary matrices via Theorem 13. These matrices are

A =


eP1 1 1 1 1
eP1 eP2 1 1 1
eP1 eP2 eP3 1 1
eP1 eP2 eP3 eP4 1
eP1 eP2 eP3 eP4 eP5

 =


e 1 1 1 1
e e

3
2 1 1 1

e e
3
2 e

17
10 1 1

e e
3
2 e

17
10 e

107
60 1

e e
3
2 e

17
10 e

107
60 e

449
247


and

B =


1 eP1 eP1 eP1 eP1

1 1 eP2 eP2 eP2

1 1 1 eP3 eP3

1 1 1 1 eP4

1 1 1 1 1

 =


1 e e e e
1 1 e

3
2 e

3
2 e

3
2

1 1 1 e
17
10 e

17
10

1 1 1 1 e
107
60

1 1 1 1 1

.

From Theorem 13 or the following MATLAB code, the maximum row norm of the matrix A can be
calculated as

‖A‖r1 ≈ 130.763

and the maximum column norm of the matrix B can be found as

‖B‖c1 ≈ 93.837.
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Table 2. MATLAB-R2016a code for the matrix P and for the norm calculations of e◦P.

clc
clear all
n=input(’n=?’);
f(1) = 1;
f(2) = 2;
g(1)=1;
g(2)=1/2;
for i = 3: n

f(i) = 2*f(i-1) + f(i-2);
g(i) =1/f(i);

end
b = g(1:n);
t=cumsum(b);
for i=1:n

for j=1:n
if i==j

a(i,j)=t(i);
elseif i<j

a(i,j)=t(i);
elseif i>j

a(i,j)=t(j);
end

end
end
A = rats(a)
for i = 1 : n

c(i)=exp(2*t(i));
end
d = c(1:n);
rownorm_1 = cumsum(d);
rownnorm=rownorm_1(n)
e = c(1:n-1);
columnnorm_2 = cumsum(e)+1;
columnnorm=columnnorm_2(n-1)
s_2normlessthan=(columnnorm_2(n-1)*rownorm_1(n))(1/2)

for i = 1 : n
f(i)=i*exp(2*t(i));

end
g = f(1:n);
x=cumsum(g);
EuclidNorm=((2*n+1)*rownorm_1(n)-2*x(n))(1/2)

5. Conclusions

In this paper, we define a new number sequence named harmonic Pell numbers.
Then, we construct a special symmetric matrix P whose entries are the harmonic Pell
numbers and its Hadamard exponential matrix e◦P. We examine some linear algebraic
properties of the matrices and state some bounds for the Euclidean and spectral norms of
them. Furthermore, we obtain some summation formulas for the harmonic Pell numbers,
which we think can shed light on the studies that can be done about the harmonic Pell
numbers in the future. Moreover, we give a MATLAB-R2016a code for the matrix P and
for the norm calculations of e◦P (See, Table 2). Here, we prefer writing a new algorithm
at MATLAB-R2016a code which is not included in the standard Matlab libraries. For the
value n inputted to the code given

1. writes the matrix P,
2. for the matrix e◦P,

i. calculates the row norm ‖A‖r1 ,
ii. calculates the column norm ‖B‖c1 ,
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iii. gives an upper bound for the spectral norm ‖e◦P‖2,
iv. obtains ‖e◦P‖E.
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